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STRONG FULL EXCEPTIONAL COLLECTIONS ON CERTAIN
TORIC VARIETIES WITH PICARD NUMBER THREE VIA

MUTATIONS

WAHEI HARA

In this paper, we study derived categories of certain toric varieties with
Picard number three that are blowing-up another toric varieties along their
torus invariant loci of codimension at most three. We construct strong full
exceptional collections by using Orlov’s blow-up formula and mutations.

1. Introduction

An object E of a triangulated category D is called exceptional if

HomD(E ,E [i]) =
{

k if i = 0,
0 if i 6= 0,

and a sequence of exceptional objects E1, . . . ,Er is called full exceptional col-
lection if they generate whole category D and HomD(El,Ek[i]) = 0 for all 1 ≤
k < l ≤ r and all i ∈ Z. In addition, the full exceptional collection is strong if
HomD(Ek,El[i]) = 0 for all 1≤ k < l ≤ r and all i 6= 0.

If one finds a full exceptional collection, one can draw many information on
the triangulated category D. However, a triangulated category does not always
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admit a full exceptional collection. For example, derived categories of Calabi-
Yau varieties do not have any exceptional collection. For toric projective case,
Y. Kawamata proved in [Ka06] that:

Theorem 1.1 ([Ka06]). For any smooth projective toric Deligne-Mumford stack
X , its derived category Db(X ) has a full exceptional collection.

About the existence of strong full exceptional collections, there are same
conjectures. The following question is due to A. King [Ki97].

Question 1.2. For any smooth toric variety X , does its derived category Db(X)
have a strong full exceptional collection consisting of line bundles?

However, the answer of this question is negative in general:

(1) First, L. Hille and M. Perling constructed in [HP06] a 2-dimensional
counterexample to Question 1.2. This example is just the Hirzebruch
surface F2 iteratively blown-up three times.

(2) Further, M. Machałek presented an infinite list of counterexamples for
Question 1.2 in [M11].

(3) A. Efimov showed in [Ef14] that there are infinitely many counterexam-
ples for Question 1.2 that are smooth toric Fano varieties with Picard
number three.

Toric varieties with Picard number at most two are studied by L. Costa,
R.M. Miró-Roig [CM04], and they proved that their derived categories have
strong full exceptional collections consisting of line bundles. A. Day, M. Lasoń,
M. Michałek [DLM09], L. Costa, R.M. Miró-Roig [CM12], and M. Lasoń, M.
Michałek [LM11] studied the derived categories of toric varieties with Picard
number three that are blowing-up of another toric varieties along codimension
two loci. In this paper, we generalize their results and newly study the toric va-
rieties which are blowing-up of another toric varieties along codimension three
loci. More precisely, we prove the following theorem.

Theorem 1.3 (= 3.4). Let X be a smooth projective toric variety with Picard
number two, and X̃ a blowing-up of X along a torus invariant closed subvariety
Y ⊂ X. If the codimension of Y in X is at most three, then Db(X̃) has a strong
full exceptional collection consisting of line bundles.

In the previous works [DLM09, CM12, LM11], the authors used Bondal’s
Frobenius splitting method to construct a strong full exceptional collection con-
sisting of line bundles in a derived category of a toric variety. In this paper,
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we take different approach, namely we prove the theorem by Orlov’s blow-up
formula and the mutation method. If we use the Frobenius splitting method,
we need to check that the collection as an output is actually full, exceptional,
and strong. But in our case, because the operation of mutation keeps the con-
dition “full exceptional”, what we need to check is only the strongness of the
collection. This makes the computations in the proof much easier and more el-
ementary, and also enables us to generalize the previously known results. Note
that the difficulty of the mutation method is the difficulty of the explicit calcu-
lations of mutated objects, but we find a new procedure of mutation operations
which we can easily calculate.

Acknowledgements. The author would like to express his gratitude to his
supervisor Yasunari Nagai for beneficial conversations and helpful advices. He
is also grateful to the referee for careful reading and giving useful comments.

2. Preliminaries

Let k be an algebraic closed field of any characteristic.

2.1. Semiorthogonal decompositions and exceptional collections

Let D be a triangulated category over a field k.

Definition 2.1. Let A1, . . . ,Ar be triangulated full subcategories of D. The se-
quence of subcategoriesA1, . . . ,Ar is called a semiorthogonal collection inD if
HomD(F ,E) = 0 for all 1≤ i< j≤ r and all E ∈Ai,F ∈A j. A semiorthogonal
collection A1, . . . ,Ar is called a semiorthogonal decomposition if it generates
the whole category D, i.e. if the smallest triangulated subcategoy of D that con-
tains all subcategories A1, . . . ,Ar coincides with D. In such case, we write

D = 〈A1, . . . ,Ar〉.

Definition 2.2. (i) An object E ∈ D is called an exceptional object if

HomD(E ,E [i]) =
{

k if i = 0,
0 if i 6= 0.

(ii) A sequence of exceptional objects E1, . . . ,Er is called an exceptional col-
lection if HomD(El,Ek[i]) = 0 for all 1≤ k < l ≤ r and all i ∈ Z.

(iii) An exceptional collection E1, . . . ,Er is full if it generates the whole cate-
gory D. In such case, we write

D = 〈E1, . . . ,Er〉.
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(iv) An exceptional collection E1, . . . ,Er is strong if HomD(Ek,El[i]) = 0 for
all 1≤ k < l ≤ r and all i 6= 0.

