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SOME STRUCTURE THEOREMS ON LOCALLY CONVEX
CONES OF LINEAR OPERATORS

DAVOOD AYASEH - ASGHAR RANJBARI

In this paper we investigate the structure of C(P,Q) (the cone of all
continuous linear operators from locally convex cone (P,U) into locally
convex cone (Q,W)), when (P,U) or (Q,W) are inductive or projective
limit locally convex cones. We consider some special convex quasiuni-
form structures on C(P,Q), and prove some structure theorems.

1. Introduction

The theory of locally convex cones as developed in [5] and [13] uses an order
theoretical concept or a convex quasiuniform structure to introduce a topological
structure on a cone. In this paper we use the later. For recent researches see [1–
3, 9, 12].

A cone is a set P endowed with an addition and a scalar multiplication
for nonnegative real numbers. The addition is assumed to be associative and
commutative, and there is a neutral element 0 ∈ P . For the scalar multiplication
the usual associative and distributive properties hold, that is α(βa) = (αβ )a,
(α +β )a = αa+βa, α(a+b) = αa+αb, 1a = a and 0a = 0 for all a,b ∈ P
and α,β ≥ 0.
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Let P be a cone. A collection U of convex subsets U ⊆P2 =P×P is called
a convex quasiuniform structure on P , if the following properties hold:
(U1) ∆⊆U for every U ∈ U ( ∆ = {(a,a) : a ∈ P});
(U2) for all U,V ∈ U there is a W ∈ U such that W ⊆U ∩V ;
(U3) λU ◦µU ⊆ (λ +µ)U for all U ∈ U and λ ,µ > 0;
(U4) αU ∈ U for all U ∈ U and α > 0.

Here, for U,V ⊆ P2, by U ◦V we mean the set of all (a,b) ∈ P2 such that
there is some c ∈ P with (a,c) ∈U and (c,b) ∈V .

Let P be a cone and U be a convex quasiuniform structure on P . We shall
say (P,U) is a locally convex cone if

(U5) for each a ∈ P and U ∈ U there is some ρ > 0 such that (0,a) ∈ ρU .
We say that the convex subset E of P2 is uniformly convex whenever E has

properties (U1) and (U3). The uniformly convex subsets play an important role
in the construction of a convex quasiuniform structure. With every collection of
uniformly convex subsets we can obtain a convex quasiuniform structure (see
[1], Proposition 2.2). With every convex quasiuniform structure U on P we
associate two topologies: The neighborhood bases for an element a in the upper
and lower topologies are given by the sets

U(a) = {b ∈ P : (b,a) ∈U}, resp. (a)U = {b ∈ P : (a,b) ∈U}, U ∈ U.

The common refinement of the upper and lower topologies is called symmetric
topology. A neighborhood base for a ∈ P in this topology is given by the sets

U(a)U =U(a)∩ (a)U, U ∈ U.

Let U andW be convex quasiuniform structures on P . We say that U is finer
thanW if for every W ∈W there is U ∈ U such that U ⊆W .

In locally convex cone (P,U) the closure of a ∈ P is defined to be the set

a =
⋂

U∈U
U(a)

(see [5], chapter I). The locally convex cone (P,U) is called separated if a = b
implies a = b for a,b∈P . It is proved in [5] that the locally convex cone (P,U)
is separated if and only if its symmetric topology is Hausdorff.

The extended real number system R=R∪{+∞} is a cone endowed with the
usual algebraic operations, in particular a+∞ = +∞ for all a ∈ R, α · (+∞) =
+∞ for all α > 0 and 0.(+∞) = 0. We set Ṽ = {ε̃ : ε > 0}, where

ε̃ = {(a,b) ∈ R2
: a≤ b+ ε}.
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Then Ṽ is a convex quasiuniform structure on R and (R, Ṽ) is a locally convex
cone. For a ∈ R the intervals (−∞,a+ ε] are the upper and the intervals [a−
ε,+∞] are the lower neighborhoods, while for a = +∞ the entire cone R is
the only upper neighborhood, and {+∞} is open in the lower topology. The
symmetric topology is the usual topology on R with +∞ as an isolated point.

