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AN ALGORITHM FOR CONSTRUCTING CERTAIN
DIFFERENTIAL OPERATORS IN POSITIVE

CHARACTERISTIC

ALBERTO F. BOIX - ALESSANDRO DE STEFANI
DAVIDE VANZO

Given a non-zero polynomial f in a polynomial ring R with coeffi-
cients in a finite field of prime characteristic p, we present an algorithm
to compute a differential operator δ which raises 1/ f to its pth power.
For some specific families of polynomials, we also study the level of such
a differential operator δ , i.e., the least integer e such that δ is Rpe

-linear.
In particular, we obtain a characterization of supersingular elliptic curves
in terms of the level of the associated differential operator.

1. Introduction

Let R = k[x1, . . . ,xd ] be the polynomial ring over a field k, and letDR be the ring
of k-linear differential operators on R. For every non-zero f ∈ R, the natural
action ofDR on R extends uniquely to an action on R f . In characteristic 0, it has
been proven by Bernstein in the polynomial ring case (cf. [3, Corollary 1.4]) that
R f has finite length as a DR-module. The minimal m such that R f = DR · 1

f m is
related to Bernstein-Sato polynomials (cf. [12, Theorem 23.7, Definition 23.8,
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and Corollary 23.9]), and there are examples in which m > 1 (e.g., [12, Example
23.13]). Remarkably, in positive characteristic, not only R f is finitely generated
as a DR-module [5, Proposition 3.3], but it is generated by 1

f (cf. [2, Theorem
3.7 and Corollary 3.8]). This is shown by proving the existence of a differential
operator δ ∈ DR such that δ (1/ f ) = 1/ f p, i.e., a differential operator that acts
as the Frobenius homomorphism on 1/ f . The main result of this paper exhibits
an algorithm that, given f ∈ R, produces a differential operator δ ∈DR such that
δ (1/ f ) = 1/ f p. We will call such a δ a differential operator associated with f .
Our method is described in full details in Section 3. Moreover, this procedure
has been implemented using the computer algebra system Macaulay2.

Assume that k is a perfect field of prime characteristic p. For e > 1 let Rpe

be the subring of R consisting of all pe-th powers of elements in R, which can
also be viewed as the image of the e-th iteration of the Frobenius endomorphism
F : R→ R. We set Rp0

:= R. It is shown in [17, 1.4.9] that DR is equal to the
increasing union

⋃
e>0 EndRpe (R). Therefore, given δ ∈ DR, there exists e > 0

such that δ ∈ EndRpe (R) but δ /∈ End
Rpe′ (R) for any e′ < e. Given a non-zero

polynomial f ∈ R, we have seen above that there exists δ ∈DR that is associated
with f . We say that f has level e if such δ is Rpe

-linear, and there is no Rpe′
-

linear differential operator δ ′, with e′ < e, that is associated with f .
In Section 4, we study the case when f is a monomial; indeed, in Theorem

4.2 we determine the level of f , and we give an explicit description of the dif-
ferential operator δ associated with f . We also describe explicitly Ie( f pe−1), the
ideal of pe-th roots of f pe−1, where e is the level of f . The ideal Ie( f pe−1) can be
defined as the unique smallest ideal J ⊆ R such that f pe−1 ∈ J[p

e] = ( jpe | j ∈ J)
(see for example [4, Definition 2.2]). In Section 5 we present some families of
polynomials which have level one, and we give some examples. In Section 6 we
focus on Elliptic Curves C ⊆ P2

Fp
, where Fp is the finite field with p elements.

We prove the following characterization:

Theorem 1.1. Let p∈Z be a prime number and let C ⊆ P2
Fp

be an elliptic curve
defined by a cubic f (x,y,z) ∈ Fp[x,y,z]. Then

(i) C is ordinary if and only if f has level one.
(ii) C is supersingular if and only if f has level two.

All the computations in this article are made using the computer software
Macaulay2 [9].

2. Preliminaries

The goal of this section is to review the definitions, notations and results that we
use throughout this paper. Unless otherwise specified, k will denote a perfect
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field of prime characteristic p. Under this assumption, it is known (see [10,
IV, Théorème 16.11.2]) that the ring of k-linear differential operators over R =
k[x1, . . . ,xd ] can be expressed in the following way:

DR := R〈Dxi,t | i = 1, . . . ,d and t > 1〉 , where Dxi,t :=
1
t!

∂ t

∂xt
i
.

This allows us to regard DR as a filtered ring. Indeed, one has that

DR =
⋃
e>0

D(e)
R , where D(e)

R := R〈Dxi,t | i = 1, . . . ,d and 1 6 t 6 pe−1〉 .

Moreover, it is shown by A. Yekutieli (see [17, 1.4.9]) that D(e)
R = EndRpe (R),

hence the previous filtration does not depend on the choice of coordinates.
Now, we fix additional notation; given an α = (a1, . . . ,ad) ∈ Nd we shall

use the following multi-index notation:

xα := xa1
1 · · ·x

ad
d .

With this notation, we set ||xα || := max{a1, . . . ,ad}. By abuse of notation,
we will sometimes also use ||α|| instead of ||xα ||. For any polynomial g ∈
k[x1, . . . ,xd ], we define

||g|| := max
xα∈supp(g)

||xα ||,

where if g = ∑α∈Nd gαxα (such that gα = 0 for all but a finite number of terms)
the support of g is defined as

supp(g) := {xα ∈ R | gα 6= 0} .

Moreover, we also define deg(g) as the total degree of g. Finally, for any ideal
J ⊆ R, J[p

e] will denote the ideal generated by all the pe-th powers of elements
in J, or equivalently the ideal generated by the pe-th powers of any set of gen-
erators of J.

2.1. The ideal of pe-th roots

Due to the central role which the ideal of pe-th roots plays throughout this arti-
cle, we review some well-known definitions and facts (cf. [2, page 465] and [4,
Definition 2.2]).

Definition 2.1. Given g ∈ R, we set Ie(g) to be the smallest ideal J ⊆ R such
that g ∈ J[p

e].
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Remark 2.2. Assume that k is perfect. In our assumptions, the ring R is a free
Rpe

-module, with basis given by the monomials {xα | ||α|| 6 pe− 1}. If we
write

g = ∑
06||α||6pe−1

gpe

α xα ,

then Ie(g) is the ideal of R generated by the elements gα [4, Proposition 2.5].