Example 2.3 ([Be79]). An n-dimensional projective space Pn has a strong full
exceptional collection consisting of line bundles called Beilinson collection

Db(Pn) = 〈O,O(1),O(2), . . . ,O(n)〉.

Remark 2.4. If E ∈ D is an exceptional object, the category 〈E〉 generated
by E is equivalent to the derived category of a point Db(k) = Db(Speck). If
a sequence of objects E1, . . . ,Er is a full exceptional collection in D, then a
sequence of subcategories 〈E1〉, . . . ,〈Er〉 is a semiorthogonal decomposition of
D. Conversely, if the sequence of subcategories A1, . . . ,Ar is a semiorthogonal
decomposition of D and each subcategory Ai has a full exceptional collection,
then D also has a full exceptional collection.

Remark 2.5. If an Ext-finite category D (which means that for any F ,F ′ ∈ D
the vector space⊕i∈Z HomD(F ,F ′[i]) is finite dimensional) has a strong full ex-
ceptional collection E1, . . . ,Er, then there is an equivalence fromD to the derived
category of right modules over the non-commutative ring A = End(

⊕r
i=1Ei) de-

fined by
RHom(

⊕
Ei,−) :D−→Db(mod-A).

This equivalence was first proved by A. Bondal in [Bo90] when D is a derived
category of a smooth projective variety with a strong full exceptional collection.

2.2. Mutations

For an object E ∈ D, we define subcategories E⊥,⊥E ⊂ D by

E⊥ := {F ∈ D | HomD(E ,F) = 0}
⊥E := {F ∈ D | HomD(F ,E) = 0}.

Definition 2.6. Let E ∈ D be an exceptional object. For an object F in ⊥E , we
define the left mutation of F through E as the object LE(F) in E⊥ that lies in an
exact triangle

RHom(E ,F)⊗E−→F−→LE(F).

Similarly, for an object G in E⊥, we define the right mutation of G through E as
the object RE(G) in ⊥E which lies in an exact triangle

RE(G)−→G−→RHom(G,E)∗⊗E .

Lemma 2.7 ([Bo90]). Let E1,E2 be an exceptional pair (i.e. an exceptional
collection consisting of two objects). Then, the following holds.
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(i) The left (resp. right) mutated object LE1(E2) (resp. RE2(E1)) is again an
exceptional object.

(ii) The pairs of exceptional objects E1,RE1(E2) and LE2(E1),E2 are again
exceptional pairs.

Let E1, . . . ,Er be a full exceptional collection in D. Then

(iii) The collection

E1, . . . ,Ei−1,LEi(Ei+1),Ei,Ei+2, . . . ,Er

is again full exceptional for each 1≤ i≤ r−1. Similarly, the collection

E1, . . . ,Ei−2,Ei,REi(Ei−1),Ei+1, . . . ,Er

is again full exceptional for each 2≤ i≤ r.

Lemma 2.8 ([Bo90]). (i) Let E1,E2 ∈D be an exceptional pair. Assume that
we have HomD(E1,E2[i]) = 0 for all i ∈ Z. Then, LE1(E2) ' E2 and
RE2(E1)' E1.

(ii) Let Db(X) = 〈E1,E2, . . . ,Er−1,Er〉 be an full exceptional collection in a
derived category of smooth projective variety Db(X). Then, the following
two collections

〈E2, . . . ,Er−1,Er,E1⊗ω
−1
X 〉, 〈Er⊗ωX ,E1,E2, . . . ,Er−1〉

are also full exceptional collections in Db(X).

2.3. Orlov’s formulas

We recall Orlov’s two formulas that give semiorthogonal decompositions of de-
rived categories. We will use these formulas to construct a full exceptional
collection on the derived category of our toric variety.

Theorem 2.9 ([Or93]). Let X be a smooth projective variety and E a vector
bundle of rank r+1 on X. Consider the projectivization of E , p : X̃ := PX(E)→
X. Then, the functor p∗ : Db(X)→ Db(X̃) is fully faithful, and Db(X̃) has a
semiorthogonal decomposition

Db(X̃) = 〈p∗Db(X), p∗Db(X)⊗Op(1), . . . , p∗Db(X)⊗Op(r)〉

where Op(1) is the tautological line bundle of PX(E).
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Theorem 2.10 ([Or93]). Let X be a smooth projective variety, and Y ⊂ X a
smooth closed subvariety of codimension c (≥ 2). Let f : X̃ := BlY X → X be a
blowing-up of X along Y and E its exceptional divisor,

E = P(N ∗Y/X) X̃

Y X

π f

Then, the functors f ∗ : Db(X)→Db(X̃) and ι∗π
∗ : Db(Y )→Db(X̃) are fully

faithful, and Db(X̃) has a semiorthogonal decomposition

Db(X̃) = 〈ι∗π∗Db(Y )⊗O((c−1)E), . . . , ι∗π∗Db(Y )⊗O(E), f ∗Db(X)〉.

3. Main theorem and comparison with known results

First, we recall the following result due to L. Costa and R.M. Miró-Roig.

Proposition 3.1 ([CM04]). Let X be a smooth projective toric variety, and E a
vector bundle of rank r+1 on X whose projectivization Z = PX(E) is also toric.
Assume that Db(X) has a full exceptional collection consisting of line bundles,
then Db(Z) also has a full exceptional collection consisting of line bundles.
Moreover, if the full exceptional collection in Db(X) is strong, then Db(Z) has a
strong full exceptional collection consisting of line bundles.

