# FUNCTIONAL CONTINUITY OF UNITAL $B_{0}$-ALGEBRAS WITH ORTHOGONAL BASES 

M. EL AZHARI

Let $A$ be a unital $B_{0}$-algebra with an orthogonal basis, then every multiplicative linear functional on $A$ is continuous. This gives an answer to a problem posed by Z. Sawon and Z. Wronski.

## 1. Preliminaries

A topological algebra is a complex associative algebra which is also a Hausdorff topological vector space such that the multiplication is separately continuous. A locally convex algebra is a topological algebra whose topology is determined by a family of seminorms. A complete metrizable locally convex algebra is called a $B_{0}$-algebra. The topology of a $B_{0}$-algebra $A$ may be given by a countable family $\left(\|.\|_{i}\right)_{i \geq 1}$ of seminorms such that $\|x\|_{i} \leq\|x\|_{i+1}$ and $\|x y\|_{i} \leq\|x\|_{i+1}\|y\|_{i+1}$ for all $i \geq 1$ and $x, y \in A$. A multiplicative linear functional on a complex algebra $A$ is an algebra homomorphism from $A$ to the complex field. Let $A$ be a topological algebra. $M^{*}(A)$ denotes the set of all nonzero multiplicative linear functionals on $A . M(A)$ denotes the set of all nonzero continuous multiplicative linear functionals on $A$. A seminorm $p$ on $A$ is lower semicontinuous if the set $\{x \in A: p(x) \leq 1\}$ is closed in $A$.
Let $A$ be a topological algebra. A sequence $\left(e_{n}\right)_{n \geq 1}$ in $A$ is a basis if for each $x \in A$ there is a unique sequence $\left(\alpha_{n}\right)_{n \geq 1}$ of complex numbers such that $x=$
$\sum_{n=1}^{\infty} \alpha_{n} e_{n}$. Each linear functional $e_{n}^{*}: A \rightarrow \mathbb{C}, e_{n}^{*}(x)=\alpha_{n}$, is called a coefficient functional. If each $e_{n}^{*}$ is continuous, the basis $\left(e_{n}\right)_{n \geq 1}$ is called a Schauder basis. A basis $\left(e_{n}\right)_{n \geq 1}$ is orthogonal if $e_{i} e_{j}=\delta_{i j} e_{i}$ where $\delta_{i j}$ is the Kronecker symbol. If $\left(e_{n}\right)_{n \geq 1}$ is an orthogonal basis, then each $e_{n}^{*}$ is a multiplicative linear functional on $A$. Let $A$ be a topological algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. If $A$ has a unity $e$, then $e=\sum_{n=1}^{\infty} e_{n}$. Let $\left(x_{k}\right)_{k}$ be a net in $A$ converging to 0 , since the multiplication is separately continuous, $e_{n} x_{k}=e_{n}^{*}\left(x_{k}\right) e_{n} \rightarrow_{k} 0$ and so $e_{n}^{*}\left(x_{k}\right) \rightarrow_{k} 0$. Then each orthogonal basis in a topological algebra is a Schauder basis. Let $f$ be a multiplicative linear functional on $A$. If $f\left(e_{n_{0}}\right) \neq 0$ for some $n_{0} \geq 1$, then $f(x) f\left(e_{n_{0}}\right)=f\left(x e_{n_{0}}\right)=f\left(e_{n_{0}}^{*}(x) e_{n_{0}}\right)=e_{n_{0}}^{*}(x) f\left(e_{n_{0}}\right)$ for all $x \in A$ and therefore $f=e_{n_{0}}^{*} \in M(A)$. This shows that $M(A)=\left\{e_{n}^{*}: n \geq 1\right\}$.
Here we consider unital $B_{0}$-algebras with orthogonal bases. These algebras were investigated in [3] where we can find examples of such algebras.

## 2. Results

Proposition 2.1. Let $\left(A,\left(\|\cdot\|_{i}\right)_{i \geq 1}\right)$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. Then there exists $x \in A$ such that the sequence $\left(e_{n}^{*}(x)\right)_{n \geq 1}$ is not bounded.