Remark 2.3. Notice that, if g is a homogeneous polynomial, then, for all e∈N,
Ie(g) is a homogeneous ideal. Indeed, if we write g = ∑06||α||6pe−1 gpe

α xα , then
we can assume without loss of generality that every gpe

α xα has degree equal to
deg(g). But then gα must be homogeneous of degree

deg(gα) =
deg(g)−deg(xα)

pe .

Since Ie(g) is generated by the elements gα ’s, it is a homogeneous ideal.

We have the following easy properties (see [2, Lemma 3.2 and Lemma 3.4]
for details).

Proposition 2.4. Given f ∈ R a non-zero polynomial, and given e > 0, the
following statements hold.

(i) Ie( f ) = Ie+1( f p).

(ii) Ie( f pe−1)⊇ Ie+1( f pe+1−1).

Note that part (ii) of Proposition 2.4 produces the following decreasing chain
of ideals:

R = I0( f p0−1)⊇ I1( f p−1)⊇ I2( f p2−1)⊇ I3( f p3−1)⊇ . . . (1)

It is shown in [2] that under our assumptions this chain stabilizes. The small-
est integer e ∈ N where the chain stabilizes plays a central role in this paper.
We summarize the facts that we will need in the following theorem. See [2,
Proposition 3.5, and Theorem 3.7] for details and proofs.

Theorem 2.5. Let k be a perfect field of prime characteristic p. Let R =
k[x1, . . . ,xd ], and let f ∈ Rr{0}. Define

e := inf
{

s > 1 | Is−1

(
f ps−1−1

)
= Is

(
f ps−1

)}
.

Then, the following assertions hold.
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(i) The chain of ideals (1) stabilizes rigidly, that is e<∞ and Ie−1

(
f pe−1−1

)
=

Ie+s

(
f pe+s−1

)
for any s > 0.

(ii) One has

e = min
{

s > 1 | f ps−p ∈ Is

(
f ps−1

)[ps]
}
,

and e 6 deg( f ).

(iii) There exists δ ∈ D(e)
R such that δ ( f pe−1) = f pe−p, or equivalently such

that δ (1/ f ) = 1/ f p.

(iv) There is no δ ′ ∈ D(e′)
R , with e′ < e, such that δ ′(1/ f ) = 1/ f p.

Motivated by Theorem 2.5, we make the following definition.

Definition 2.6. For a non-zero polynomial f ∈ R, we call the integer e de-
fined in Theorem 2.5 the level of f . Also, we will say that δ ∈ D(e)

R such that
δ ( f pe−1) = f pe−p, or equivalently such that δ (1/ f ) = 1/ f p, is a differential
operator associated with f .

3. The algorithm

Let k be a computable perfect field of prime characteristic p (e.g., k is finite).
Let R = k[x1, . . . ,xd ], and let f ∈ R be a non-zero polynomial. We now describe
in details the algorithm that computes a differential operator δ ∈ DR associated
with f .

• Step 1. Find the smallest integer e ∈ N such that Ie( f pe− p) = Ie( f pe−1).
There is an implemented algorithm for the computation of the level of a
given polynomial f ∈ R. Here follows a description:

Algorithm 3.1. Let k be a computable perfect field of prime characteristic
p (e.g., finite), let R = k[x1, . . . ,xd ], and let f ∈ R. These data act as the
input of the procedure. Initialize e = 0 and f lag = true. While f lag has
the value true, execute the following commands:

(i) Assign to e the value e+1, and to q the value pe.

(ii) Compute Ie( f q−1).

(iii) Assign to J the value Ie
(

f q−1
)[q].

(iv) If f q−p ∈ J, then f lag = f alse; otherwise, come back to step (i).
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At the end of this method, return the pair
(
e, Ie

(
f pe−1

))
. Such e is exactly

the e described in Theorem 2.5, i.e., the level of f .

Remark 3.2. Since the level e is always at most deg( f ), we can ensure
that the While loop in Algorithm 3.1 finishes after, at most, deg( f ) itera-
tions. Notice that, a priori, there is a black box in this algorithm, namely
the computation of Ie( f q−1) at each step. However, the calculation of the
ideal of pe-th roots is well known (cf. [14, Section 6]).

Remark 3.3. As pointed out by E. Canton in [7, Definition 2.3], the so-
called non-F-pure ideal of f introduced by O. Fujino, K. Schwede and
S. Takagi in [8, Definition 14.4] turns out to be Ie

(
f pe−1

)
, where e is the

level of f (see [8, Remark 16.2]). Therefore, Algorithm 3.1 provides a
procedure to calculate the non-F-pure ideal.

• Step 2. For e∈N as in Step 1 write f pe−1 = ∑
n
i=1 cpe

i µi, with {µ1, . . . ,µn}
the basis of R as an Rpe

-module consisting of all the monomials xa1
1 · · ·x

ad
d ,

ai 6 pe−1 for all i = 1, . . . ,d.

Claim 3.4. For all i = 1, . . . ,n there exists δi ∈ D(e)
R such that δi(µ j) = 1

if i = j and δi(µ j) = 0 if i 6= j.

Proof. For i ∈ {1, . . . ,n} and µi = xa1
1 · · ·x

ad
d we consider the monomial

νi := xpe−1−a1
1 · · ·xpe−1−ad

d , which is an element of R because ak 6 pe−1
for all k = 1, . . . ,d. Notice that νiµ j = (x1 · · ·xd)

pe−1 if and only if i = j.
Then set

δi :=

(
d

∏
k=1

Dxk,pe−1

)
·νi ∈ D(e)

R .

Notice that δi(µi)= 1, and that if µ j = xb1
1 · · ·x

bd
d , then δi(µ j)= 0 if bk < ak

for some k ∈ {1, . . . ,d}. So let us assume that ak 6 bk 6 pe− 1 for all
k = 1, . . . ,d, and that there is s ∈ {1, . . . ,d} such that as < bs. Note that
by definition of νi we have that νiµ j = xr1

1 · · ·x
rd
d , with pe 6 rs 6 2pe−2,

so that we can write rs = pe +n for some integer n with 0 6 n 6 pe−2.

Subclaim 3.5. The coefficient of Dxs,pe−1(νiµ j) is(
pe +n
pe−1

)
≡ 0 mod p.