A smooth projective toric variety with Picard number one is just a projective
space. On the other hand, the geometric structure of smooth projective toric
varieties with Picard number two is given by the following theorem.

Theorem 3.2 ([CLS], [Kl88]). Let X be a smooth projective toric variety with
Picard number two. Then, there are integers s,r ≥ 1, s+ r = dimX, and 0 ≤
a1 ≤ a2 ≤ ·· · ≤ ar such that

X ' PPs(OPs⊕OPs(a1)⊕OPs(a2)⊕·· ·⊕OPs(ar)).

From the above, we have the following.

Corollary 3.3. Question 1.2 is true for smooth toric varieties with Picard num-
ber two, i.e. their derived categories have strong full exceptional collections
consisting of line bundles.

For toric varieties with Picard number three, Question 1.2 is not true in gen-
eral. More precisely, A. Efimov proved in [Ef14] that there are infinitely many
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smooth toric Fano varieties with Picard number three whose derived categories
do not have strong full exceptional collections consisting of line bundles.

Our main theorem is as follow.

Theorem 3.4 (Main Theorem). Let X be a smooth projective toric variety with
Picard number two, and X̃ a blowing-up of X along a torus invariant closed
subvariety Y ⊂ X. If the codimension of Y in X is at most three, then Db(X̃) has
a strong full exceptional collection consisting of line bundles.

Remark 3.5. There are classifications for toric Fano threefolds and toric Fano
fourfolds by V. Batyrev and H. Sato [Ba99, Sa00]. Using these classifications,
A. Bernardi, S. Tirabassi, and H. Uehara proved that Question 1.2 is true for
all toric Fano threefolds [BT09, Ue14], and N. Prabhu-Naik did for all toric
Fano fourfolds [Pr15]. Their method of the proof is the Bondal’s Frobenius
splitting method, and the last author also used some computational tools. Our
Theorem and Proposition 3.1 give another proof of their results for all toric
Fano threefolds with Picard number three and for 27 (i.e. all except one) toric
Fano fourfolds with Picard number three, without using the Frobenius splitting
method.

Remark 3.6. There are some previous works about the Question 1.2 for toric
variety with Picard number three [DLM09, CM12, LM11]. Our theorem in-
cludes these previous results.

4. Some lemmas
To prove the theorem, we will use the following lemmas.

Lemma 4.1. Let X be an n-dimensional smooth projective variety, and Y a
smooth closed subvariety of X of codimension c (≥ 2). Let X̃ := BlY X be a
blowing-up of X along Y , E the exceptional divisor, ι : E ↪→ X̃ the closed im-
mersion, f : X̃ → X the projection, and π : E → Y the restriction of f on E. If
L andM are line bundles on X and on Y , respectively, then there is a natural
isomorphism

Exti
X̃
(ι∗π

∗M⊗O(kE), f ∗L)' Exti−1
Y (M,L|Y ⊗Symk−1N ∗Y/X)

for 1≤ k ≤ c−1, where NY/X is the normal bundle of Y ⊂ X.

Proof. By Serre duality and the projection formula, we have

Exti
X̃
(ι∗π

∗M⊗O(kE), f ∗L)
' Extn−i

X̃
( f ∗L, ι∗π∗M⊗O(kE)⊗ f ∗ωX ⊗O((c−1)E))∗

' Hn−i(PY (N ∗Y/X),π
∗(L∗|Y ⊗M⊗ωX |Y )⊗Oπ(−k− c+1))∗.
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By using the Leray spectral sequence

E p,q
2 = Hp(Y,L∗|Y ⊗M⊗ωX |Y ⊗Rq

π∗(Oπ(−k− c+1)))

⇒ E p+q = Hp+q(PY (N ∗Y/X),π
∗(L∗|Y ⊗M⊗ωX |Y )⊗Oπ(−k− c+1))

and the formula

Rq
π∗(Oπ(−k− c+1)) =

{
π∗(Oπ(k−1))∗⊗

∧cNY/X if q = c−1,
0 otherwise

(Note that −k− c+1≤−c), we obtain an isomorphism

Hn−i(PY (N ∗Y/X),π
∗(L∗|Y ⊗M⊗ωX |Y )⊗Oπ(−k− c+1))∗

' Hn−c−i+1(Y,L∗|Y ⊗M⊗ωX |Y ⊗π∗(Oπ(k−1))∗⊗
c∧
NY/X)

∗

Again, by using Serre duality and the adjunction formula ωY 'ωX |Y ⊗
∧cNY/X ,

we have

Hn−c−i+1(Y,L∗|Y ⊗M⊗ωX |Y ⊗π∗(Oπ(k−1))∗⊗
c∧
NY/X)

∗

' Hi−1(Y,L|Y ⊗M∗⊗π∗(Oπ(k−1)))

' Exti−1(M,L|Y ⊗Symk−1N ∗Y/X).

Therefore, we obtain the desired isomorphism.

Recall that a line bundle L on X is acyclic if Hi(X ,L) = 0 for all i 6= 0.

Lemma 4.2. Let X, Y , X̃ , and E as above. If L is an acyclic line bundle on X,
then the line bundle f ∗L⊗O(kE) on X̃ is acyclic for 0≤ k ≤ c−1.

Proof. When k = 0, the claim follows from the projection formula. Let us as-
sume that k ≥ 1 and f ∗L⊗O((k− 1)E) is acyclic. Let us consider the funda-
mental sequence

0→ f ∗L⊗O((k−1)E)→ f ∗L⊗O(kE)→ f ∗L|E ⊗OE(kE)→ 0.