Proof. Suppose that $\sup _{n \geq 1}\left|e_{n}^{*}(x)\right|<\infty$ for all $x \in A$. For each $x \in A$, let $\|x\|=\sup _{n \geq 1}\left|e_{n}^{*}(x)\right|,\|$.$\| is a lower semicontinuous norm on A$ since $\left(e_{n}\right)_{n \geq 1}$ is a Schauder basis. Let $\tau_{A}$ be the topology on $A$ determined by the family $\left(\|\cdot\|_{i}\right)_{i \geq 1}$ of seminorms. We define a new topology $\tau$ on $A$ described by the norm $\|$.$\| and the family \left(\|\cdot\|_{i}\right)_{i \geq 1}$ of seminorms. The topology $\tau$ is stronger than the topology $\tau_{A}$. By Garling's completeness theorem [1, Theorem 1], $(A, \tau)$ is complete. The topologies $\tau_{A}$ and $\tau$ are homeomorphic by the open mapping theorem. Then there exist $i_{0} \geq 1$ and $M>0$ such that $\|x\| \leq M\|x\|_{i_{0}}$ for all $x \in A$, hence $1=\left|e_{n}^{*}\left(e_{n}\right)\right| \leq\left\|e_{n}\right\| \leq M\left\|e_{n}\right\|_{i_{0}}$ for all $n \geq 1$. This contradicts the fact that $e_{n} \rightarrow_{n} 0$.

Proposition 2.2. Let $A$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. If $x=\sum_{n=1}^{\infty} t_{n} e_{n} \in A$ such that $t_{n} \in \mathbb{R}, t_{n} \leq t_{n+1}$ for $n \geq 1$ and $t_{n} \rightarrow \infty$, then $f(x) \in$ $\mathbb{R}$ for all $f \in M^{*}(A)$.

Proof. If $f \in M(A), f=e_{n}^{*}$ for some $n \geq 1$, then $f(x)=t_{n} \in \mathbb{R}$. If $f \in M^{*}(A) \backslash$ $M(A)$, then $f\left(e_{n}\right)=0$ for all $n \geq 1$. Suppose that $f(x) \notin \mathbb{R}, f(x)=\alpha+i \beta$ with $\beta \neq 0$. Since $t_{n} \rightarrow \infty$, there exists $n_{0} \geq 1$ such that $t_{n} \geq \alpha+|\beta|$ for all $n \geq n_{0}$. We define the sequence $\left(s_{n}\right)_{n \geq 1}$ by $s_{n}=t_{n_{0}}$ for $1 \leq n \leq n_{0}$ and $s_{n}=t_{n}$ for $n \geq$ $n_{0}+1$. It is clear that $y=\Sigma_{n=1}^{\infty} s_{n} e_{n} \in A$ such that $s_{n} \geq \alpha+|\beta|, s_{n} \leq s_{n+1}$ for $n \geq 1$ and $s_{n} \rightarrow \infty$. Since $f\left(e_{n}\right)=0$ for all $n \geq 1, f(y)=f(x)=\alpha+i \beta$. We have $f\left(|\beta|^{-1} y\right)=|\beta|^{-1} \alpha+i|\beta|^{-1} \beta$, then $f\left(|\beta|^{-1} y-|\beta|^{-1} \alpha e\right)=i|\beta|^{-1} \beta$. Set
$z=|\beta|^{-1} y-|\beta|^{-1} \alpha e=\sum_{n=1}^{\infty} \frac{s_{n}-\alpha}{|\beta|} e_{n}$. The real sequence $\left(\frac{s_{n}-\alpha}{|\beta|}\right)_{n \geq 1}$ is positive increasing and $\frac{s_{n}-\alpha}{|\beta|} \rightarrow \infty$, then $z^{-1}=\sum_{n=1}^{\infty} \frac{|\beta|}{s_{n}-\alpha} e_{n} \in A$ by [3, Theorem 0.1] and $f\left(z^{-1}\right)=-i|\beta| \beta^{-1}$, so $f\left(z+z^{-1}\right)=0$. Set $v=z+z^{-1}=\sum_{n=1}^{\infty}\left(\frac{s_{n}-\alpha}{|\beta|}+\frac{|\beta|}{s_{n}-\alpha}\right) e_{n}$ and $v_{n}=\frac{s_{n}-\alpha}{|\beta|}+\frac{|\beta|}{s_{n}-\alpha}$ for all $n \geq 1$. Since the map $g:[1, \infty) \rightarrow \mathbb{R}, g(x)=x+\frac{1}{x}$, is increasing and the sequence $\left(\frac{s_{n}-\alpha}{|\beta|}\right)_{n \geq 1} \subset[1, \infty)$ is increasing, it follows that $\left(v_{n}\right)_{n \geq 1}$ is a positive increasing sequence and $v_{n} \rightarrow \infty$. By [3, Theorem 0.1], $v^{-1}=\Sigma_{n=1}^{\infty} \frac{1}{v_{n}} e_{n} \in A$ and therefore $f(e)=f(v) f\left(v^{-1}\right)=0$. This contradicts the fact that $f$ is nonzero.