Proof. As a consequence of a theorem proved by Lucas in [15, pp. 51–
52], it is enough to check that at least one of the digits of the base p
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expansion of pe− 1 is greater than the corresponding digit in the base p
expansion of pe +n. The base p expansion of pe−1 is given by

pe−1 = (p−1)(1+ p+ · · ·+ pe−1) = (p−1)p0 + · · ·+(p−1)pe−1,

so that the subclaim is proved unless the first e digits of pe +n are p−1
as well. But in this case, since pe +n > pe−1 we would get

pe +n > (p−1)p0 +(p−1)p1 + · · ·+(p−1)pe−1 + pe = 2pe−1,

a contradiction since n 6 pe−2.

The Subclaim shows that Dxs,pe−1(νiµ j) = 0 for all µ j with j 6= i. There-
fore, using that δi ∈ D(e)

R = EndRpe (R), we get

δi( f pe−1) = δi

(
n

∑
j=1

cpe

j µ j

)
=

n

∑
j=1

cpe

j δi(µ j) = cpe

i .

• Step 3. Since 1 ∈ D(e)
R , for e ∈ N as in Step 1 we have

f pe−p ∈ D(e)
R ( f pe−p) = Ie( f pe−p)[p

e] = Ie( f pe−1)[p
e] = (c1, . . . ,cn)

[pe].

In particular there exist α1, . . . ,αn ∈ R such that f pe−p = ∑
n
i=1 αic

pe

i . Con-
sider δi ∈ D(e)

R as in Step 2, so that δi( f pe−1) = cpe

i , and set

δ :=
n

∑
i=1

αiδi ∈ D(e)
R .

With this choice we have

δ ( f pe−1) = δ

(
n

∑
j=1

cpe

j µ j

)
=

n

∑
i, j=1

cpe

j αiδi(µ j) =
n

∑
i=1

αic
pe

i = f pe−p,

and using that δ ∈ D(e)
R we finally get

δ

(
1
f

)
= δ

(
f pe−1

f pe

)
=

1
f pe δ

(
f pe−1

)
=

f pe−p

f pe =
1
f p .
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4. The monomial case

Throughout this section, let k be a perfect field and let R = k[x1, . . . ,xd ]. We now
analyze the case when f ∈ R is a monomial. First we show a lower bound for
the level of f .

Lemma 4.1. Let f = xa1
1 · · ·x

ad
d be a monomial in R = k[x1, . . . ,xd ], with ai > 0

for all i = 1, . . . ,d. Let δ ∈ D(e)
R be such that δ (1/ f ) = 1/ f p. Then, setting

a := || f ||= max{ai | 1 6 i 6 d}, we have

e >
⌈
logp(a)

⌉
+1.

Proof. It suffices to show that for t :=
⌈
logp(a)

⌉
we have It( f pt−p)) It( f pt−1).

This is because if the chain

It( f pt−pt−1
)⊇ It( f pt−pt−2

)⊇ . . .⊇ It( f pt−p)) It( f pt−1)

stabilizes before such step, then it would be stable at it as well, and the smallest
s such that Is( f ps−p) = Is( f ps−1) is precisely the level of f (see Theorem 2.5).
Notice that t = 0 if and only if ai = 1 for all i. For such a monomial the Lemma
is trivially true. So let us assume that t > 1, or equivalently that ai > 2 for at
least one i ∈ {1, . . . ,d}. Let

ji := min{ j ∈ N | jpt > ai},

and notice that ji 6 ai for all i, and by choice of t we have that ji > 2 for at least
one i, say j1 > 2. Then

f pt−p = xpt a1−pa1
1 · · ·xpt ad−pad

d = (xa1− j1
1 · · ·xad− jd

d )pt · x j1 pt−pa1
1 · · ·x jd pt−pad

d .

Since ( ji−1)pt < ai by definition of ji, we have ji pt− pai < pt +ai− pai < pt .
This shows that It( f pt−p) = (xa1− j1

1 · · ·xad− jd
d ). On the other hand:

f pt−1 = xpt a1−a1
1 · · ·xpt ad−ad

d = (xa1−1
1 · · ·xad−1

d )pt · xpt−a1
1 · · ·xpt−ad

d ,

which makes sense because pt > ai for all i. This shows that It( f pt−1) =
(xa1−1

1 · · ·xad−1
d ), and because j1 > 2 we have

It( f pt−p) = (xa1− j1
1 · · ·xad− jd

d )⊇ (xa1−2
1 · · ·xad−1

d )) (xa1−1
1 · · ·xad−1

d ) = It( f pt−1).

Theorem 4.2. Let f = xa1
1 · · ·x

ad
d be a monomial in k[x1, . . . ,xd ], with ai > 0

for all i = 1, . . . ,d. Let a := || f || = max{ai | 1 6 i 6 d}. Then f has level
e :=

⌈
logp(a)

⌉
+1, and Ie( f pe−1) = (xa1−1

1 · · ·xad−1
d ). Furthermore,

δ :=
d

∏
i=1

(
xpe−pai

i ·Dxi,pe−1 · xai−1
i

)
∈ D(e)

R

is a differential operator associated with f .
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Proof. Set e :=
⌈
logp(a)

⌉
+ 1. During the proof of Lemma 4.1 we already

proved that Ie( f pe−1) = (xa1−1
1 · · ·xad−1

d ); keeping this fact in mind, it is enough
to check that δ ( f pe−1) = f pe−p. Indeed, we have

δ ( f pe−1) = δ

(
xpea1−a1

1 · · ·xpead−ad
d

)
=
(

xa1−1
1 · · ·xad−1

d

)pe

δ

(
xpe−a1

1 · · ·xpe−ad
d

)

=
d

∏
i=1

(
xpeai−pai

i ·Dxi,pe−1(x
pe−1
i )

)
= xpea1−pa1

1 · · ·xpead−pad
d = f pe−p,

and therefore the proof is completed.

Regarding the level e obtained in Theorem 4.2, one might ask whether, given
any non-zero f ∈ R, its level would always be bounded above by dlogp(|| f ||)e+
1. Unfortunately, this is not the case, as the following example illustrates.

Example 4.3. Consider f := xy3 + x3 ∈ F2[x,y]. In this case, one can check
with Macaulay2 that the level of f is 4, while dlog2(|| f ||)e+1 = 3. In fact, the
level is even strictly greater than dlog2(deg( f ))e+1 = 3.

The monomial in Theorem 4.2 is assumed to be of the form xa1
1 · · ·x

ad
d . Us-

ing a suitable linear change of coordinates, we immediately get the following
Corollary, which includes the general monomial case.

