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ON STABILITY FOR NONLINEAR IMPLICIT
FRACTIONAL DIFFERENTIAL EQUATIONS

MOUFFAK BENCHOHRA - JAMAL E. LAZREG

The purpose of this paper is to establish some types of Ulam stabil-
ity: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability for a class
of implicit fractional-order differential equation.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary order (non-integer). See, for example, the books such as [2–4, 7, 27,
31, 37] and the articles [9, 10], and references therein.

In recent years, fractional differential equations arise naturally in various
fields such as rheology, fractals, chaotic dynamics, modeling and control theory,
signal processing, bioengineering and biomedical applications, etc; Fractional
derivatives provide an excellent instrument for the description of memory and
hereditary properties of various materials and processes. We refer the reader,
for example, to the books such as [8, 23, 25, 39], and references therein.

“Under what conditions does there exist an additive mapping near an ap-
proximately additive mapping?” This is the stability problem of functional equa-
tion (of group homomorphisms) which was raised by Ulam in 1940 in a talk
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given at Wisconsin University [40, 41]. In 1941, Hyers [17] gave the first answer
to the question of Ulam (for the additive mapping) in the case Banach spaces.
Between 1982 and 1998 Rassias established the Hyers-Ulam stability of linear
and nonlinear mappings. Jung [19, 20] investigated in 1998, the Hyers-Ulam
stability of more general mappings on restricted domains. Obloza [26], in 1997,
is the first author who has investigated the Hyers-Ulam stability of linear differ-
ential equations. After, many articles and books on this subject have been pub-
lished in order to generalize the results of Hyers in many directions. For more
detailed definitions of the Hyers-Ulam stability and the generalized Hyers-Ulam
stability, we refer the reader to the papers [1, 5, 6, 16, 18, 21, 22, 24, 32, 36, 43–
45] and the books [12, 33, 34].

Integer order implicit differential equations of arbitrary orders have been
considered extensively in the literature; see for instance [11, 13–15, 28–30, 35,
38, 46].

The purpose of this paper, is to establish four types of Ulam stability : Ulam-
Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability
and generalized Ulam-Hyers-Rassias stability for the equation, for the following
initial value problem for implicit fractional-order differential equation

cDαy(t) = f (t,y(t),c Dαy(t)), ∀ t ∈ J, 0 < α ≤ 1, (1)

y(0) = y0, (2)

where cDα is the Caputo fractional derivative, f : J×R×R→ R is a given
function space, y0 ∈ R and J = [0,T ], T > 0.

This paper intiates the study of Ulam stability for such class of problems.

2. Preliminaries

Definition 2.1 ([31]). The fractional (arbitrary) order integral of the function
h ∈ L1([0,T ],R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =
∫

∞

0
tα−1e−tdt, α > 0.

Definition 2.2 ([23]). For a function h given on the interval [0,T ], the Caputo
fractional-order derivative of order α of h, is defined by

(cDαh)(t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1h(n)(s)ds,

where n = [α]+1 and [α] denotes the integer part of the real number α .
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Lemma 2.3 ([23]). Let α ≥ 0 and n = [α]+1. Then

Iα(cDα f (t)) = f (t)−
n−1

∑
k=0

f k(0)
k!

tk.

We state the following generalization of Gronwall’s lemma for singular ker-
nels.

Lemma 2.4 ([42]). Let v : [0,T ]→ [0,+∞) be a real function and w(.) is a
nonnegative, locally integrable function on [0,T ] and there are constants a > 0
and 0 < α < 1 such that

v(t)≤ w(t)+a
∫ t

0
(t− s)−αv(s)ds,

Then, there exists a constant K = K(α) such that

v(t)≤ w(t)+Ka
∫ t

0
(t− s)−αw(s)ds, for every t ∈ [0,T ].

We adopt the definitions in Rus [36]: Ulam-Hyers stability, generalized Ulam-
Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Ras-
sias stability for the equation, for the implicit fractional-order differential equa-
tion (1).

Definition 2.5. The equation (1) is Ulam-Hyers stable if there exists a real
number c f > 0 such that for each ε > 0 and for each solution z ∈C1(J,R) of the
inequality

|cDαz(t)− f (t,z(t),c Dαz(t))| ≤ ε, t ∈ J, (3)

there exists a solution y ∈C1(J,R) of equation (1) with

|z(t)− y(t)| ≤ c f ε, t ∈ J.