For cones P and Q, a mapping T : P → Q is called a linear operator if
T (a+ b) = T (a)+T (b) and T (αa) = αT (a) hold for all a,b ∈ P and α ≥ 0.
If both (P,U) and (Q,W) are locally convex cones, the operator T is called
(uniformly) continuous if for every W ∈W one can find U ∈ U such that (T ×
T )(U)⊆W , where (T ×T )(U) = {(T (a),T (b)) ∈Q2 : (a,b) ∈U}.

A linear functional on P is a linear operator µ : P → R. The dual cone P∗
of a locally convex cone (P,U) consists of all continuous linear functionals on
P .

Let (P,U) be a locally convex cone. We shall say that the subset F of P2 is
u-bounded if it is absorbed by each U ∈ U. The subset B of P is called bounded
below (or above) whenever {0}×B (or B×{0}) is u-bounded. The subset B is
called bounded if it is bounded below and above. An element a ∈ P is called
bounded below (or above) whenever {a} is so (recall that every a∈P is required
to be bounded below by (U5)).

The locally convex cone (P,U) is called a uc-cone whenever U = {αU :
α > 0} for some U ∈ U. It is proved in [1] that the locally convex cone (P,U)
is a uc-cone if and only if U has a u-bounded element.

Let (P,U) and (Q,W) be locally convex cones. The linear operator T :
P → Q is called u-bounded whenever for every u-bounded subset B of P2,
(T ×T )(B) is u-bounded. The locally convex cone (P,U) is called bornological
if every u-bounded linear operator from (P,U) into any locally convex cone is
continuous.

The projective and inductive limits of locally convex cones have been in-
vestigated in [10]. Also, the strict inductive limit of locally convex cones has
been defined in [9]. The products and direct sums as a special case of projec-
tive and inductive limits have been investigated in [8]. The dual of projective
and inductive limits of locally convex cones have been investigated in [7]. In
this paper we want to study the structure of C(P,Q) (the cone of continuous
linear operators), when (P,U) or (Q,W) are the inductive or projective limit
locally convex cones. The structure of C(P,Q), when P or Q are products or
direct sums of some locally convex cones is an interesting special case that in-
vestigated in this paper. We review some results from [10]. For every γ ∈ Γ

let (Pγ ,Uγ) be a locally convex cone. If P is a cone and for every γ ∈ Γ, uγ

is a linear mapping of P into Pγ , then there is a coarsest convex quasiuniform
structure U on P that makes all uγ continuous. (P,U) is a locally convex cone
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and it is called the projective limit of the locally convex cones (Pγ ,Uγ), γ ∈ Γ.
If P = ∏γ∈ΓPγ , then P can be made into a locally convex cone by regarding
it as the projective limit of the locally convex cones (Pγ ,Uγ) by the projections
mapping πγ : P →Pγ ,πγ((xγ)γ∈Γ) = xγ .

For each γ ∈ Γ, let (Pγ ,Uγ) be a locally convex cone. Suppose P is a
cone and for every γ ∈ Γ, vγ : Pγ → P is a linear mapping such that P =
span(

⋃
γ∈Γ vγ(Pγ)). Then there is the finest convex quasiuniform structure U on

P that makes all vγ continuous. (P,U) is a locally convex cone and it is called
the inductive limit of locally convex cones (Pγ ,Uγ), γ ∈ Γ. The subcone of
P = ∏γ∈ΓPγ spanned by

⋃
γ∈Γ jγ(Pγ), where jγ :Pγ →∏γ∈ΓPγ is the injection

mapping, is called the direct sum of cones Pγ , γ ∈ Γ and denoted by
⊕

γ∈ΓPγ .
If we consider the product convex quasiunifom structure on

⊕
γ∈ΓPγ , then it

induces the original convex quasiunifom structure on each Pγ . The finest such
convex quasiunifom structure on