The following two results are due to Sawon and Wronski [3], the proofs are given for completeness.

Theorem 2.3. ([3, Theorem 2.1]). Let $A$ be a unital $B_{0}$-algebra with an orthogonal basis ( $\left.e_{n}\right)_{n \geq 1}$. If $x=\sum_{n=1}^{\infty} t_{n} e_{n} \in A$ such that $t_{n} \in \mathbb{R}, t_{n} \leq t_{n+1}$ for $n \geq 1$ and $t_{n} \rightarrow \infty$, then every multiplicative linear functional on $A$ is continuous.

Proof. Suppose that $M^{*}(A) \backslash M(A)$ is nonempty. Let $f \in M^{*}(A) \backslash M(A)$, then $f\left(e_{n}\right)=0$ for all $n \geq 1$. Put $f(x)=\alpha$, then $\alpha \in \mathbb{R}$ by Proposition 2.2. Since $t_{n} \rightarrow \infty$, there exists $n_{0} \geq 1$ such that $t_{n}>\alpha$ for $n \geq n_{0}$. Consider $y=\sum_{n=1}^{\infty} \lambda_{n} e_{n} \in$ $A$ such that $\lambda_{n}=t_{n_{0}}$ for $1 \leq n \leq n_{0}$ and $\lambda_{n}=t_{n}$ for $n \geq n_{0}+1$. Since $f\left(e_{n}\right)=0$ for all $n \geq 1$, it follows that $f(x)=f(y)=\alpha$. We have $y-\alpha e=\sum_{n=1}^{\infty} v_{n} e_{n} \in A$ where $v_{n}=\lambda_{n}-\alpha$ for all $n \geq 1$. It is clear that $v_{n}>0, v_{n} \leq v_{n+1}$ for $n \geq 1$ and $v_{n} \rightarrow \infty$. By [3, Theorem 0.1], $(y-\alpha e)^{-1}=\sum_{n=1}^{\infty} \frac{1}{v_{n}} e_{n} \in A$, so $y-\alpha e$ is invertible and $f(y-\alpha e)=0$, a contradiction.

Proposition 2.4. ([3, p.109]). Let $\left(A,\left(\|\cdot\|_{i}\right)_{i \geq 1}\right)$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. Then the set $N$ of all positive integers can be split into two disjoint subsets $N_{1}$ and $N_{2}$ such that by putting $A_{1}=\overline{\operatorname{span}}\left(e_{n}\right)_{n \in N_{1}}$ and $A_{2}=\overline{\operatorname{span}}\left(e_{n}\right)_{n \in N_{2}}$, we have
(1) $A=A_{1} \oplus A_{2}$;
(2) if $f$ is a multiplicative linear functional on $A$ such that $f \notin M(A)$, then $f_{/ A_{1}}=0$.