Definition 2.6. The equation (1) is generalised Ulam-Hyers stable if there ex-
ists ψ f ∈C(R+,R+), ψ f (0) = 0, such that for each solution z ∈C1(J,R) of the
inequality (3) there exists a solution y ∈C1(J,R) of the equation (1) with

|z(t)− y(t)| ≤ ψ f (ε), t ∈ J.

Definition 2.7. The equation (1) is Ulam-Hyers-Rassias stable with respect to
ϕ ∈C(J,R+) if there exists a real number c f > 0 such that for each ε > 0 and
for each solution z ∈C1(J,R) of the inequality

|cDαz(t)− f (t,z(t),c Dαz(t))| ≤ εϕ(t), t ∈ J, (4)

there exists a solution y ∈C1(J,R) of equation (1) with

|z(t)− y(t)| ≤ c f εϕ(t), t ∈ J.
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Definition 2.8. The equation (1) is generalised Ulam-Hyers-Rassias stable with
respect to ϕ ∈C(J,R+) if there exists a real number c f ,ϕ > 0 such that for each
solution z ∈C1(J,R) of the inequality

|cDαz(t)− f (t,z(t),c Dαz(t))| ≤ ϕ(t), t ∈ J, (5)

there exists a solution y ∈C1(J,R) of equation (1) with

|z(t)− y(t)| ≤ c f ,ϕϕ(t), t ∈ J.

Remark 2.9. A function z∈C1(J,R) is a solution of of the inequality (3) if and
only if there exists a function g ∈C(J,R) (which depend on y) such that

(i) |g(t)| ≤ ε , ∀t ∈ J.

(ii) cDαz(t) = f (t,z(t),c Dαz(t))+g(t), t ∈ J.

Remark 2.10. Clearly,

(i) Definition 2.5 =⇒ Definition 2.6.

(ii) Definition 2.7 =⇒ Definition 2.8.

Remark 2.11. A solution of the implicit differential inequation (3) with frac-
tional order is called an fractional ε-solution of the implicit fractional differen-
tial equation (1).

So, the Ulam stabilities of the implicit differential equations with fractional
order are some special types of data dependence of the solutions of fractional
implicit differential equations.

3. Existence and Ulam-Hyers Stability

Definition 3.1. A function u ∈ C1(J) is said to be a solution of the problem
(1)− (2) is u satisfied equation (1) and condition (2) on J.

Lemma 3.2. Let a function f (t,u,v) : J×R×R→ R be continuous. Then the
problem (1)− (2) is equivalent to the problem

y(t) = y0 + Iαg(t), (6)

where g ∈C(J,R) satisfies the functional equation

g(t) = f (t,y0 + Iαg(t),g(t)).
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Proof. If cDαy(t) = g(t) then Iα cDαy(t) = Iαg(t). So we obtain y(t) = y0 +
Iαg(t).

Lemma 3.3 ([9]). Assume

(H1) The function f : J×R×R→ R is continuous.

(H2) There exist constants K > 0 and 0 < L < 1 such that

| f (t,u,v)− f (t, ū, v̄)| ≤ K|u− ū|+L|v− v̄| for any u,v, ū, v̄ ∈R and t ∈ J.

If
KT α

(1−L)Γ(α +1)
< 1, (7)

then there exists a unique solution for the IVP (1)− (2) on J.

Theorem 3.4. Assume that the assumptions (H1), (H2) and (7) hold. Then the
equation (1) is Ulam-Hyers stable.

Proof. Let z ∈C(J,R) be a solution of the inequation (3), i.e.

|cDαz(t)− f (t,z(t),c Dαz(t))| ≤ ε, t ∈ J. (8)

Let us denote by y ∈C(J,R) the unique solution of the Cauchy problem

cDαy(t) = f (t,y(t),c Dαy(t)), ∀ t ∈ J, 0 < α ≤ 1,

y(0) = z(0).

By using Lemma 3.2, we have

y(t) = z(0)+
1

Γ(α)

∫ t

0
(t− s)α−1gy(s)ds,

where gy ∈C(J,R) satisfies the functional equation

gy(t) = f (t,y(0)+ Iαgy(t),gy(t)).