⊕
γ∈ΓPγ is obtained by regarding

⊕
γ∈ΓPγ as

the inductive limit of locally convex cones (Pγ ,Uγ), γ ∈ Γ (see [8]).
Let (P,U) be a locally convex cone and P∗ be its dual. In the following

we denote by Uσ (P,P∗) the coarsest convex quasiuniform structure on P that
makes all µ ∈ P∗ continuous. Similarly, Uσ (P∗,P) is the the coarsest convex
quasiuniform structure that makes all a ∈ P continious, as linear functionals on
P∗. In fact, (P,Uσ (P,P∗)) is the projective limit of (R, Ṽ) by the functionals
µ ∈ P∗.

2. Some structure theorems

Let (P,U) and (Q,W) be locally convex cones. We denote the cone of all
continuous linear operators from P into Q by C(P,Q). If (Q,W) = (R,V),
then C(P,Q) = P∗. We define a convex quasiuniform structure on C(P,Q).
Let B be a collection of bounded below subsets of (P,U) such that

for every A,B ∈ B there is C ∈ B such that A∪B⊆C. (UW )

For B ∈ B and W ∈W we set

VB,W = {(S,T ) ∈ C(P,Q)×C(P,Q) : (S(b),T (b)) ∈W}.

Then VB,W = {VB,W : B ∈ B,W ∈ W} is a convex quasiuniform structure on
C(P,Q). We prove that the elements of C(P,Q) are bounded below with respect
to the convex quasiuniform structure VB,W . Let VB,W ∈ VB,W and T ∈ C(P,Q).
Since B is bounded below and T is continuous, we realize that T (B) is bounded
below in (Q,W). Then there is λ > 0 such that (0,T (b)) ∈ λW for all b ∈ B.
This shows that (0,T ) ∈ λVB,W . Therefore (C(P,Q),VB,W) is a locally convex
cone.
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Let (P,U) and (Q,W) be locally convex cones. If B is the collection of all
bounded below or bounded subsets of (P,U), then we denote the corresponding
convex quasiuniform structure on C(P,Q) by Vbβ or Vβ . Obviously, Vbβ is finer
than Vβ , since every bounded subset of P is bounded below.

Proposition 2.1. Let (P,U) and (Q,W) be uc-cones. Then C(P,Q) is a uc-
cone if endowed with the convex quasiuniform structures Vbβ and Vβ .

Proof. Let U = {αU : α > 0} andW = {αW : α > 0}. We set B = (0)U . We
shall prove that Vbβ is equivalent to the convex quasiuniform structure {εVB,W :
ε > 0}. It is enough to show that {εVB,W : ε > 0} is finer than Vbβ . Let VA,αW ∈
Vbβ . Then we have A⊆ λB for some λ > 0. We claim that α

λ
VB,W ⊆VA,αW . Let

(S,T ) ∈ α

λ
VB,W . Then (S(λa),T (λa)) ∈ αW for all a ∈ B. If we set b = λa,

then we have (S(b),T (b)) ∈ αW for all b ∈ λB. Since A⊆ λB, this shows that
(S(b),T (b)) ∈ αW for all b ∈ A. Therefore (S,T ) ∈VA,αW .

In a similar way one can prove that Vβ is equivalent to the convex quasiuni-
form structure {αVB′,W : α > 0}, where B′ =U(0)U .

Example 2.2. Suppose that (P,U) = (Q,W) = (R, Ṽ). Then C(R,R) = R∗ =
[0,+∞)∪{0}, where 0 is a functional on (R, Ṽ) acting as follows:

0(a) =
{0 a∈R

+∞ else.

In this example we have Vbβ = {αV[−1,+∞],1̃ : α > 0} and Vβ = {αV[−1,+1],1̃ :
α > 0} by Proposition 2.1. The upper, lower and symmetric neighborhoods of
0 in (C(R,R),Vbβ ) are as follows:

V[−1,+∞],1̃(0) = {0,0}, (0)V[−1,+∞],1̃ = {0} and V[−1,+∞],1̃(0)V[−1,+∞],1̃ = {0}.