Since Rπ∗OE(kE) = Rπ∗Oπ(−k) = 0 for 1≤ k≤ c−1, we have f ∗L⊗O(kE)
is also acyclic.
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5. Proof of Theorem 3.4, codimension two case

By Theorem 3.2, we may assume that a toric variety X of Picard number two is
a projective space bundle over a projective space Ps. Let E =OPs ⊕OPs(a1)⊕
·· ·⊕OPs(ar) (0≤ a1 ≤ ·· · ≤ ar) be a vector bundle on Ps such that X = PPs(E).
Fix a torus invariant closed locus Y of codimension two in X . Then, by the
explicit description of the fan of X (see [CLS] Example 7.3.5.) and the Orbit-
Cone correspondence, one can show that Y is also a projective space bundle
over a liner subspase Ps′ ⊂ Ps. More precisely, Y = PPs′ (F) where F is a direct
sum of r′+1 line bundles in {OPs′ (ai)}. In other words, Y is the intersection of
two torus invariant divisors in the linear systems |p∗OPs(1)|, or |p∗OPs(−aλ )⊗
Op(1)| for some aλ s. Note that r′+ s′ = r+ s−2.

X̃ X Ps

E Y Ps′

f p

ι

π q

5.1. Mutations

By Orlov’s blow-up formula 2.10, we obtain a following semiorthogonal de-
composition

Db(X̃) = 〈ι∗π∗Db(Y )⊗O(E), f ∗Db(X)〉.
By Theorem 2.9, Db(X) and Db(Y ) have exceptional collections

Db(X) = 〈A,A⊗Op(1), . . . ,A⊗Op(r)〉,
Db(Y ) = 〈A′,A′⊗Oq(1), . . . ,A′⊗Oq(r′)〉,

where

A= p∗Db(Ps) = 〈p∗O, p∗O(1), . . . , p∗O(s)〉,

A′ = q∗Db(Ps′) = 〈q∗O,q∗O(1), . . . ,q∗O(s′)〉.

We note that these full exceptional collections in Db(X) and Db(Y ) are strong
since the bundle E (resp. F) splits into non-negative line bundles on Ps (resp.
Ps′).

In the following, we arrange the pair of integers (α,β ) in reverse lexico-
graphic order. This means, we define (α1,β1)< (α2,β2) if β1 < β2, or β1 = β2
and α1 < α2.

For sake of simplicity, we denote the sheaves on X̃ by

Lα,β := f ∗(p∗OPs(α)⊗Op(β )),

Mα,β := ι∗π
∗(q∗OPs′ (α)⊗Oq(β ))⊗O(E).
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By Lemma 4.1 and Lemma 2.8(i), for the exceptional pair (Mα1,β1 ,Lα2,β2)
with (0,0) ≤ (α2,β2) < (α1,β1) ≤ (s′,r′), the right mutation does not change
Mα1,β1 , i.e.

RLα2 ,β2
(Mα1,β1) =Mα1,β1 .

In addition, if (α2,β2) = (α1,β1), we can compute the right mutation as
below.

Claim 1. For (α,β )≤ (s′,r′), the right mutation for the exceptional pair (Mα,β ,
Lα,β ) is given by

RLα,β
(Mα,β ) = Lα,β ⊗O(E).

From now on, we denote this line bundle by L′
α,β := Lα,β ⊗O(E).

Proof. By Lemma 4.1, we have

RHom(Mα,β ,Lα,β )' C[−1].

Hence the exact triangle that defines the right mutation

RLα,β
(Mα,β )→Mα,β →Lα,β [1]

coincides with the 1-shifted fundamental sequence

L′
α,β →Mα,β →Lα,β [1],

and the uniqueness of mapping cone implies the isomorphism we want.

Now we apply a mutation operation to above full exceptional collection in
order to construct a full exceptional collection consisting of line bundles. First,
we right-mutateMs′,r′ through objects L0,0, . . . ,Ls′−1,r′ .

M0,0 · · · Ms′−1,r′ Ms′,r′ L0,0 · · · Ls′−1,r′ Ls′,r′ Ls′+1,r′ · · ·

This mutation does not changeMs′,r′ . Next, we right-mutateMs′,r′ through
Ls′,r′ .

M0,0 · · · Ms′−1,r′ L0,0 · · · Ls′−1,r′ Ms′,r′ Ls′,r′ Ls′+1,r′ · · ·

Then, we have an exceptional collection
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M0,0 · · · Ms′−1,r′ L0,0 · · · Ls′−1,r′ Ls′,r′ L′s′,r′ Ls′+1,r′ · · ·

In the same way as above, we apply the mutation operations for Ms′−1,r′ ,
Ms′−2,r′ , . . . , M0,0 one after the other. After this operation, we finally obtain
the full exceptional collections consisting of line bundles {Lα,β}α,β with 0 ≤
α ≤ s, 0≤ β ≤ r and {L′

α,β}α,β with 0≤ α ≤ s′, 0≤ β ≤ r′ orderd by Lα1,β1 ≤
L′

α1,β1
≤ Lα2,β2 for (α1,β1)< (α2,β2).

Db(X̃) = 〈L0,0, L′0,0, L1,0, L′1,0, · · · , Ls′,r′ , L′s′,r′ , Ls′+1,r′ , · · · , Ls,r〉.

5.2. Strongness

In this subsection, we writeO(α) instead of p∗OPs(α). The aim of this subsec-
tion is to prove the following lemma.

Lemma 5.1. The exceptional collection of line bundles which we constructed
in the above subsection is strong.