Proof. By Proposition 2.1, there is $x=\sum_{n=1}^{\infty} t_{n} e_{n} \in A$ such that the sequence $\left(t_{n}\right)_{n \geq 1}$ is not bounded. Then there exists a subsequence $\left(t_{k_{n}}\right)_{n \geq 1}$ of $\left(t_{n}\right)_{n \geq 1}$ such that $\left|t_{k_{n}}\right| \geq n^{2}$ for all $n \geq 1$. For each $i \geq 1$, there is $M_{i}>0$ such that $\left\|t_{n} e_{n}\right\|_{i} \leq M_{i}$ for all $n \geq 1$. Let $i \geq 1$ and $n \geq 1, n^{2}\left\|e_{k_{n}}\right\|_{i} \leq \mid t_{k_{n}}\left\|e_{k_{n}}\right\|_{i}=\left\|t_{k_{n}} e_{k_{n}}\right\|_{i} \leq M_{i}$, then $\left\|e_{k_{n}}\right\|_{i} \leq n^{-2} M_{i}$. This implies that $\sum_{n=1}^{\infty} e_{k_{n}}$ is absolutely convergent. Let $A_{1}=$ $\overline{\operatorname{span}}\left\{e_{k_{n}}: n \geq 1\right\}, A_{1}$ is a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{k_{n}}\right)_{n \geq 1}$ and $\Sigma_{n=1}^{\infty} n^{\frac{1}{2}} e_{k_{n}} \in A_{1}$ since $n^{\frac{1}{2}}\left\|e_{k_{n}}\right\|_{i} \leq n^{-\frac{3}{2}} M_{i}$ for all $i \geq 1$ and $n \geq 1$. Set $N_{1}=$ $\left\{k_{n}: n \geq 1\right\}, N_{2}=N \backslash N_{1}$ and $A_{2}=\overline{\operatorname{span}}\left\{e_{n}: n \in N_{2}\right\} . A_{2}$ is a $B_{0}$-algebra with
an orthogonal basis $\left(e_{n}\right)_{n \in N_{2}}$ and the unity $u_{2}=e-u_{1}$ where $u_{1}=\sum_{n=1}^{\infty} e_{k_{n}}$ is the unity of $A_{1}$. Let $x \in A, x=x e=x\left(u_{1}+u_{2}\right)=x u_{1}+x u_{2} \in A_{1}+A_{2}$, then $A=$ $A_{1} \oplus A_{2}$. If $f$ is a multiplicative linear functional on $A$ such that $f \notin M(A), f_{/ A_{1}}$ is a multiplicative linear functional on $A_{1}$ such that $f_{/ A_{1}}\left(e_{k_{n}}\right)=0$ for all $n \geq 1$. Since $\sum_{n=1}^{\infty} n^{\frac{1}{2}} e_{k_{n}} \in A_{1}, f_{/ A_{1}}$ is continuous on $A_{1}$ by Theorem 2.3 and therefore $f_{/ A_{1}}=0$.

Sawon and Wronski [3, p.109] posed the following problem:
Problem 2.5. Let $A$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. Does there exist a maximal subalgebra $A_{1}^{\prime}=\overline{\operatorname{span}}\left\{e_{n}: n \in N_{1}^{\prime}\right\}\left(N_{1}^{\prime} \subset N\right)$ of $A$ for which (1) and (2) hold?

Proposition 2.6. Let A be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. Then the following assertions are equivalent:
(i) $A=\overline{\operatorname{span}}\left\{e_{n}: n \in N\right\}$ is a maximal subalgebra of itself for which (1) and (2) hold;
(ii) every multiplicative linear functional on $A$ is continuous.

Proof. $(i) \Rightarrow(i i)$ : Let $f$ be a multiplicative linear functional on $A$ such that $f \notin M(A), f$ is zero on $A$ by $(i)$. Then every multiplicative linear functional on $A$ is continuous.
$(i i) \Rightarrow(i)$ : It is clear that $A$ satisfies (1). Let $f$ be a multiplicative linear functional on $A$ such that $f \notin M(A)$, then $f$ is zero on $A$ since $f$ is continuous, hence $A$ satisfies (2).

Proposition 2.7. Let $\left(t_{n}\right)_{n \geq n_{0}}$ be a complex sequence, the following assertions are equivalent:
(i) $\sum_{n=n_{0}}^{\infty}\left|t_{n}-t_{n+1}\right|<\infty$;
(ii) there exists $M>0$ such that $\left|t_{q}\right|+\Sigma_{n=p}^{q-1}\left|t_{n}-t_{n+1}\right| \leq M$ for all $q>p \geq n_{0}$.

