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REGULARITY OF TOR FOR WEAKLY STABLE IDEALS

KATIE ANSALDI - NICHOLAS CLARKE - LUIGI FERRARO

It is proved that if I and J are weakly stable ideals in a polynomial
ring R = k[x1, . . . ,xn], with k a field, then the regularity of TorR

i (R/I,R/J)
has the expected upper bound. We also give a bound for the regularity of
ExtiR(R/I,R) for I a weakly stable ideal.

1. Introduction

Let k be a field. Let R = k[x1, . . . ,xn] be a graded polynomial ring over k with
|xi|= 1 for every i. Let M and N be finitely generated graded R-modules. In [6]
it is shown that if dimTorR

1 (M,N)≤ 1 then

regR TorR
i (M,N)≤ regR M+ regR N + i for every i. (1)

In general this bound may not hold. Indeed, assume it holds for M = N =
R/I where I is an homogeneous ideal in R and set T1 = TorR

1 (R/I,R/I). It is
clear that T1 ∼= I/I2; hence using the exact sequence

0→ I2→ I→ T1→ 0

we deduce from 2.2 that

regR I2 ≤max{regR I, regR T1 +1}.
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Since regR R/I = regR I−1, it follows

regR I2 ≤ 2regR I.

Hence, every ideal not satisfying the previous inequality gives an example where
(1) does not hold. There are many such examples; see for instance [5].

Although (1) does not hold in general, it is natural to look for classes of
modules where the bound holds without the dimension assumption.

We prove that if I and J are weakly stable ideals then

regR TorR
i (R/I,R/J)≤ regR R/I + regR R/J+ i for every i,

see Theorem 3.7 and see Section 3 for the definition of weakly stable ideals.
The last section is concerned with the regularity of ExtiR(R/I,R) with I

weakly stable ideal.

2. Background

Throughout the paper R = k[x1, . . . ,xn], with k a field, denotes a graded poly-
nomial ring with |xi|= 1 for every i. Let M and N be finitely generated graded
R-modules. We denote by Mi the i-th graded component of M. The supremum
and infimum of a graded module M are defined as

supM = sup{i |Mi 6= 0}

infM = inf{i |Mi 6= 0}.

We define the graded R-module M(−a) by M(−a)d = Ma+d , the shift of M
up by a degrees. Let m denote the ideal (x1, . . . ,xn). The m-torsion functor on
the category of graded R-modules is defined by

Γm(M) = {x ∈M : mtx = 0 for some t}.

The i-th local cohomology module of M, denoted H i
m(M), is the i-th right de-

rived functor of Γm( ) in the category of graded R-modules, and morphisms of
degree 0.

We set ai(M) = sup(H i
m(M)); by [1, 3.5.4] ai(M) is finite unless H i

m(M) = 0
where we set ai(M) =−∞. The Castelnuovo-Mumford regularity of M is then

regR M = sup
i
{ai(M)+ i}.

Regularity can also be computed with a minimal graded free resolution

· · · → F2→ F1→ F0→ 0
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of M. Recall that Fi =
⊕

j R(− j)βi j , so βi j is the number of copies of R(− j) in
position i in the resolution. The number

ti(M) = sup{ j : βi j 6= 0},

is the largest degree of an element in the basis of Fi; it is easily seen that

ti(M) = sup(TorR
i (M,k)).

It is proved, for example in [4, 2.2], that

regR M = sup
i
{ti(M)− i}.

Remark 2.1. If M is an R-module then regR M(−a) = regR M+a for any a∈Z.
This can be checked by computing the regularity with a free resolution.

If M has finite length then regR M = supM. This follows by computing
regularity with local cohomology.

Remark 2.2. Let
0→ L→M→ N→ 0

be an exact sequence of graded R-modules. Then

1. regR M ≤max{regR L, regR N}

2. regR L≤max{regR M, regR N +1}

3. regR N ≤max{regR M, regR L−1}.

This follows from the induced long exact sequence in local cohomology.

The next lemma is a straightforward consequence of the previous inequali-
ties.

Lemma 2.3. If K
f−→M t−→ N

g−→C is an exact sequence of graded R-modules, K
and C have finite length then

regR M ≤max{regR K, regR N, regRC+1}.

Proof. The exact sequence induces exact sequences of R-modules

0→ Im f →M→ Im t→ 0, 0→ Im t→ N→ Img→ 0.

By 2.2 these exact sequences give the following inequalities:

regR M≤max{regR Im f , regR Im t} regR Im t ≤max{regR N, regR Img+1},

and hence an inequality

regR M ≤max{regR Im f , regR N, regR Img+1}.

Since K and C have finite length regR Im f ≤ regR K and regR Img≤ regRC.
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Remark 2.4. Note that

regR M = max{regR(Γm(M)), regR(M/Γm(M))}.

This follows from the definition of regularity, since H0
m(M) = Γm(M).