Proof. What is nontrivial is the following vanishing and other vanishing of ex-
tensions we need follows from Lemma 4.2.

Exti
X̃
(L′

α1,β1
,Lα2,β2)

=Exti
X̃
( f ∗(O(α1)⊗Op(β1))⊗O(E), f ∗(O(α2)⊗Op(β2)))

=0

for all i 6= 0 and
{

0≤ β1 < β2 ≤ r (β1 ≤ r′),0≤ α1 ≤ s′,0≤ α2 ≤ s,
or β1 = β2,0≤ α1 < α2 ≤ s (α1 ≤ s′).

By using the projection formula, we have an isomorphism

Exti
X̃
( f ∗(O(α1)⊗Op(β1))⊗O(E), f ∗(O(α2)⊗Op(β2)))

' Hi(X ,O(α2−α1)⊗Op(β2−β1)⊗ IY )

A short exact sequence on X

0→O(α2−α1)⊗Op(β2−β1)⊗ IY →O(α2−α1)⊗Op(β2−β1)

→ (O(α2−α1)⊗Op(β2−β1))|Y → 0

and the vanishing of cohomologies

Hi(X ,O(α2−α1)⊗Op(β2−β1)) = 0,

Hi(Y,O(α2−α1)⊗Oq(β2−β1)) = 0
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for all i > 0 imply that

Hi(X ,O(α2−α1)⊗Op(β2−β1)⊗ IY ) = 0

for all i≥ 2. To prove the vanishing

H1(X ,O(α2−α1)⊗Op(β2−β1)⊗ IY ) = 0,

we need to check the surjectivity of the map

H0(X ,O(α2−α1)⊗Op(β2−β1))→ H0(Y,O(α2−α1)⊗Oq(β2−β1)).

This is equivalent to the surjecvity of

H0(Ps,O(α2−α1)⊗Symβ2−β1E)→ H0(Ps′ ,O(α2−α1)⊗Symβ2−β1F).

Because the bundle E splits into a direct sum of positive line bundles on Ps and
α2−α1 ≥−s′, the restriction morphism

H0(Ps,O(α2−α1)⊗Symβ2−β1E)� H0(Ps′ ,O(α2−α1)⊗Symβ2−β1E ′).

is surjective. Furthermore, since E ′ = E|Ps′ splits as E ′ = G⊕F , the morphism

H0(Ps′ ,O(α2−α1)⊗Symβ2−β1E ′)→ H0(Ps′ ,O(α2−α1)⊗Symβ2−β1F).

coincieds the projection morphism, and hence is also surjective. Thus, the proof
was completed.

6. Proof of Theorem 3.4, codimension three case

Let E = OPs(a0)⊕OPs(a1)⊕ ·· ·⊕OPs(ar) (0 = a0 ≤ a1 ≤ ·· · ≤ ar) a vector
bundles on Ps such that X = PPs(E), and we set a = ∑

r
k=0 ak. As in the above

section, we can set Y = PPs′ (F) where F is a direct sum of r′+ 1 line bun-
dles in {OPs′ (ai)}r

i=0. Note that r′+ s′ = r + s− 3. In other words, Y is the
intersection of three torus invariant divisors in the linear systems |p∗OPs(1)|, or
|p∗OPs(−aλ )⊗Op(1)| for some aλ s.

Note that the canonical bundle of X̃ is given by

ωX̃ = f ∗ωX ⊗O(2E)

= f ∗p∗OPs(−s−1+a)⊗ f ∗Op(−r−1)⊗O(2E).

X̃ X Ps

E Y Ps′

f p

ι

π q
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6.1. Mutations

By Orlov’s blow-up formula 2.10, we obtain the following semiorthogonal de-
composition

Db(X̃) = 〈ι∗π∗D2⊗O(2E), ι∗π∗D1⊗O(E), f ∗Db(X)〉,

where D1 = D2 = Db(Y ). By Lemma 2.8, we mutate ι∗π
∗D2 ⊗O(2E) and

obtain another semiorthogonal decomposition of Db(X̃),

Db(X̃) = 〈ι∗π∗D1⊗O(E), f ∗Db(X), ι∗π
∗D2⊗ f ∗ω−1

X 〉,
= 〈ι∗π∗D1⊗O(E), f ∗Db(X), ι∗π

∗(D2⊗ω
−1
X |Y )〉.

The derived category Db(X) of X has an exceptional collection

Db(X) = 〈A,A⊗Op(1), . . . ,A⊗Op(r)〉,

where
A= p∗Db(Ps) = 〈p∗O, p∗O(1), . . . , p∗O(s)〉.

We take full exceptional collections of the categories D1 and D2 as

D1 = 〈A′,A′⊗Oq(1), . . . ,A′⊗Oq(r′)〉,
D2 = 〈A′′⊗Oq(−r′−1),A′′⊗Oq(−r′), . . . ,A′′⊗Oq(−1)〉,

where

A′ = q∗Db(Ps′) = 〈q∗O,q∗O(1), . . . ,q∗O(s′)〉, and

A′′ = q∗Db(Ps′) = 〈q∗O(−s′−1+a),q∗O(−s′+a), . . . ,q∗O(−1+a)〉,

respectively. Then, we have

D2⊗ω
−1
X |Y = 〈A′′⊗q∗O(s+1−a)⊗Oq(r− r′),

A′′⊗q∗O(s+1−a)⊗Oq(r− r′+1), . . . ,A′′⊗q∗O(s+1−a)⊗Oq(r)〉,

and

A′′⊗q∗O(s+1−a) = q∗Db(Ps′) = 〈q∗O(s− s′),q∗O(s− s′+1), . . . ,q∗O(s)〉.