Proof. $(i) \Rightarrow(i i)$ : Let $\varepsilon>0$, there exists $n_{1} \geq n_{0}$ such that $\sum_{k=n}^{\infty}\left|t_{k}-t_{k+1}\right| \leq \varepsilon$ for every $n \geq n_{1}$. let $m>n \geq n_{1},\left|t_{n}-t_{m}\right| \leq\left|t_{n}-t_{n+1}\right|+\ldots+\left|t_{m-1}-t_{m}\right| \leq \varepsilon$. Then the sequence $\left(t_{n}\right)_{n \geq n_{0}}$ converges, so there is $M_{0}>0$ such that $\left|t_{n}\right| \leq M_{0}$ for all $n \geq n_{0}$. Let $q>p \geq n_{0},\left|t_{q}\right|+\Sigma_{n=p}^{q-1}\left|t_{n}-t_{n+1}\right| \leq M_{0}+\sum_{n=n_{0}}^{\infty}\left|t_{n}-t_{n+1}\right|$.
(ii) $\Rightarrow(i)$ : Let $p \geq n_{0}$ and $q=p+1, \Sigma_{n=n_{0}}^{p}\left|t_{n}-t_{n+1}\right| \leq\left|t_{q}\right|+\sum_{n=n_{0}}^{q-1}\left|t_{n}-t_{n+1}\right| \leq$ $M$. Then the sequence $\left(\sum_{n=n_{0}}^{p}\left|t_{n}-t_{n+1}\right|\right)_{p \geq n_{0}}$ is positive increasing and bounded, so it is convergent i.e. $\sum_{n=n_{0}}^{\infty}\left|t_{n}-t_{n+1}\right|<\infty$.

Proposition 2.8. Let $\left(A,\left(\|\cdot\|_{i}\right)_{i \geq 1}\right)$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. If $\left(t_{n}\right)_{n \geq n_{0}}$ is a complex sequence such that $\Sigma_{n=n_{0}}^{\infty}\left|t_{n}-t_{n+1}\right|<\infty$, then $\Sigma_{n=n_{0}}^{\infty} t_{n} e_{n} \in A$.

Proof. Let $q>p \geq n_{0}$, by using the equality $t_{n}=t_{q}+\Sigma_{k=n}^{q-1}\left(t_{k}-t_{k+1}\right)$ for every $p \leq n<q$, we obtain that $\Sigma_{n=p}^{q-1} t_{n} e_{n}=t_{q}\left(e_{p}+\ldots+e_{q-1}\right)+\Sigma_{k=p}^{q-1}\left(t_{k}-t_{k+1}\right)\left(e_{p}+\right.$ $\left.\ldots+e_{k}\right)$. Let $i \geq 1,\left\|\Sigma_{n=p}^{q-1} t_{n} e_{n}\right\|_{i} \leq\left|t_{q}\right|\left\|e_{p}+\ldots+e_{q-1}\right\|_{i}+\Sigma_{k=p}^{q-1}\left|t_{k}-t_{k+1}\right| \| e_{p}+$ $\ldots+e_{k}\left\|_{i} \leq\left(\left|t_{q}\right|+\Sigma_{k=p}^{q-1}\left|t_{k}-t_{k+1}\right|\right) \sup _{p \leq k \leq q}\right\| e_{p}+\ldots+e_{k}\left\|_{i} \leq M \sup _{p \leq k \leq q}\right\| e_{p}+$ $\ldots+e_{k} \|_{i}$ by Proposition 2.7. Let $\varepsilon>0$, since $e=\sum_{n=1}^{\infty} e_{n} \in A$, there is $n_{1} \geq n_{0}$ such that $\left\|e_{p}+\ldots+e_{k}\right\|_{i} \leq \varepsilon M^{-1}$ for $n_{1} \leq p \leq k$, hence $\sup _{p \leq k \leq q} \| e_{p}+\ldots+$ $e_{k} \|_{i} \leq \varepsilon M^{-1}$ for $n_{1} \leq p<q$. Then $\left\|\Sigma_{n=p}^{q-1} t_{n} e_{n}\right\|_{i} \leq \varepsilon$ for $n_{1} \leq p<q$. This shows that $\sum_{n=n_{0}}^{\infty} t_{n} e_{n}$ is convergent in $A$.

Theorem 2.9. Let $\left(A,\left(\|\cdot\|_{i}\right)_{i \geq 1}\right)$ be a unital $B_{0}$-algebra with an orthogonal basis $\left(e_{n}\right)_{n \geq 1}$. Then every multiplicative linear functional on $A$ is continuous.