The following result is well-known.

Lemma 2.5. If M has finite length then regR TorR
i (M,N)≤ regR M+ ti(N).

In particular,

regR TorR
i (M,N)≤ regR M+ regR N + i.

Proof. Write M =
⊕b

i=a Mi with a = infM and b = supM. We use induction on
b−a. If b = a then M = k(−a)m, and therefore,

regR TorR
i (M,N) = regR TorR

i (k(−a),N)

= regR TorR
i (k,N)(−a)

= regR TorR
i (k,N)+a

= regR TorR
i (k,N)+ regR M

= ti(N)+ regR(M).

Now assume b− a > 0. Denote by M>a the module
⊕b

i=a+1 Mi. The short
exact sequence

0→M>a→M→ k(−a)m→ 0

induces, for each i, an exact sequence

TorR
i (M>a,N)→ TorR

i (M,N)→ TorR
i (k,N)m(−a).

By induction and Lemma 2.3

regR TorR
i (M,N)≤max{regR TorR

i (M>a,N), regR TorR
i (k,N)(−a)}

≤max{regR M>a + ti(N),a+ ti(N)} ≤ regR M+ ti(N).

The last assertion follows as regR N = sup{ti(N)− i}.

3. Regularity of Tor for weakly stable ideals

We study weakly stable ideals. Let I be a monomial ideal, for a monomial u ∈ I
we let m(u) be the maximum index of a variable appearing in u and we let l(u)
be the highest power of xm(u) dividing u.
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Definition 3.1. A monomial ideal I is weakly stable provided the following
“exchange property” is satisfied; for any monomial u ∈ I and for any j < m(u)
there exists a k such that xk

ju/xl(u)
m(u) ∈ I.

Remark 3.2. It is an easy exercise to prove that I is weakly stable if and only if
the “exchange property” is verified only for the generators of I.

Remark 3.3. There is also an algebraic characterization of weakly stable ideals.
In [2, 4.1.5] Caviglia proved that a monomial ideal I is weakly stable if and only
if Ass I ⊆ {(x1, . . . ,xt) | t = 0,1, . . . ,n}.

Example 3.4. Let I = (x2
1,x1x2,x1x3,x2

2). Clearly the ’exchange property’ holds
for x2

1 and x2
2. We have m(x1x2) = 2 and l(x1x2) = 1. For j = 1 we take k = 1

and we can see that x1x1x2/x2 is in I. The remaining generator is similar. The
ideal I is primary and the radical of I is the ideal (x1,x2).

Remark 3.5. If I is a weakly stable ideal and J is a monomial ideal, then (I : J)
is a weakly stable ideal; see [2, 4.1.4(2)].

Lemma 3.6. Suppose I is a weakly stable ideal of R and set

I′ =
∞⋃

m=1

(I : xm
n ).

Then I′ is weakly stable and Γm(R/I) = I′/I.

Proof. Notice that I′ is the ideal of R generated by the monomials obtained by
setting xn = 1 in the generators of I. First we show I′ is weakly stable. We
may assume xn|m for some m ∈ G(I) where G(I) denotes the set of minimal
generators of I. Notice that if

i = max{ j | x j
n divides some u ∈ G(I)}

then I′ = (I : xi
n) and this ideal is weakly stable by Remark 3.5.

It is clear that Γm(R/I) =
⋃

i(I : mi)/I. We claim
⋃

i(I : mi) =
⋃

i(I : xi
n).

Take f ∈
⋃

i(I : xi
n) a monomial so that f xi

n ∈ I for some i. Since I is weakly
stable we can choose a k such that f xk

j ∈ I for every j; hence, f ∈ (I : mkn). The
other inclusion is obvious.

We are now ready to prove the main theorem.

Theorem 3.7. If I and J are weakly stable ideals then

regR TorR
i (R/I,R/J)≤ regR R/I + regR R/J+ i for every i.
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Proof. Consider the following set

F= {(I,J) | I,J are weakly stable ideals and

regR TorR
i (R/I,R/J)> regR R/I + regR R/J+ i for some i}.

This set is partially ordered as follows: (I,J) ≤ (I′,J′) if I ⊆ I′ and J ⊆ J′.
Assume that F 6= /0, we seek a contradiction. Since R is noetherian there exists
a maximal element (I,J).

We may assume xn|m for some m ∈ G(I)∪G(J). Otherwise, we let S =
k[x1, . . . ,xn−1], then

TorR
i (R/I,R/J)∼= TorS

i (S/I∩S,S/J∩S)⊗S R for every i.

Regularity does not change under faithfully flat extensions; hence it is enough
to prove the theorem for S. Moreover, as Tor is symmetric we can assume that
xn|m for some m ∈ G(I).