We apply exactly the same sequence of mutations as in Section 5.1 to the
part 〈ι∗π∗D1⊗O(E),π∗Db(X)〉, and obtain the following exceptional collec-
tion

Db(X̃) = 〈B,B⊗ f ∗Op(1), · · · ,B⊗ f ∗Op(r′),

f ∗A⊗ f ∗Op(r′+1), · · · , f ∗A⊗ f ∗Op(r), ι∗π∗(D2⊗ω
−1
X |Y )〉,
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where

B = 〈O,O(E), f ∗p∗O(1), f ∗p∗O(1)⊗O(E), · · · ,
f ∗p∗O(s′), f ∗p∗O(s′)⊗O(E), f ∗p∗O(s′+1), · · · , f ∗p∗O(s)〉.

In the following, we denote the sheaves on X̃ by

Lα,β := f ∗(p∗OPs(α)⊗Op(β )),

L′
α,β := Lα,β ⊗O(E),
L′′

α,β := Lα,β ⊗O(−E),

M′
α,β := ι∗π

∗(q∗OPs′ (α)⊗Oq(β ))

for brevity.
Next, we mutate the exceptional objects in ι∗π

∗(D2⊗ω
−1
X |Y ). In order to

compute the mutations explicitly, we need the following lemma.

Lemma 6.1. The following holds.

(a) The extensions of sheaves on X̃

Exti
X̃
(Lα1,β1 ,Mα2,β2)

is zero for all i ∈ Z and{
0≤ β1 ≤ r,r− r′ ≤ β2 ≤ r,β2 < β1,0≤ α1 ≤ s,s− s′ ≤ α2 ≤ s,
or β1 = β2,0≤ α2 < α1 ≤ s.

(b) The extensions of sheaves on X̃

Exti
X̃
(L′

α1,β1
,Mα2,β2)

is zero for all i ∈ Z and{
0≤ β1 ≤ r′,r− r′ ≤ β2 ≤ r,β2 < β1,0≤ α1 ≤ s′,s− s′ ≤ α2 ≤ s,
or β1 = β2,0≤ α1 ≤ s′,s− s′ ≤ α2 ≤ s,α2 ≤ α1.

Proof. For (a), we have

Exti
X̃
(Lα1,β1 ,Mα2,β2)

=Exti
X̃
( f ∗p∗OPs(α1)⊗ f ∗Op(β1), ι∗π

∗(q∗OPs′ (α2)⊗Oq(β2)))

' Hi(Y,q∗OPs′ (α2−α1)⊗Oq(β2−β1))

' Hi(Ps′ ,OPs′ (α2−α1)⊗Rq∗Oq(β2−β1))

= 0
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for (α1,β1) and (α2,β2) that satisfy the above condition.
For (b), first, we have

Exti
X̃
(L′

α1,β1
,Mα2,β2)

=Exti
X̃
( f ∗p∗OPs(α1)⊗ f ∗Op(β1)⊗O(E), ι∗π∗(q∗OPs′ (α2)⊗Oq(β2)))

' Hi(E,π∗(q∗OPs′ (α2−α1)⊗Oq(β2−β1))⊗OE(−E))

' Hi(Y,q∗OPs′ (α2−α1)⊗Oq(β2−β1)⊗N ∗Y/X).

The conormal bundleN ∗Y/X of Y ⊂ X splits into three line bundles each of which
is of the form q∗OPs′ (−1) or q∗OPs′ (aλ )⊗Oq(−1) for some 0 ≤ λ ≤ r. From
now on, we check the vanishing of this cohomology. Here we prove this only in
the case r′ = r−2 and s′ = s−1, but the reader can easily prove other cases by
the same argument.

In this case, the conormal bundle of Y is given by

N ∗Y/X = q∗OPs′ (−1)⊕
2⊕

k=1

(q∗OPs′ (aλk)⊗Oq(−1)).

Then, we have

Hi(Y,q∗OPs′ (α2−α1−1)⊗Oq(β2−β1)) = 0

for all i ∈ Z, since−r′ ≤ β2−β1 < 0, or β2 = β1 and 0 > α2−α1−1≥ s− s′−
s′−1 =−s′, and we have

Hi(Y,q∗OPs′ (α2−α1 +aλk)⊗Oq(β2−β1−1)) = 0

for all i ∈ Z, since 0 > β2−β1−1≥ r− r′− r′−1 =−r′+1 >−r′. Hence we
have the desired vanishing of cohomologies.

First, we left-mutate M′
s−s′,r−r′ . By Lemma 6.1 and Lemma 2.8, the left

mutations of M′
s−s′,r−r′ over line bundles Ls,r, . . . , L′s−s′,r−r′ do not change

M′
s−s′,r−r′ .

· · · L′s−s′−1,r−r′ Ls−s′,r−r′ L′s−s′,r−r′ · · · Ls,r M′
s−s′,r−r′ · · · M′

s,r

Next, we left-mutateMs−s′,r−r′ over Ls−s′,r−r′ .
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· · · L′s−s′−1,r−r′ Ls−s′,r−r′ M′
s−s′,r−r′ L′s−s′,r−r′ · · · Ls,r · · · M′

s,r

By the isomorphism LLα,β
(M′

α,β ) ' Lα,β ⊗O(−E) =: L′′
α,β , we have a

new exceptional collection

· · · L′s−s′−1,r−r′ L′′s−s′,r−r′ Ls−s′,r−r′ L′s−s′,r−r′ · · · Ls,r · · · M′
s,r.