But, by integration of the formula (8) we obtain∣∣∣∣z(t)− z(0)− 1
Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

∣∣∣∣≤ εtα

Γ(α +1)

≤ εT α

Γ(α +1)
, (9)
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where gz ∈C(J,R) satisfies the functional equation

gz(t) = f (t,z(0)+ Iαgz(t),gz(t)).

On the other hand, we have, for each t ∈ J

|z(t)− y(t)|=
∣∣∣∣z(t)− z(0)− 1

Γ(α)

∫ t

0
(t− s)α−1gy(s)ds

∣∣∣∣
=

∣∣∣∣z(t)− z(0)− 1
Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1 (gz(s)−gy(s))ds

∣∣∣∣
≤
∣∣∣∣z(t)− z(0)− 1

Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

∣∣∣∣
+

1
Γ(α)

∫ t

0
(t− s)α−1|gz(s)−gy(s)|ds, (10)

where
gy(t) = f (t,y(t),gy(t)),

and
gz(t) = f (t,z(t),gz(t)).

By (H2), we have, for each t ∈ J

|gz(t)−gy(t)|= | f (t,z(t),gz(t))− f (t,y(t),gy(t))|
≤ K|z(t)− y(t)|+L|gz(t)−gy(t)|.

Then

|gz(t)−gy(t)| ≤
K

1−L
|z(t)− y(t)|. (11)

Thus, by (9), (10), and (11) we get

|z(t)− y(t)| ≤ εT α

Γ(α +1)
+

K
(1−L)Γ(α)

∫ t

0
(t− s)α−1|z(s)− y(s)|ds.

Then Lemma 2.4 implies that for each t ∈ J

|z(t)− y(t)| ≤ εT α

Γ(α +1)

[
1+

γKT α

(1−L)Γ(α +1)

]
:= cε, (12)

where γ = γ(α) is a constant. So, the equation (1) is Ulam-Hyers stable. This
completes the proof.

By putting ψ(ε) = cε , ψ(0) = 0 yields that the equation (1) is generalized
Ulam-Hyers stable.
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4. Ulam-Hyers-Rassias Stability.
Theorem 4.1. Assume (H1), (H2) and

(H3) The function ϕ ∈C(J,R+) is increasing and there exists λϕ > 0 such that,
for each t ∈ J, we have

Iα
ϕ(t)≤ λϕϕ(t).

Then the equation (1) is Ulam-Hyers-Rassias stable with respect to ϕ .

Proof. Let z ∈C(J,R) be a solution of the inequation (4), i.e.

|cDαz(t)− f (t,z(t),c Dαz(t))| ≤ εϕ(t), t ∈ J, ε > 0. (13)

Let us denote by y ∈C(J,R) the unique solution of the Cauchy problem
cDαy(t) = f (t,y(t),c Dαy(t)), ∀ t ∈ J, 0 < α ≤ 1,

y(0) = z(0).

By using Lemma 3.2, we have

y(t) = z(0)+
1

Γ(α)

∫ t

0
(t− s)α−1gy(s)ds,

where gy ∈C(J,R) satisfies the functional equation

gy(t) = f (t,y(0)+ Iαgy(t),gy(t)).

But, by integration of the formula (13) and by (H3), we obtain∣∣∣∣z(t)− z(0)− 1
Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

∣∣∣∣≤ ε

Γ(α)

∫ t

0
(t− s)α−1

ϕ(s)ds

≤ ελϕϕ(t), (14)

where gz ∈C(J,R) satisfies the functional equation

gz(t) = f (t,z(0)+ Iαgz(t),gz(t)).

On the other hand, we have, for each t ∈ J

|z(t)− y(t)|=
∣∣∣∣z(t)− z(0)− 1

Γ(α)

∫ t

0
(t− s)α−1gy(s)ds

∣∣∣∣
=

∣∣∣∣z(t)− z(0)− 1
Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1 (gz(s)−gy(s))ds

∣∣∣∣
≤
∣∣∣∣z(t)− z(0)− 1

Γ(α)

∫ t

0
(t− s)α−1gz(s)ds

∣∣∣∣
+

1
Γ(α)

∫ t

0
(t− s)α−1|gz(s)−gy(s)|ds, (15)
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where

gy(t) = f (t,y(t),gy(t)),

and

gz(t) = f (t,z(t),gz(t)).