By Lemma 3.6, Γm(R/I) = I′/I, so there is an exact sequence

0→ Γm(R/I)→ R/I→ R/I′→ 0

which induces, for each i, an exact sequence

· · · → TorR
i (Γm(R/I),R/J)→ TorR

i (R/I,R/J)→ TorR
i (R/I′,R/J)→

→ TorR
i−1(Γm(R/I),R/J).

The outside terms have finite length, since Γm(R/I) has finite length, and there-
fore by Lemma 2.3

regR TorR
i (R/I,R/J)≤max{ regR TorR

i (Γm(R/I),R/J),

regR TorR
i (R/I′,R/J),

regR TorR
i−1(Γm(R/I),R/J)+1}.

We examine the terms on the right hand side. By 2.5 and 2.4 we have

regR TorR
i (Γm(R/I),R/J)≤ regR Γm(R/I)+ regR R/J+ i

≤ regR R/I + regR R/J+ i

and

regR TorR
i−1(Γm(R/I),R/J)+1≤ regR Γm(R/I)+ regR R/J+ i−1+1

≤ regR R/I + regR R/J+ i.
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By 3.6 we know I′ is weakly stable. As I ( I′ and the pair (I,J) is maximal in F

regR TorR
i (R/I′,R/J)≤ regR R/I′+ regR R/J+ i

≤ regR R/I + regR R/J+ i.

The final inequality follows by 2.4 since

R/I′ =
R/I

Γm(R/I)
.

Putting all these inequalities together gives us

regR TorR
i (R/I,R/J)≤ regR R/I + regR R/J+ i for every i.

This is a contradiction since (I,J) ∈ F.

Remark 3.8. The inequality in Theorem 3.7 is useful because Caviglia gives a
formula for the regularity of weakly stable ideals (see [2, 4.1.10]).

4. Regularity of Ext for weakly stable ideals

Let M be an R-module of dimension d.
Regularity of ExtiR(M,R) was studied, for example, in [8]; here we study it

in the case M = R/I with I a weakly stable ideal.

Lemma 4.1. Let R = k[x1, . . . ,xn]. If M is an R-module of finite length then
ExtiR(M,R) = 0 for i < n and

regR ExtnR(M,R) =−n− infM.

Proof. By graded local duality, see [1, Theorem 3.6.19], there is the following
isomorphism:

HomR(H i
m(M),E)∼= Extn−i

R (M,R(−n))∼= Extn−i
R (M,R)(−n),

where E is the injective hull of k. Since M has finite length all the local coho-
mology modules are zero for i > 0 and H0

m(M) = M. This gives ExtiR(M,R) = 0
for i < n. The last assertion follows since

regR HomR(M,E) = supHomR(M,E) =− infM.

Theorem 4.2. If I is a weakly stable ideal then

regR ExtiR(R/I,R)≤−i for every i.
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Proof. Set

F= {I | I is a weakly stable ideal such that

regR ExtiR(R/I,R)>−i for some i}.

Notice that F is partially ordered by inclusion of ideals.
The theorem asserts that F is empty, so we assume it is not and argue by

contradiction. Since R is noetherian there exists I ∈ F a maximal element.
We may assume xn|m for some m ∈ G(I); otherwise, let S = k[x1, . . . ,xn−1].

Then
ExtiR(R/I,R)∼= ExtiS(S/I∩S,S)⊗S R for every i

and regularity does not change under faithfully flat extensions. Hence, it is
enough to prove the theorem for S.

By Lemma 3.6 we have Γm(R/I) = I′/I, with I′ weakly stable and I $ I′ so
by maximality the assertion holds for I′.

The short exact sequence

0→ Γm(R/I)→ R/I→ R/I′→ 0

induces, for each i, an exact sequence

Exti−1
R (Γm(R/I),R)→

→ ExtiR(R/I′,R)→ ExtiR(R/I,R)→ ExtiR(Γm(R/I),R).

If i < n then, since Γm(R/I) has finite length, the outside terms are zero, giving
the isomorphism ExtiR(R/I′,R)∼= ExtiR(R/I,R); hence, the assertion holds for I
and i < n. If i = n we get a short exact sequence

0→ ExtnR(R/I′,R)→ ExtnR(R/I,R)→ ExtnR(Γm(R/I),R)→ 0.

As the bound holds for I′ and Γm(R/I) has finite length

regR ExtnR(R/I,R)≤max{ regR ExtnR(R/I′,R),

regR ExtnR(Γm(R/I),R)} ≤ −n

Thus the bound holds for I and for every i; this is the desired contradiction.

The previous result can be also deduced from a result of Hoa and Hyry.
They prove (see [8, Proposition 22]) that if M is a sequentially Cohen-Macaulay
module (see [7] for the definition) then

regR(ExtiR(M,R))≤−i− infM for every i.

Caviglia and Sbarra proved (see [3, 1.10]) that if I is weakly stable then R/I is
sequentially CM, hence Hoa and Hyry’s inequality reduces to

regR(ExtiR(R/I,R))≤−i for every i.
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