Corollary 4.4. Let n 6 d, let f = `a1
1 · · ·`an

n be a product of powers of linear
forms which are linearly independent over k, and let a := max{ai | 1 6 i 6
n}. Then f has level e =

⌈
logp(a)

⌉
+ 1, the ideal of pe-th roots is Ie( f pe−1) =

(`a1−1
1 · · ·`an−1

n ) and

δ :=
n

∏
i=1

(
`pe−pai

i ·D`i,pe−1 · `ai−1
i

)
∈ D(e)

R

is a differential operator associated with f . Here, if `i = ∑
d
j=1 λi jx j, then the

differential operator D`i,pe−1 is defined as ∑
d
j=1 λi jDx j,pe−1.

5. Families of level one

Polynomials of level one, that is polynomials f such that I1( f p−1) = R, are
somehow special. For instance, let f ,g ∈ R and let δ ∈ DR be associated with
f . Assume that e = 1, then for δ ′ := δ

(
gp−1 ·

)
we get

δ
′
(

g
f

)
= δ

(
gp

f

)
= gp ·δ

(
1
f

)
=

(
g
f

)p

.
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The authors do not know whether, for any choice of f ,g∈R, f 6= 0, there always
exists δ ′ ∈ DR such that δ ′(g/ f ) = (g/ f )p. In fact, when δ ∈ D(e)

R for e > 2,
the best we can get is δ ′ (g/ f ) = gpe

/ f p, with δ ′ := δ
(
gpe−1 ·

)
. On the other

hand, for any f ∈R we have R f ∼=DR · 1
f and therefore, for any g∈R, there exists

δ ′ ∈ DR such that δ ′ (1/ f ) = gp/ f p. In fact it is enough to set δ ′ := gp ·δ .
We will now exhibit some families of polynomials that have level one, to-

gether with some examples. However, before doing so, we want to single out the
following elementary statement, because we will be using it repeatedly through-
out this section. It may be regarded as a straightforward sufficient condition
which ensures that a polynomial has level one. In this section, unless otherwise
stated, k will denote a perfect field and R = k[x1, . . . ,xd ] will be a polynomial
ring over k.

Lemma 5.1. Let f ∈ R be a non-zero polynomial, write

f pe−1 = ∑
06||α||6pe−1

f pe

α xα ,

and assume that fβ is a unit for some 0 6 ||β ||6 pe−1 and some e > 1. Then,
f has level one.

Proof. By definition, we have that Ie( f pe−1) = R; on the other hand, we know
that I1( f p−1)⊇ Ie( f pe−1). In this way, combining these two facts it follows that
I1( f p−1) = R, and therefore f has level one.

We can give an easy but useful characterization of homogeneous polynomi-
als of level one.

Lemma 5.2. Let f ∈ R be a homogeneous non-zero polynomial. Let {µ j}pd

j=1 :=
{xα | ||α|| 6 p− 1} be the monomial basis of R as a Rp-module. Then f has
level one if and only if µ j ∈ supp( f p−1) for some j = 1, . . . , pd .

Proof. Write
f p−1 = ∑

06||α||6p−1
f p
α xα .

Note that, since f is homogeneous, I1( f p−1) is a homogeneous ideal by Remark
2.3. If f has level one, then I1( f p−1) = ( fα | 0 6 ||α|| 6 p−1) = R, therefore
there exists at least one coefficient fβ that is outside of the irrelevant maximal
ideal m = (x1, . . . ,xd). Write fβ = λ + r, with λ ∈ k and r ∈ m. Then, we can
write f p−1 = λ pxβ + h for some h ∈ R. Also, since {xα | 0 6 ||α|| 6 p− 1}
is a basis of R as Rp-module, there is no cancellation between λ pxβ and h.
Thus, µ j = xβ ∈ supp( f p−1). Conversely, if µ j = xβ ∈ supp( f p−1) for some
0 6 ||β ||6 p−1, then we can write again f p−1 = λ pxβ +h for some λ ∈ k and
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some h ∈ R. Also, we can assume that xβ /∈ supp(h). Then the coefficient f p
β

of xβ in the expansion of f p−1 must be λ p + rp = (λ + r)p for some r ∈m, and
thus λ + r ∈ I1( f p−1). Since the latter is homogeneous (here we are using again
Remark 2.3), we have in particular that λ ∈ I1( f p−1), which implies I1( f p−1) =
R, and therefore f has level one.

Proposition 5.3. Let f ∈ R be a non-zero polynomial whose support contains a
squarefree term involving a variable that does not appear in any other term of
the support of f . Then f has level one.

Proof. Without loss of generality we can assume that x1 · · ·xn ∈ supp( f ), and
that x1 does not appear in any other term of supp( f ). Write f = λ0x1 · · ·xn +

∑
s
i=1 λimi, where mi = xαi and αi ∈ Nd are of the form (0,αi2, . . . ,αid) for i =

1, . . . ,s. Then,

f p−1 = ∑
i0+i1+···+is=p−1

(
p−1

i0, . . . , is

)
λ

i0
0 λ

i1
1 · · ·λ

is
s (x1 · · ·xn)

i0mi1
1 · · ·m

is
s .

Notice that in order for a term in the support of f p−1 to be divisible by xp−1
1 it is

necessary that i0 = p−1, in which case i1 = . . .= is = 0. Hence xp−1
1 · · ·xp−1

n is
in the support of f p−1, appearing with coefficient λ

p−1
0 6= 0. Then we can write

f p−1 = λ
p−1
0 xp−1

1 · · ·xp−1
n + ∑

0 6 ||α||6 p−1
α1 6= p−1

f p
α xα ,

and the Proposition now follows from Lemma 5.1, since λ
p−1
0 is a unit.

Example 5.4. Let f = x2 + y2 + xyz ∈ Fp[x,y,z]. Since z appears in the square
free term xyz and nowhere else in the support of f we have that f has level
one by Proposition 5.3. In fact, δ := Dx,p−1Dy,p−1Dz,p−1 ∈D(1)

R is a differential
operator associated with f .

Proposition 5.5. Let f ∈R be a non-zero polynomial of degree n such that every
element of its support is a squarefree monomial. Then f has level one.