By (H2), we have

|gz(t)−gy(t)|= | f (t,z(t),gz(t))− f (t,y(t),gy(t))|
≤ K|z(t)− y(t)|+L|gz(t)−gy(t)|.

Then

|gz(t)−gy(t)| ≤
K

1−L
|z(t)− y(t)|. (16)

Thus, by (14), (15), and (16)

|z(t)− y(t)| ≤ ελϕϕ(t)+
K

(1−L)Γ(α)

∫ t

0
(t− s)α−1|z(s)− y(s)|ds.

Then Lemma 2.4 implies that, for each t ∈ J

|z(t)− y(t)| ≤ ελϕϕ(t)+
γ1ελϕK

(1−L)Γ(α)

∫ t

0
(t− s)α−1

ϕ(s)ds, (17)

where constant γ1 = γ1(α) is a constant.
Thus, by (H3) and (17), we obtain

|z(t)− y(t)| ≤ ελϕϕ(t)+
γ1Kελ 2

ϕϕ(t)
(1−L)

=

(
1+

γ1Kλϕ

1−L

)
λϕεϕ(t).

Then, for each t ∈ J

|z(t)− y(t)| ≤
[(

1+
γ1Kλϕ

1−L

)
λϕ

]
εϕ(t) := cεϕ(t). (18)

So, the equation (1) is Ulam-Hyers-Rassias stable. This completes the proof.
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5. Examples

Example 5.1. Consider the following Cauchy problem

cD
1
2 y(t) =

1
100

(t cosy(t)− y(t)sin(t))+
|cD

1
2
t y(t)|

50+ |cD
1
2
t y(t)|

, ∀ t ∈ [0,1], (19)

y(0) = 1. (20)

Set

f (t,u,v) =
1

100
(t cosu−usin(t))+

v
50+ v

, t ∈ [0,1], u,v ∈ R.

Clearly, the function f is jointly continuous.
For any u,v, ū, v̄ ∈ R and t ∈ [0,1] :

| f (t,u,v)− f (t, ū, v̄)| ≤ 1
100
|t||cosu− cos ū|

+
1

100
|sin t||u− ū|+ 50|v− v̄|

(50+ v)(50+ v̄)

≤ 1
100
|u− ū|+ 1

100
|u− ū|+ 1

50
|v− v̄|

≤ 1
50
|u− ū|+ 1

50
|v− v̄|.

Hence condition (H2) is satisfied with K = L = 1
50 .

Thus condition

KT α

(1−L)Γ(α +1)
=

1
50

(1− 1
50)Γ(

3
2)

=
2

49
√

π
< 1,

is satisfied. It follows from Theorem 3.3 that the problem (19)-(20) has a unique
solution on J, and from Theorem 3.4, equation (19) is Ulam-Hyers stable.

Example 5.2. Consider the following Cauchy problem

cD
1
2 y(t) =

2+ |y(t)|+ |cD
1
2 y(t)|

120et+10(1+ |y(t)|+ |cD
1
2 y(t)|)

, ∀ t ∈ [0,1], (21)

y(0) = 1. (22)

Set

f (t,u,v) =
2+ |u|+ |v|

120et+10(1+ |u|+ |v|)
, t ∈ [0,1], u,v ∈ R.
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Clearly, the function f is jointly continuous.
For any u,v, ū, v̄ ∈ R and t ∈ [0,1]

| f (t,u,v)− f (t, ū, v̄)| ≤ 1
120e10 (|u− ū|+ |v− v̄|).

Hence condition (H2) is satisfied with K = L = 1
120e10 .

Let ϕ(t) = t2. We have

Iα
ϕ(t)≤ 2

Γ(7
2)

t2 := λϕϕ(t).

Thus condition (H3) is satisfied with ϕ(t) = t2 and λϕ = 2
Γ( 7

2 )
= 16

15
√

π
It

follows from Theorem 3.3 that the problem (21)-(22) as a unique solution on J,
and from Theorem 4.1 equation (21) is Ulam-Hyers-Rassias stable.
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