Proof. By Proposition 2.8, $x=\sum_{n=1}^{\infty} \frac{1}{n} e_{n} \in A$. Let $f \in M^{*}(A)$ and $\alpha=f(x)$, then $f(\alpha e-x)=0$. We have $\alpha e-x=\sum_{n=1}^{\infty}\left(\alpha-\frac{1}{n}\right) e_{n}=\Sigma_{n=1}^{\infty} \frac{\alpha_{n-1}}{n} e_{n}$. Let $\mathbb{N}$ be the set of all positive integers. Put $I_{\alpha}=\left\{n \in \mathbb{N}: n \neq \alpha^{-1}\right\}, I_{\alpha}=\mathbb{N}$ if $\alpha^{-1} \notin$ $\mathbb{N}$ and $I_{\alpha}=\mathbb{N} \backslash\left\{\alpha^{-1}\right\}$ if $\alpha^{-1} \in \mathbb{N}$. Let $m_{\alpha}=\inf \{n \in \mathbb{N}:|\alpha| n-1>0\}$ and consider the complex sequence $\left(\frac{n}{\alpha n-1}\right)_{n \geq m_{\alpha}}$. Let $n \geq m_{\alpha}, \frac{n}{\alpha n-1}-\frac{n+1}{\alpha(n+1)-1}=$ $\frac{1}{(\alpha n-1)(\alpha(n+1)-1)}$. We have $|\alpha n-1| \geq|\alpha| n-1$ and $|\alpha(n+1)-1| \geq|\alpha|(n+1)-$ $1=|\alpha| n+|\alpha|-1 \geq|\alpha| n-1$. Let $n \geq m_{\alpha},|\alpha| n-1>0$, hence $\frac{1}{|\alpha n-1|} \leq \frac{1}{|\alpha| n-1}$ and $\frac{1}{|\alpha(n+1)-1|} \leq \frac{1}{|\alpha| n-1}$. Consequently $\left|\frac{n}{\alpha n-1}-\frac{n+1}{\alpha(n+1)-1}\right|=\frac{1}{|\alpha n-1||\alpha(n+1)-1|} \leq$ $\frac{1}{(|\alpha| n-1)^{2}}$.

Then $\Sigma_{n=m_{\alpha}}^{\infty} \frac{n}{\alpha_{n-1}} e_{n} \in A$ by Proposition 2.8 and therefore $\Sigma_{n \in I_{\alpha}} \frac{n}{\alpha n-1} e_{n} \in A$. If $\alpha^{-1} \notin \mathbb{N}$ i.e. $I_{\alpha}=\mathbb{N},(\alpha e-x) \Sigma_{n=1}^{\infty} \frac{n}{\alpha n-1} e_{n}=e$, then $\alpha e-x$ is invertible, a contradiction. If $\alpha^{-1} \in \mathbb{N}$, put $n_{\alpha}=\alpha^{-1}$, then $(\alpha e-x) \Sigma_{n \in I_{\alpha}} \frac{n}{\alpha n-1} e_{n}=\Sigma_{n \in I_{\alpha}} e_{n}$, hence $\Sigma_{n \in I_{\alpha}} e_{n} \in \operatorname{Ker}(f)$ since $\alpha e-x \in \operatorname{Ker}(f)$. If $e_{n_{\alpha}} \in \operatorname{Ker}(f)$, then $e=e_{n_{\alpha}}+$ $\Sigma_{n \in I_{\alpha}} e_{n} \in \operatorname{Ker}(f)$, a contradiction. Finally $f\left(e_{n_{\alpha}}\right) \neq 0$ and therefore $f=e_{n_{\alpha}}^{*}$.

Remark 2.10. Proposition 2.6 and Theorem 2.9 give an answer to Sawon and Wronski’s problem.

## REFERENCES

[1] D. J. H. Garling, On topological sequence spaces, Proc. Cambridge Philos. Soc., 63 (1967), 997-1019.
[2] T. Husain, Orthogonal Schauder bases, Monographs and Textbooks in Pure and Applied Mathematics, 143, Marcel Dekker, New York, 1991.
[3] Z. Sawon and Z. Wronski, Fréchet algebras with orthogonal basis, Colloquium Mathematicum, 48 (1984), 103-110.
[4] W. Zelazko, Metric generalizations of Banach algebras, Rozprawy Matematyczne, 47, Warszawa, 1965.
M. EL AZHARI

Department of Mathematics,
Ecole Normale Supérieure,
Takaddoum, BP 5118, Rabat, Morocco.
e-mail: : mohammed.elazhari@yahoo.fr