Proof. Without loss of generality we can assume that x1 · · ·xn ∈ supp( f ). We
want to show that we can apply Lemma 5.1. Let f = λ0x1 · · ·xn +∑

s
i=1 λimi,

where the mi’s are squarefree monomials of degrees di := deg(mi)6 n, that we
can assume different from x1 · · ·xn. Then

f p−1 = ∑
i0+i1+···+is=p−1

(
p−1

i0, . . . , is

)
λ

i0
0 λ

i1
1 · · ·λ

is
s (x1 · · ·xn)

i0mi1
1 · · ·m

is
s .
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The choice i0 = p−1, i1 = . . .= is = 0 gives the monomial λ
p−1
0 (x1 · · ·xn)

p−1,
and we want to show that this choice of indices is the only one that gives
such a monomial. By way of contradiction, assume that (x1 · · ·xn)

i0mi1
1 · · ·mis

s =
(x1 · · ·xn)

p−1, then necessarily each mi divides x1 · · ·xn, because they are square-
free. Since we are assuming that none of the mi’s is equal to x1 · · ·xn, we must
have that deg(mi)< n. But then

deg
(
(x1 · · ·xn)

i0mi1
1 · · ·m

is
s

)
= ni0 +d1i1 + · · ·+dsis

< n(i0 + i1 + · · ·+ is) = n(p−1),

which is a contradiction because (x1 · · ·xn)
i0mi1

1 · · ·mis
s = (x1 · · ·xn)

p−1, and the
degree of the latter is n(p−1). Therefore if we write

f p−1 = ∑
06||α||6p−1

f p
α xα ,

then the coefficient of xp−1
1 · · ·xp−1

n is precisely λ
p−1
0 , which is a unit. Using

Lemma 5.1, the Proposition now follows.

Example 5.6. Let R = Fp[Xi j]16i, j6n be a polynomial ring in n2 variables and
let f = det(Xi j). Because of Proposition 5.5 f has level one, since its support
consists only of squarefree monomials.

Proposition 5.7. Let f ∈ R = k[x1, . . . ,xd ] be a homogeneous quadric. Then f
has level one unless f is the square of a linear form, in which case f has level
two.

Proof. If f is a power of a linear form, then f has level two by Corollary 4.4.
Otherwise, if p 6= 2 there exists a linear change of variables that diagonalizes f
(cf. [16, Chapter IV, Proposition 5]). That is, we can assume that, after a linear
change of coordinates, f = x2

1+ · · ·+ax2
n, where 26 n6 d and a is either 1 or an

element of k which is not a square. Notice that xp−1
1 xp−1

2 appears with coefficient
λ :=

(p−1
p−1

2

)
∈ kr {0} if n > 3, and with coefficient a(p−1)/2

(p−1
p−1

2

)
∈ kr {0} if

n = 2. Therefore f has level one by Lemma 5.2. Finally, if p = 2 and f is not
a power of a linear form, then we can assume that x1x2 appears with non-zero
coefficient in f p−1 = f , and we conclude using again Lemma 5.2.

Proposition 5.8. Let f = xt
1+ · · ·+xt

d ∈ R be a diagonal hypersurface of degree
t > 1. If t 6 min{d, p} and p≡ 1 (mod t), then f has level one.
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Proof. Our assumptions on t,d and p allow us to expand f p−1 in the following
manner:

f p−1 =
(p−1)!((

p−1
t

)
!
)t xp−1

1 · · ·xp−1
t + ∑

i1+···+id=p−1
(i1,...,it)6=((p−1)/t,...,(p−1)/t)

(p−1)!
i1! · · · id!

xti1
1 · · ·x

tid
d .

Since (p−1)!

(( p−1
t )!)

t ∈ kr{0}, the above equality shows that xp−1
1 · · ·xp−1

t appears in

supp( f p−1) with non-zero coefficient, hence f has level one by Lemma 5.2.

The assumptions p≡ 1 (mod t) and t 6min{d, p} in Proposition 5.8 cannot
be removed in general, as the following examples illustrate.

Example 5.9. Let R := F5[x,y,z] and f := x3 + y3 + z3. One can check using
Macaulay2 that f has level two. Notice that, in this case 3= deg( f )6min{3,5}
and 5≡ 2 (mod 3).

On the other hand, consider now R := F7[x,y] and f := x3 + y3. One can
check using Macaulay2 that f has level two. In this case 3 = deg( f ) > 2 =
min{2,7} and p = 7≡ 1 (mod 3).

The diagonal hypersurface considered in Proposition 5.8 is of the form xt
1 +

· · ·+ xt
d ; using a suitable linear change of coordinates, we immediately get the

following Corollary, which includes as a particular case Proposition 5.8.

Corollary 5.10. Let n 6 d, let f = `t
1 + · · ·+ `t

n be a diagonal hypersurface of
degree t > 1 made up by linear forms `1, . . . , `n which are linearly independent
over the field k. If t 6 min{n, p} and p≡ 1 (mod t), then f has level one.

Before going on, we want to review the following notion (see [12, page
243]):

Definition 5.11. A polynomial f ∈ R is said to be regular provided

Tj( f ) :=
(

f ,
∂ f
∂x1

, . . . ,
∂ f
∂xd

)
= R,

where Tj( f ) denotes the Tjurina ideal attached to f .

In characteristic zero, a polynomial is regular if and only if its Bernstein-
Sato polynomial is b f (s) = s+1 [12, Theorem 23.12]. In this case, R f is gener-
ated by 1/ f as a D-module.

Proposition 5.12. Let k be a perfect field of characteristic 2; moreover, we also
have to assume that f ∈ k[x1, . . . ,xd ] is regular. Then, f has level one.
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Proof. Since f is regular, there are r0,r1, . . . ,rd ∈ R such that

1 = r0 f + r1
∂ f
∂x1

+ · · ·+ rd
∂ f
∂xd

.

In this way, setting

δ := r0 +
d

∑
j=1

∂

∂x j

it follows that δ ( f ) = 1 and therefore f has level one.

Remark 5.13. A very easy way to produce polynomials which are simultane-
ously regular and of level one in arbitrary prime characteristic works as follows.
Let k be a perfect field of prime characteristic p, let R= k[x1, . . . ,xd ], and assume
that f ∈ R is a non-zero polynomial of the form f = λxi+g, for some 1 6 i 6 d,
some λ ∈ kr{0}, and some g ∈ R such that g ∈ k[x1, . . . ,xi−1,xi+1, . . . ,xd ].

Then, f is regular and of level one; indeed, the fact that f is of level one
follows directly from Proposition 5.3.