Then the functional 0 is an isolated point in the lower and symmetric topologies
of (C(R,R),Vbβ ). Similarly in (C(R,R),Vβ ) we have

V[−1,+1],1̃(0) = {0,0}, (0)V[−1,+1],1̃ = {0,0} and V[−1,+1],1̃(0)V[−1,+1],1̃ = {0,0}.

We shall say that a subset H of C(P,Q) is equicontinuous whenever for each
W ∈W there is U ∈ U such that (S×S)(U)⊆W for all S ∈ H. Every equicon-
tinuous subset H of C(P,Q) is bounded below with respect to the convex quasi-
uniform structure VB,W . Indeed, let VB,W ∈ VB,W . Then there is U ∈ U such that
(S×S)(U) ⊆W for all S ∈ H. Also, there is λ > 0 such that ({0}×B) ⊆ λU ,
since B is bounded below in (P,U). We claim that {0}×H ⊆ λVB,W . Let
S ∈H. Then (S×S)(U)⊆W . This shows that (S×S)( 1

λ
({0}×B))⊆W , since

1
λ
({0}×B)⊆U . Therefore (0, 1

λ
S(b)) ∈W for all b ∈ B, yields (0,S) ∈ λVB,W .
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Proposition 2.3. Let (P,U) and (Q,W) be locally convex cones and let B be
a collection of bounded below subsets of P which has property (UW ). If P =⋃

B∈B B, then for every a ∈ P the linear operator δa : C(P,Q)→Q,δa(T ) =
T (a) is continuous.

Proof. Let W ∈W and a ∈ P . There is B ∈ B such that a ∈ B. We prove that
(δa× δa)(VB,W ) ⊆W . Let (S,T ) ∈ VB,W . Then (S(b),T (b)) ∈W for all b ∈ B.
This shows that (S(a),T (a)) ∈W , since a ∈ B. Then (δa(S),δa(T )) ∈W . This
yields that (δa×δa)(S,T ) ∈W .

Theorem 2.4. Let (P,U) be the inductive limit of the locally convex cones
(Pγ ,Uγ) by the linear mappings uγ , γ ∈ Γ and let (Q,W) be a locally con-
vex cone. Let Bγ be a class of bounded below subsets of Pγ for every γ ∈ Γ,
which has (UW ), and let B be the class of all finite unions of the sets contained
in
⋃

γ∈Γ uγ(Bγ). Then (C(P,Q),VB,W) is the projective limit of the locally con-
vex cones (C(Pγ ,Q),VBγ ,W) by the linear mappings Tγ : C(P,Q)→ C(Pγ ,Q),
Tγ(A) = A◦uγ , for A ∈ C(P,Q).

Proof. Obviously, B has property (UW ). Then (C(P,Q),VB,W) is a locally
convex cone. Now, we prove that Tγ : (C(P,Q),VB,W)→ (C(Pγ ,Q),VBγ ,W) is
continuous for each γ ∈ Γ. Let VBγ ,W ∈ VBγ ,W . We set B = uγ(Bγ). Obviously,
we have B ∈ B. We prove that (Tγ×Tγ)(VB,W )⊆VBγ ,W . Let (S,A) ∈VB,W . Then
(S(b),A(b)) ∈W for all b ∈ B. For every b ∈ B there is bγ ∈ Bγ such that b =
uγ(bγ). This shows that (S ◦ uγ(bγ),A ◦ uγ(bγ)) ∈W and then (Tγ(S),Tγ(A)) ∈
VBγ ,W . Now, letH be a convex quasiuniform structure on C(P,Q), that makes all
Tγ continuous. We shall prove thatH is finer than VB,W . Let B = uγ(Bγ). There
is H ∈H such that (Tγ×Tγ)(H)⊆VBγ ,W . We show that H ⊆VB,W . If (S,A)∈H,
then (Tγ(S),Tγ(A)) ∈ VBγ ,W . Then (S(uγ(bγ)),A(uγ(bγ))) ∈W for all bγ ∈ Bγ .
This yields that (S(b),A(b)) ∈W for all b ∈ B. Therefore (S,A) ∈VB,W .