In the same way as above, we apply mutation operations to, Ms−s′+1,r−r′ ,
Ms−s′+2,r−r′ , . . . , Ms,r one after another. Finally, we get a full exceptional
collection consisting of line bundles

{Lα,β}α,β with 0≤ α ≤ s, 0≤ β ≤ r

{L′
α,β}α,β with 0≤ α ≤ s′, 0≤ β ≤ r′

{L′′
α,β}α,β with s− s′ ≤ α ≤ s, r− r′ ≤ β ≤ r.

placed in ascending order defined by Lα1,β1 ≤L′′α2,β2
≤Lα2,β2 ≤L′α2,β2

≤Lα3,β3

for (α1,β1)< (α2,β2)< (α3,β3).

6.2. Strongness

Lemma 6.2. The full exceptional collection of line bundles which is constructed
in the above subsection is strong.

Proof. What is non-trivial is to show that the following vanishings and other
vanishings we need follow from Lemma 4.2.

(A) Exti
X̃
(Lα1,β1 ,L′′α2,β2

) = 0

for all i 6= 0 and
{

0≤ β1 < β2 ≤ r′,0≤ α1 ≤ s,s− s′ ≤ α2 ≤ s,
or β1 = β2,0≤ α1 ≤ s,s− s′ ≤ α2 ≤ s,α1 < α2.

(B) Exti
X̃
(L′

α1,β1
,L′′

α2,β2
) = 0

for all i 6= 0 and


0≤ β1 ≤ r′,r− r′ ≤ β2 ≤ r,β1 < β2,0≤ α1 ≤ s′,
s− s′ ≤ α2 ≤ s,
or β1 = β2,0≤ α1 ≤ s′,s− s′ ≤ α2 ≤ s,α1 < α2.
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(C) Exti
X̃
(L′

α1,β1
,Lα2,β2) = 0

for all i 6= 0 and
{

0≤ β1 ≤ r′,0≤ β2 ≤ r,β1 < β2,0≤ α1 ≤ s′,0≤ α2 ≤ s,
or β1 = β2,0≤ α1 ≤ s′,0≤ α1 < α2 ≤ s.

For the first, we have an isomorphism

Hi(X̃ , f ∗(p∗OPs(α)⊗Op(β ))⊗O(−E))

' Hi(X , p∗OPs(α)⊗Op(β )⊗ IY ).

Let us consider the exact sequence

0→ p∗OPs(α)⊗Op(β )⊗IY → p∗OPs(α)⊗Op(β )→ (p∗OPs(α)⊗Op(β ))|Y → 0.

The cohomologies of the second and third terms vanish

Hi(X , p∗OPs(α)⊗Op(β )) = 0,

Hi(Y,q∗OPs′ (α)⊗Oq(β )) = 0

for all i> 0 and for all β ≥ 0 and α ≥−s′. By combining it with the subjectivity
of the map

Hi(X , p∗OPs(α)⊗Op(β ))� Hi(Y,q∗OPs′ (α)⊗Oq(β ))

that follows from the same argument as in the last part of the proof of Lemma
5.1, we have

Hi(X , p∗OPs(α)⊗Op(β )⊗ IY ) = 0

for all i 6= 0 and for all β ≥ 0 and α ≥−s′. This proves (A) and (C).
It remains to show (B). First, we have an isomorphism

Hi(X̃ , f ∗(p∗OPs(α)⊗Op(β ))⊗O(−2E))

' Hi(X , p∗OPs(α)⊗Op(β )⊗ I2
Y ).

Let us consider the exact sequence

0→ p∗OPs(α)⊗Op(β )⊗ I2
Y → p∗OPs(α)⊗Op(β )⊗ IY → q∗OPs′ (α)⊗Oq(β )⊗N ∗Y/X → 0.

It follows from the above computation that the cohomology of the second term
vanishes:

Hi(X , p∗OPs(α)⊗Op(β )⊗ IY ) = 0

for all i 6= 0 and for all β ≥ 0 and α ≥ s−2s′ ≥−s′.
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Next, we calculate the cohomology of the third term. As we proved in the
proof of Lemma 6.1 (b),

Hi(Y,q∗OPs′ (α)⊗Oq(β )⊗N ∗Y/X) = 0

for all i 6= 0, and consequently we have

Hi(X , p∗OPs(α)⊗Op(β )⊗ I2
Y ) = 0

for all i 6= 0,1. In order to prove the vanishing of H1(X , p∗OPs(α)⊗Op(β )⊗
I2
Y ), we have to show that the map

H0(X , p∗OPs(α)⊗Op(β )⊗ IY )→ H0(Y,q∗OPs′ (α)⊗Oq(β )⊗N ∗Y/X).

is surjective. Let us take torus invariant prime divisors D1,D2,D3 on X such
that Y = D1∩D2∩D3, and let Y1 = D1, Y2 = D1∩D2, and Y3 =Y . In the below,
we treat the case s′ = s−1 and r′ = r−2. In this case, we can take divisors as
Di ∈ |p∗OPs(aλi)⊗Op(−1)| (i = 1,2) and D3 ∈ |p∗OPs(−1)|. In the following,
we set

L := p∗OPs(α)⊗Op(β ).