6. Elliptic Curves

Let p∈Z be a prime and let C ⊆ P2
Fp

be an elliptic curve defined by an homoge-
neous cubic f (x,y,z) ∈ Fp[x,y,z]. We want to review here the following notion
(see [11, 13.3.1]).

Definition 6.1. C is said to be ordinary if the monomial (xyz)p−1 appears in
the expansion of f p−1 with non-zero coefficient. Otherwise, C is said to be
supersingular.

The general form of a cubic defining an elliptic curve is the following

f = y2z+a1xyz+a3yz2− x3−a2x2z−a4xz2−a6z3,

where a1, . . . ,a6 ∈ Fp. When p 6= 2,3, the expression above can be further sim-
plified to

f = y2z− x3 +axz2 +bz3,

for a,b ∈ Fp (see [11, 3.3.6] for details). We are now interested in computing
the level of elliptic curves C. We are mainly interested in upper bounds, since
it is easy to see from Lemma 5.2 that any ordinary elliptic curve has level one,
and that any supersingular elliptic curve has level at least two. First, we explore
the low characteristic cases, where the list of possibilities (up to isomorphism)
is very limited.
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Proposition 6.2. Let C ⊆ P2
Fp

be a supersingular elliptic curve defined by a
cubic f ∈ Fp[x,y,z]. If p = 2 or p = 3, then f has level two.

Proof. Set D := Dx,p2−1Dy,p2−1Dz,p2−1. By [11, 13.3.2 and 13.3.3] there are
only the following two cases, up to isomorphism:

p Elliptic curve Differential operator

2 x3 + y2z+ yz2 y2Dx3z+ z2Dx3y+ x2Dxyz2

3 x3− xz2− y2z
(x6z3− x3y6)Dx4z5+

+(x9 + x3z6 + y6z3)Dxy8 + y3z6Dx4y5

The table above is exhibiting a differential operator of level two for each poly-
nomial, therefore the level is at most two in all such cases. We have already
noticed that C is ordinary if and only if f has level one. This shows that when
p = 2 or p = 3, C is supersingular if and only if f has level two.

Recall that R = Fp[x,y,z] is a free Rp2
-module with basis given by {xryszt |

0 6 r,s, t 6 p2−1}. For a polynomial g ∈ Fp[x,y,z] consider

g = ∑
06r,s,t6p2−1

(c(r,s, t))p2
xryszt ,

and recall that by Proposition 2.4, with this notation, I2(g) is the ideal generated
by the elements c(r,s, t), for 0 6 r,s, t 6 p2−1.

Remark 6.3. If f ∈ Fp[x,y,z] is a cubic and g = f p2−1, then for any 0 6 r,s, t 6
p2−1 one has

deg(c(r,s, t))6

⌊
deg( f p2−1)

p2

⌋
=

⌊
3(p2−1)

p2

⌋
= 2.

In particular, I2( f p2−1) =
(
c(r,s, t) | 0 6 r,s, t 6 p2−1

)
is generated in degree

at most two.

For the rest of the section, we will denote I1( f p−1) and I2( f p2−1) simply by
I1 and I2.
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6.1. Preliminary computations

The purpose of this part is to single out some technical facts which will be used
for proving the main result of this section; namely, Theorem 6.9.

Lemma 6.4. Let f = y2z− x3 +axz2 +bz3 ∈ Fp[x,y,z], where p 6= 2,3. Then

c(0, p2−2, p2−1) = y.

Proof. By the Multinomial Theorem, a monomial in the expansion of f p2−1 will
have the form (y2z)h(−x3)i(axz2) j(bz3)k, where h+ i+ j+k = p2−1. Looking
at the coefficient of yp2−2zp2−1 in such expansion, by degree considerations we
only have three possibilities:

y2hx3i+ jzh+2 j+3k =


xp2 · yp2−2zp2−1

yp2 · yp2−2zp2−1

zp2 · yp2−2zp2−1

Since p2− 2 is not even, there is no choice of h that realizes the first and the
third cases. So we are left with the second, which is achieved only by the choice
h = p2− 1, i = j = k = 0. This shows that the coefficient of yp2−2zp2−1 in the
expansion of f p2−1 is precisely yp2

, and the Lemma follows.

Before going on, we need to review the following classical result, due to
Legendre, because it will play some role later in this section (see Proof of
Lemma 6.6). We refer to [1, page 8] for a proof.

Theorem 6.5 (Legendre). Let n > 0 be a non-negative integer, let p be a prime
number, and let σp(n) be the sum of the base p digits of n. Then,

vp (n!) =
n−σp(n)

p−1
,

where, given any non-negative integer m > 0,

vp (m) := max{t ≥ 0 | pt divides m}.

Lemma 6.6. Let p 6= 2 be a prime. Then,

λ :=
(p2−1)!((

p2−1
2

)
!
)2 6= 0 (mod p).
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Proof. On one hand, p2−1 = (p−1)(1+ p) is the base p expansion of p2−1;
on the other hand, since p 6= 2 it follows that

p2−1
2

=

(
p−1

2

)
(1+ p)

is the base p expansion of (p2− 1)/2. Keeping in mind these two facts it fol-
lows, using Legendre’s Theorem, that

vp (λ ) = vp
(
(p2−1)!

)
−2vp

((
p2−1

2

)
!
)

=
p2−1−2(p−1)

p−1
−2 ·

 p2−1
2 −2

(
p−1

2

)
p−1

= p−1− (p−1) = 0,

hence p does not divide λ and therefore we can ensure that λ 6= 0 (mod p).

Lemma 6.7. Let p 6= 2,3 be a prime, and let f = y2z− x3 ∈ Fp[x,y,z]. Then,
I1 = I2 = (x,y). In particular, f has level two.

Proof. Consider the expansion

f p2−1 =
p2−1

∑
i=0

(p2−1)!
i!(p2−1− i)!

y2izix3(p2−1−i).

For i = (p2−1)/2 we obtain the monomial

λyp2−1z(p2−1)/2x3(p2−1)/2 = λxp2 ·
(

x(p2−3)/2yp2−1z(p2−1)/2
)
,

where λ = (p2−1)!((
p2−1

2

)
!
)2 6= 0 (indeed, this follows by Lemma 6.6). Because of the

term zi in the expansion above, the choice i = (p2− 1)/2 is clearly the only
one that gives the monomial x(p2−3)/2yp2−1z(p2−1)/2 of the basis of R as an Rp2

-
module. Therefore c

(
p2−3

2 , p2−1, p2−1
2

)
= λ 1/p2

x = λx, and thus x ∈ I2. In
addition, by Lemma 6.4 we always have y ∈ I2. Therefore (x,y) ⊆ I2. On the
other hand, consider the expansion

f p−1 =
p−1

∑
j=0

(p−1)!
j!(p2−1− j)!

y2 jz jx3(p−1− j).