Corollary 2.5. Let (P,U) =
⊕

γ∈Γ(Pγ ,Uγ) and let (Q,W) be a locally convex
cone. Suppose Bγ is a class of bounded below subsets of Pγ for every γ ∈
Γ, which has property (UW ) and B is the class of all finite unions of the sets
contained in

⋃
γ∈Γ jγ(Bγ). Then (L(P,Q),VB,W) = ∏γ∈Γ(C(Pγ ,Q),VBγ ,W).

Corollary 2.6. Let (P,U) =
⊕

γ∈Γ(Pγ ,Uγ). Suppose Bγ is a class of bounded
below subsets of Pγ for every γ ∈ Γ, which has property (UW ) and B is the
class of all finite unions of the sets contained in

⋃
γ∈Γ jγ(Bγ). Then (P∗,VB,Ṽ) =

∏γ∈Γ(P∗γ ,VBγ ,Ṽ).

Example 2.7. Let (P,U) and (Q,W) be locally convex cones and∼ be an equiv-
alence relation on P which is compatible with the algebraic operations ofP (see
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[12]). We denote the equivalence class of an element a ∈ P by [a] and set

[P] = {[a] | a ∈ P}.

The operations [a]+ [b] = [a+b] and α[a] = [αa] are well-defined for a,b ∈ P
and α ≥ 0 and [P] becomes a cone with these operations, which had been called
the quotient cone. On [P] we consider the finest convex quasiuniform structure
[U], that makes the projection mapping π : P → [P],π(a) = [a] continuous. In
fact, ([P], [U]) is the inductive limit of (P,U) under the projection mapping.
Suppose that B is a collection of bounded below subsets of P , which has prop-
erty (UW ) and suppose [B] is the collection of all finite unions of the sets con-
tained in π(B). Then (C([P],Q),V[B],W) is the projective limit of the locally
convex cone (C(P,Q),VB,W) by the linear mapping T : C([P],Q)→ C(P,Q),
T (A) = A◦π by Theorem 2.4.

Let (P,U) be a locally convex cone. For a uniformly convex u-bounded
subset H of P2, we set

PH = {a ∈ P : ∃λ > 0,(0,a) ∈ λH} and UH = {α(H ∩P2
H) : α > 0}.

Then (PH ,UH) is a uc-cone.

Remark 2.8. Suppose (P,U) is a bornological cone and H is the collection of
all uniformly convex u-bounded subsets ofP2, then it is proved in [1] that (P,U)
is the inductive limit of uc-subcones (PH ,UH)H∈H, with the inclusion mappings
IH : PH → P . Now for every H ∈ H, suppose BH is a collection of bounded
below subsets of (PH ,UH), which has property (UW ) and suppose B is the class
of all finite unions of the sets contained in

⋃
H∈HBH . Then (C(P,Q),VB,W)

is the projective limit of the locally convex cones (C(PH ,Q),VBH ,W) with the
linear mappings TH : C(P,Q)→ C(PH ,Q), TH(A) = AoIH , by Theorem 2.4. If
(Q,W) is a uc-cone, then for every H ∈H, (C(PH ,Q),VBH ,W ) is a uc- cone by
Proposition 2.1. Therefore (C(P,Q),VB,W) is the projective limit of uc-cones
in this case.

Definition 2.9. Let P be a cone. We shall say that the subset B of P \{0} is a
base for P whenever
(1) for every a ∈ P there are n ∈ N, b1, ...,bn ∈ B and α1, ...,αn ≥ 0 such that
a = ∑

n
i=1 αibi, in the other words P = span(B),

(2) for every B′ ( B, P 6= span(B′).