Claim 2. The map

H0(X ,L⊗ IY1)→ H0(Y1,L|Y1⊗N ∗Y1/X)

is surjective, and the first cohomology group of L⊗ IY1 isf

H1(X ,L⊗ IY1) = 0.

Proof. As we have IY1 =OX(−D1) = p∗OPs(aλ )⊗Op(−1), we get

H1(X ,L⊗ IY1)' H1(X , p∗OPs(α +aλ )⊗Op(β −1)) = 0,

and

H1(X ,L⊗ I2
Y1
)' H1(X , p∗OPs(α +2aλ )⊗Op(β −2)) = 0,

since β −2≥−2 and α +2aλ ≥−s′ =−s.

Let us consider a commutative diagram with exact rows:

0 L⊗ IY1 L⊗ IY2 L|Y1⊗ IY2/Y1 0

0 (L⊗N ∗Y1/X)|Y2 L|Y2⊗N ∗Y2/X L|Y2⊗N ∗Y2/Y1
0
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Claim 3. The map

H0(X ,L⊗ IY2)→ H0(Y2,L|Y2⊗N ∗Y2/X)

is surjective, and we have

H1(X ,L⊗ IY2) = 0.

Proof. First, we note that

IY1 =OX(−D1) = p∗OPs(aλ1)⊗Op(−1),

IY2/Y1 = (p∗OPs(aλ2)⊗Op(−1))|Y1

for some aλ1 ,aλ2 ≥ 0. Let us consider the exact sequence

0→L⊗ IY1 →L⊗ IY2 →L|Y1⊗ IY2/Y1 → 0.

By using the above description of IY2/Y1 , we have

H1(Y1,L|Y1⊗ IY2/Y1)' H1(Y1,(p∗OPs(α +aλ2)⊗Op(β −1))|Y1) = 0,

since Y1 is a Pr−1-bundle over Ps and β −1≥−1 and α +aλ2 ≥ s−2s′+aλ2 ≥
−s. Moreover, by Claim 2, we have H1(X ,L⊗ IY1) = 0, and hence the vanishing
of H1(X ,L⊗ IY2) follows.

Next, we prove the surjectivity of the map H0(X ,L⊗ IY2)→ H0(Y2,L|Y2 ⊗
N ∗Y2/X). First, by Claim 2, the map

H0(X ,L⊗ IY2)→ H0(Y1,L|Y1⊗ IY2/Y1)

is surjective. We also have

H1(Y1,L|Y1⊗ I2
Y2/Y1

)' H1(Y1,(p∗OPs(α +2aλ2)⊗Op(β −2))|Y1) = 0

(we note that if r = 2 in the Case (B), then β = 2 by our construction of the full
exceptional collection), and hence the map

H0(Y1,L|Y1⊗ IY2/Y1)→ H0(Y2,L|Y2⊗N ∗Y2/Y1
)

is surjective. Next, we consider the exact sequence

0→L|Y1⊗N ∗Y1/X ⊗ IY2/Y1 →L|Y1⊗N ∗Y1/X → (L⊗N ∗Y1/X)|Y2 → 0.

The first cohomology group of the first term of this sequence is

H1(Y1,L|Y1⊗N ∗Y1/X ⊗ IY2/Y1)' H1(Y1,(OPs(α +aλ1 +aλ2)⊗Op(β −2))|Y1) = 0.
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By combining it with Claim 2, we deduce that the map

H0(X ,L⊗ IY1)→ H0(Y2,(L⊗N ∗Y1/X)|Y2)

is surjective. Now, in the following diagram,

0 H0(X ,L⊗ IY1 ) H0(X ,L⊗ IY2 ) H0(Y1,L|Y1 ⊗ IY2/Y1 ) 0

0 H0(Y2,(L⊗N ∗Y1/X )|Y2 ) H0(Y2,L|Y2 ⊗N ∗Y2/X ) H0(Y2,L|Y2 ⊗N ∗Y2/Y1
)

0 0

the five lemma implies the surjectivity of the vertical morphism in the middle.

Claim 4. The map

H0(X , p∗OPs(α)⊗Op(β )⊗ IY3)→ H0(Y3,q∗OPs(α)⊗Oq(β )⊗NY3/X).

is surjective.

Proof. By the same argument as in Claim 3, it is enough to show that

H1(Y2,L|Y2⊗ IY3/Y2) = 0,

H1(Y2,L|Y2⊗ I2
Y3/Y2

) = 0,

and H1(Y2,L|Y2⊗N ∗Y2/X ⊗ IY3/Y2) = 0.

We haveN ∗Y2/X =
⊕

k=1,2(p∗OPs(aλk)⊗Op(−1))|Y2 and IY3/Y2 = p∗OPs(−1)|Y2 ,
and we obtain the vanishing of cohomology

H1(Y2,L|Y2⊗ IY3/Y2) = H1(Y2,(p∗OPs(α−1)⊗Op(β ))|Y2) = 0,

since β ≥ 0, α − 1 ≥ s− 2s′− 1 ≥ −s+ 1, and Y2 is a Pr−2-bundle over Ps.
Similarly, we have

H1(Y2,L|Y2⊗ I2
Y3/Y2

) = H1(Y2,(p∗OPs(α−2)⊗Op(β ))|Y2) = 0,

and

H1(Y2,L|Y2⊗N ∗Y2/X ⊗ IY3/Y2) =
⊕

k=1,2

H1(Y2,(p∗OPs(α +aλk −1)⊗Op(β −1))|Y2)

= 0.

Note that if r = 2, then β = 2.

Now, the proof of Lemma 6.2 is completed.
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