We claim that either 2 j > p or 3(p− 1− j) > p. In fact, suppose j < p/2,
or equivalently j 6 (p− 1)/2, because j is an integer. Then 3(p− 1− j) >



256 ALBERTO F. BOIX - ALESSANDRO DE STEFANI - DAVIDE VANZO

3(p−1)/2 > p since p > 5 by assumption. This shows that all the coefficients
c(r,s, t)p in the expansion of f p−1 = ∑06r,s,t6p−1 c(r,s, t)pxryszt are contained
in (x,y)[p], and thus I1 = (c(r,s, t) | 0 6 r,s, t 6 p− 1) ⊆ (x,y). Therefore the
Lemma follows from the chain of inclusions (x,y)⊆ I2 ⊆ I1 ⊆ (x,y).

Lemma 6.8. Let p 6= 2,3 be a prime and let C be a supersingular elliptic curve
defined by f (x,y,z) = y2z− x3 +axz2 +bz3. If either a = 0 or b = 0, then f has
level two.

Proof. Notice that, since C is supersingular, we have Fp[x,y,z] = R ) I1 ⊇ I2,
and we want to show that I1 = I2. Also, by Lemma 6.4 we always have y ∈ I2. If
a = b = 0, then Lemma 6.7 ensures that I1 = I2 = (x,y). Now assume a 6= 0 and
b = 0. We claim that c

(
p2−1

2 , p2−1, p2−3
2

)
= µz, for some µ 6= 0. A monomial

in the expansion of f p2−1 will have the form (y2z)h(−x3)i(axz2) j for h+ i+ j =

p2−1. Looking at the terms involving x
p2−1

2 yp2−1z
p2−3

2 the possibilities are

y2hx3i+ jz2 j+h =


xp2 · x

p2−1
2 yp2−1z

p2−3
2

yp2 · x
p2−1

2 yp2−1z
p2−3

2

zp2 · x
p2−1

2 yp2−1z
p2−3

2

The second case is not possible, since 2p2− 1 is not even and hence here is
no h that gives it. This forces h = (p2− 1)/2, and hence the first case is also
not possible, since for such an h the exponent of z must be at least (p2− 1)/2.

Canceling yp2−1z
p2−1

2 we are left with

x3iz2 j = x
p2−1

2 zp2−1

This implies that j = p2−1
2 and i= 0. Therefore the coefficient of x

p2−1
2 yp2−1z

p2−3
2

in the expansion of f p2−1 is

c
(

p2−1
2

, p2−1,
p2−3

2

)p2

= a
p2−1

2 zp2
= (µz)p2

,

where µ =

(
a

p2−1
2

)1/p2

6= 0. This shows the claim. With similar considerations,

one can see that

c
(

p2−3
2

, p2−1,
p2−1

2

)
= x.

This gives (x,y,z) ⊆ I2 ⊆ I1 ( R, which forces I1 = I2 because I1 is a proper
homogeneous ideal of R = Fp[x,y,z], hence I1 ⊆ (x,y,z). Finally, if a = 0 and
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b 6= 0 the arguments are completely analogous to the case a 6= 0, b = 0. Here
we get

c
(

p2−3
2

, p2−1,
p2−1

2

)
= x and c

(
0, p2−1, p2−2

)
= λ z

for some λ 6= 0. Therefore (x,y,z) ⊆ I2 ⊆ I1 ( R, which once again forces
I1 = I2.

6.2. Main result

Next statement is the main result of this section.

Theorem 6.9. Let p∈Z be a prime number and let C ⊆ P2
Fp

be an elliptic curve
defined by a cubic f (x,y,z) ∈ Fp[x,y,z]. Then

(i) C is ordinary if and only if f has level one.
(ii) C is supersingular if and only if f has level two.

Proof. Part (i) follows from Lemma 5.2, which also shows that if f has level at
least two, then C is supersingular. So it is left to show that if C is supersingular,
then f has level precisely equal to two. By Proposition 6.2 we only have to
consider the cases where p 6= 2,3, thus we can assume that f is of the form

f (x,y,z) = y2z− x3 +axz2 +bz3.

for a,b ∈ Fp. Furthermore, by Lemma 6.8 we can assume that ab 6= 0. First we

claim that c
(

p2−3
2 , p2−1, p2−1

2

)
= x+λ z, where

λ =

p2−7
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−3
2 −3i

)
!(2i+1)!

(−1)ia
p2−3

2 −3ib2i+1 ∈ Fp.

In fact a general monomial in the expansion of f p2−1 can be written in the form

(y2z)h(−x3)i(axz2) j(bz3)k, and by looking at terms that involve x
p2−3

2 yp2−1z
p2−1

2 ,
by degree considerations we have three possibilities:

y2hx3i+ jzh+2 j+3k =


xp2 · x

p2−3
2 yp2−1z

p2−1
2

yp2 · x
p2−3

2 yp2−1z
p2−1

2

zp2 · x
p2−3

2 yp2−1z
p2−1

2
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The second case cannot be realized since 2p2−1 is not even, hence we neces-
sarily have h = p2−1

2 . This leaves two cases:

x3i+ jz2 j+3k =

{
xp2 · x

p2−3
2

zp2 · x
p2−3

2

The first one can only happen when h = i = p2−1
2 and j = k = 0, giving the

monomial

(y2z)
p2−1

2 (−x3)
p2−1

2 = (−1)
p2−1

2 xp2 · x
p2−3

2 yp2−1z
p2−1

2 = xp2 · x
p2−3

2 yp2−1z
p2−1

2 ,

because p2 ≡ 1 (mod 4) . For the second case i, j and k will have to satisfy j = p2−3
2 −3i

k = 2i+1

As both j and k must be non-negative, we have

0 6 i 6
⌊

p2−3
6

⌋
=

p2−7
6

,

because p2≡ 1 (mod 6). In addition, we see that the coefficient in the expansion,
under these conditions, is precisely

(p2−1)!(
p2−1

2

)
!i!
(

p2−3
2 −3i

)
!(2i+1)!