Let B be a base for the cone P . For b ∈ B we set Pb = {αb : α ≥ 0}. Then
we have P =

⊕
b∈BPb. Indeed, (1) shows that P ⊆

⊕
b∈BPb. We prove that for

b1,b2 ∈ B, Pb1 ∩Pb2 = {0}. If a ∈ Pb1 ∩Pb2 and a 6= 0, then a = α1b1 = α2b2
for some α1,α2 > 0. Then b2 = α1

α2
b1. This shows that P = span(B \ {b1}).
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This is a contradiction by (2). Now, we suppose that (P,U) is a locally convex
cone and for b ∈ B, Ub is the convex quasiuniform structure on Pb induced by
U. Then it is easy to see that (P,U) =

⊕
b∈B(Pb,Ub).

Example 2.10. Let S be the cone of all sequences in R. For i ∈N, we define the
sequences (ai

n)n∈N, (bi
n)n∈N and (ci

n)n∈N as following:

ai
n =

{1 n=i

0 else
, bi

n =

{−1 n=i

0 else
and ci

n =

{+∞ n=i

0 else.

Then B = {(ai
n)n∈N,(bi

n)n∈N,(ci
n)n∈N : i ∈ N} is a base for S. For δ > 0, we set

δ̃ = {((an)n∈N,(bn)n∈N) ∈ S2 : an ≤ bn +δ ,∀n ∈ N}.

Then U = {δ̃ : δ > 0} is a convex quasiuniform structure on S. If P is the
subcone of all bounded below elements of S with respect to U, then (P,U) is a
locally convex cone. The above discussion yields that (P,U) =

⊕
b∈B(Pb,Ub).

Now, let (Q,W) be a locally convex cone and Bb be a collection of bounded
below subsets of Pb which have (UW ). If we assume that B is the collection of
all the sets contained in

⋃
b∈BBb, then we have

(C(P,Q),VB,W) = ∏
b∈B

(C(Pb,Q),VBb,W), (1)

by Corollary 2.5. For i∈N and b = (ai
n)n∈N or b = (bi

n)n∈N we have (Pb,Ub)
∗=

[0,+∞). Also for b = (ci
n)n∈N we have (Pb,Ub)

∗ = {0,+∞}. Now, formula (1)
with (Q,W) = (R, Ṽ) implies that

(P∗,VB,Ṽ) =
( ∞

∏
i=1

([0,+∞),VBb,Ṽ)
)
×
( ∞

∏
i=1

([0,+∞),VBb,Ṽ)
)

×
( ∞

∏
i=1

({0,+∞},VBb,Ṽ)
)
.

Lemma 2.11. In a separated locally convex cone the only bounded subcone is
{0}.

Proof. Let (P,U) be a separated locally convex cone and Q be a bounded sub-
cone of P . Then for every U ∈ U there is λ > 0 such that (0,q) ∈ λU and
(q,0) ∈ λU for all q ∈ Q. Let q ∈ Q be a fixed element. We have (0,nq) ∈ λU
and (nq,0) ∈ λU for all n ∈ N, since Q is a subcone. This yields that

q ∈
⋂

n∈N
(
λ

n
U)(0)(

λ

n
U).

Therefore q = 0, since the symmetric topology of (P,U) is Hausdorff.
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The situation is more telling if we assume (P,U) to be a projective limit lo-
cally convex cone. We suppose first that (P,U) =∏γ∈Γ(Pγ ,Uγ) and (Q,W) is a
locally convex cone. Let S ∈ C(P,Q). If Sγ is the restriction of S to Pγ and pγ is
the projection mapping, then for (aγ)γ∈Γ ∈ P we have Sγ(aγ) = S◦ pγ((aγ)γ∈Γ)
and Sγ ◦ pγ = S ◦ pγ ∈ C(Pγ ,Q). If only finitely many Sγ are non zero, then
∑

n
i=1 Sγi ∈

⊕
γ∈ΓC(Pγ ,Q) and S = ∑

n
i=1 Sγi ◦ pγi ∈ C(P,Q). This shows that⊕

γ∈Γ

C(Pγ ,Q)⊂ C(∏
γ∈Γ

Pγ ,Q).

Generally
⊕

γ∈ΓC(Pγ ,Q) is a proper subset of C(∏γ∈ΓPγ ,Q). For example
consider the cone P = ∏

∞
i=1Pi, where Pi = R for all i ∈ N. Then the range of

every linear operator T ∈
⊕n

i=1C(Pi,P) has a base with finite elements, but it
is not true for the identity mapping I ∈ C(P,P).

Under an additional condition we have the equality in the above.

Proposition 2.12. Let (P,U) = ∏γ∈Γ(Pγ ,Uγ), where all elements of Pγ are
bounded above for all γ ∈ Γ. Also, let (Q,W) be a separated locally convex
cone with a sequence C1 ⊂C2 ⊂ ... of bounded subsets such that every bounded
subset of Q contained in some Ci, i ∈ N. Then
(a) Algebricaly, we have

C(P,Q) =
⊕
γ∈Γ

C(Pγ ,Q).

(b) If for every γ ∈ Γ, Bγ is a collection of bounded below subsets of (Pγ ,Uγ)
and B is the collection af all sets ∏γ∈Γ Bγ , where Bγ ∈Bγ , then the iductive limit
convex quasiuniform structure on C(P,Q) is finer than VB,W .

Proof. For (a) assume that there exists S ∈ C(P,Q) such that

S /∈
⊕
γ∈Γ

C(Pγ ,Uγ).

Then there are infinitely many restrictions Sγn , n = 1,2, ... such that Sγn 6= 0.
Then there is aγn ∈ Pγn such that bγn = Sγn(aγn) /∈ Cn for all n ∈ N, by Lemma
2.11. The net (aγn)n∈N is bounded in (P,U), since all of its component are
bounded by the assumption, but S((aγn)n∈N) = ∑

∞
n=1 Sγn(aγn) = ∑

∞
n=1 bn is un-

bounded in (Q,W). This is a contradiction, because S is continuous. Then

C(P,Q)⊆
⊕
γ∈Γ

C(Pγ ,Uγ).

For (b), let VB,W ∈ VB,W , where B = ∏γ∈Γ Bγ , Bγ ∈ Bγ and W ∈ W . It is
enough to show that

⋃
γ∈Γ( jγ × jγ)(VBγ ,W ) ⊆ VB,W . For γ ′ ∈ Γ, let (Sγ ′ ,Tγ ′) ∈
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VB
γ ′ ,W . Then for each bγ ′ ∈ Bγ ′ , we have (Sγ ′(bγ ′),Tγ ′(bγ ′)) ∈W . Now, since

for (bγ)γ∈Γ ∈ B we have ( jγ ′(Sγ ′))((bγ)γ∈Γ) = Sγ ′(bγ ′) and ( jγ ′(Tγ ′))((bγ)γ∈Γ) =
Tγ ′(bγ ′) by (a), we conclude that

( jγ ′× jγ ′)(Sγ ′ ,Tγ ′) ∈VB,W .

Theorem 2.13. Let (P,U) be a locally convex cone and let (Q,W) be the pro-
jective limit of the locally convex cones (Qγ ,Wγ) by the linear mappings vγ ,
γ ∈ Γ. If B is a collection of bounded below subsets of (P,U) which has prop-
erty (UW ), then the locally convex cone (C(P,Q),VB,W) is the projective limit
of the locally convex cones (C(P,Qγ),VB,Wγ

), γ ∈ Γ, by the linear mappings
Tγ : C(P,Q)→C(P,Qγ), Tγ(A) = vγ ◦A.

Proof. Firstly, we prove that for every γ , Tγ is continuous. Let VB,Wγ
∈ VB,Wγ

.
Since vγ is continuous, there is W ∈W such that (vγ × vγ)(W )⊆Wγ . We show
(Tγ ×Tγ)(VB,W ) ⊆ VB,Wγ

. If (S,A) ∈ VB,W , then (S(b),A(b)) ∈W for all b ∈ B.
Therefore (vγ ◦S(b),vγ ◦A(b))∈Wγ and then (Tγ×T γ)(S,A) = (vγ ◦S,vγ ◦A)∈
VB,Wγ

. Now, we prove that VB,W is the coarsest convex quasiuniform structure
on L(P,Qγ) that makes all Tγ , γ ∈ Γ continuous. For this aim let H be another
convex quasiuniform structure on C(P,Qγ) that makes all Tγ , γ ∈ Γ continuous.
We shall prove that H is finer than VB,W . There are n ∈ N and γ1, ...,γn ∈ Γ

such that
⋂n

i=1(vγi × vγi)
−1(Wγi) ⊆W , since (Q,W) is the projective limit of

(Qγ ,Wγ), γ ∈ Γ. For every i= 1, · · · ,n there is Hi ∈H such that (Tγ×Tγ)(Hi)⊆
VB,Wγi

. SinceH is a convex quasiunifom structure, there is H ∈H such that H ⊆⋂n
i=1 Hi. We claim that H ⊆ VB,W . Let (S,A) ∈ H. Then for every i = 1, · · · ,n,

we have (S,A) ∈ Hi. This shows that

(Tγ(S),Tγ(A)) = (vγ ◦S,vγ ◦A) ∈VB,Wγi
.

Then for every i = 1, ...,n, (vγ ◦S(b),vγ ◦A(b)) ∈Wγi for all b ∈ B. Therefore

(S(b),A(b)) ∈
n⋂

i=1

V−1
γ (Wγi)⊆W,

for all b ∈ B. This yields that (S,A) ∈VB,W .

Corollary 2.14. Let (P,U) be a locally convex cone and let

(Q,W) = ∏
γ∈Γ

(Qγ ,Wγ).

If B is a collection of bounded below subsets of P which has property (UW ),
then (C(P,Q),VB,W) = ∏γ∈Γ(C(P,Qγ),VB,Wγ

).
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Example 2.15. Let (P,U) and (Q,W) be locally convex cones. We consider
the locally convex cone (Q,Wσ (Q,Q∗)). We note that (Q,Wσ (Q,Q∗)) is the
projective limit of (R, Ṽ) under the functionals µ ∈ Q∗. If B is a collection of
bounded below subsets of (P,U) which has property (UW ), then the locally
convex cone (C(P,Q),VB,Wσ (Q,Q∗)) is the projective limit of the locally convex
cone (P∗,VB,Ṽ) by the linear mappings Tµ : C(P,Q)→P∗,Tµ(A) = µoA, µ ∈
Q∗, by Theorem 2.13.

In the following proposition we present some conditions under which the
locally convex cone (C(P,Q),VB,W) is separated.

Proposition 2.16. Let (P,U) and (Q,W) be locally convex cones and B be
a collection of bounded below subsets of P , which have (UW ). If (Q,W) is
separated and P =

⋃
B∈B B, then (C(P,Q),VB,W) is separated.

Proof. It is sufficient to show that the symmetric topology of (C(P,Q),VB,W) is
Hausdorff. Let S,T ∈ C(P,Q) and S 6= T . There is a∈P such that S(a) 6= T (a).
Since (Q,W) is separated, there are W,W ′ ∈W such that

W (S(a))W ∩W ′(T (a))W ′ = /0.

We have a ∈ B for some B ∈ B, since Q=
⋃

B∈B B. Now, we claim that

VB,W (S)VB,W ∩VB,W ′(T )VB,W ′ = /0.

If K ∈ VB,W (S)VB,W ∩VB,W ′(T )VB,W ′ , then

K(a) ∈W (S(a))W ∩W ′(T (a))W ′,

and this is a contradiction.

Example 2.17. Let (P,U) be a locally convex cone and B be the collection
of all finite subsets of P . If we set (Q,W) = (R, Ṽ), then P∗ = C(P,Q),
endowed with the convex quasiuniform structure VB,Ṽ is a separated locally
convex cone by Proposition 2.16. We note that the convex quasiuniform struc-
ture VB,Ṽ is equivalent with Uσ (P∗,P) on P∗. Then the locally convex cone
(P∗,Uσ (P∗,P)) is separated.
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