(−1)ia
p2−3

2 −3ib2i+1,

proving that

c
(

p2−3
2

, p2−1,
p2−1

2

)p2

= xp2
+λ zp2

= (x+λ
1/p2

z)p2
,

for λ as above. Since we are working over Fp, we finally have λ 1/p2
= λ ,

showing the claim. With similar arguments, one can see that

c
(

p2−1
2 , p2−3, p2+1

2

)
= ax+µz,

c
(

p2−7
2 , p2−1, p2+3

2

)
=−ax+ τz,

c
(
0, p2−1, p2−2

)
= θx+b

p2−1
2 z,
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where θ ∈ Fp,

µ =

p2−1
6

∑
i=0

(p2−1)!(
p2−3

2

)
!i!
(

p2−1
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1 ∈ Fp,

and

τ =

p2−7
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−7
2 −3i

)
!(2i+3)!

(−1)ia
p2−7

2 −3ib2i+3 ∈ Fp.

Since I2 = (c(r,s, t) | 0 6 r,s, t 6 p2−1), in particular we have

(x+λ z,ax+µz,−ax+ τz,θx+b
p2−1

2 z)⊆ I2.

Claim 6.10. The following matrix has full rank:
a µ

1 λ

−a τ

θ b
p2−1

2

 .
In fact if det

[
a µ

1 λ

]
6= 0 then we are done, otherwise we have µ = aλ . Note

that

µ =

p2−1
6

∑
i=0

(p2−1)!(
p2−3

2

)
!i!
(

p2−1
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1

=

 p2−7
6

∑
i=0

(p2−1)!(
p2−3

2

)
!i!
(

p2−1
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1



+(−1)
p2−1

6
(p2−1)!(

p2−3
2

)
!
(

p2−1
6

)
!
(

p2+2
3

)
!
b

p2+2
3

=

 p2−7
6

∑
i=0

(p2−1)!(
p2−3

2

)
!i!
(

p2−1
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1



+
3(p2−1)!(

p2−1
2

)
!
(

p2−7
6

)
!
(

p2+2
3

)
!
b

p2+2
3 ,
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where the last equality comes from the fact that p2 ≡ 1 (mod 12) and by rear-
ranging the binomial coefficients. Also,

aλ =

p2−7
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−3
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1.

Using that µ = aλ , we get

3(p2−1)!(
p2−1

2

)
!
(

p2−7
6

)
!
(

p2+2
3

)
!
b

p2+2
3 =

p2−7
6

∑
i=1

[
1

p2−1
2

− 1
p2−1

2 −3i

]
(p2−1)!(

p2−3
2

)
!i!
(

p2−3
2 −3i

)
!(2i+1)!

(−1)ia
p2−1

2 −3ib2i+1

=

p2−7
6

∑
i=1

−3(p2−1)!(
p2−1

2

)
!(i−1)!

(
p2−1

2 −3i
)

!(2i+1)!
(−1)ia

p2−1
2 −3ib2i+1

= 3

p2−13
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−7
2 −3i

)
!(2i+3)!

(−1)ia
p2−7

2 −3ib2i+3,

where the last equality comes from reindexing the sum. Since 3 is invertible in
Fp we get that

0 =

 p2−13
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−7
2 −3i

)
!(2i+3)!

(−1)ia
p2−7

2 −3ib2i+3



−

[
(p2−1)!(

p2−1
2

)
!
(

p2−7
6

)
!
(

p2+2
3

)
!
b

p2+2
3

]

=

p2−7
6

∑
i=0

(p2−1)!(
p2−1

2

)
!i!
(

p2−7
2 −3i

)
!(2i+3)!

(−1)ia
p2−7

2 −3ib2i+3

because p2 ≡ 1 (mod 12), hence (−1)
p2−7

6 = −1. But the latter is precisely τ ,
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and this argument shows that if aλ = µ , then τ = 0. Therefore either aλ 6= µ or

det

[
−a τ

θ b
p2−1

2

]
= det

[
−a 0

θ b
p2−1

2

]
=−ab

p2−1
2 6= 0.

Hence the matrix has rank two, and the Claim follows.
But this shows that there are linear combinations of x+λ z,ax+ µz,−ax+ τz

and θx+ b
p2−1

2 z that produce x and z, that is (x,z) ⊆ I2. By Lemma 6.4 we
always have that y ∈ I2. Therefore

(x,y,z)⊆ I2 ⊆ I1 ( R,

implying that I1 = I2 and hence that f has level two.

7. A Macaulay2 session

The purpose of this section is to explain, through a Macaulay2 session, how the
algorithm introduced in Section 3 works in specific examples.

We begin clearing the previous input and loading our scripts.

clearAll;

load "differentialOperator.m2";

We fix the polynomial ring that we will use throughout the following examples.

p=2;

F=ZZ/p;

R=F[x,y,z,w];

The first example illustrates a particular case of Theorem 4.2.

i6 : f=x^3*y^5*z^7*w^4;

i7 : L=differentialOperatorLevel(f);

i8 : L

2 4 6 3

o8 = (4, ideal(x y z w ))

This means that, in this case, f has level 4 and that I4( f 24−1) =
(
x2y4z6w3

)
.

Now, we produce a differential operator δ of level 4 such that δ (1/ f ) = 1/ f 2.

i7 : DifferentialOperator(f)

o7 = | x10y6z2w8 d_0^15d_1^15d_2^15d_3^15x2y4z6w3 |
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As the reader will note, the output is a row matrix; it means that δ turns out to
be

x10y6z2w8 ·Dx,24−1Dy,24−1Dz,24−1Dw,24−1 · x2y4z6w3.

Our next aim is to illustrate a particular case of Corollary 4.4.

ii8 : f=x^3*(x+y)^5*(x+y+z)^7*(x+y+z+w)^4;

ii9 : L=differentialOperatorLevel(f);

ii10 : first L

oo10 = 4

Now, a particular case of Proposition 5.3.

ii13 : f=x^2+y^2+z^3+x*y*z*w;

ii14 : L=differentialOperatorLevel(f);

ii15 : L

oo15 = (1, ideal 1)

This means that f has level one. Now, we produce the corresponding differential
operator.

i7 : DifferentialOperator(f)

o7 = | 1 d_0d_1d_2d_3 |

It means that the differential operator produced in this case is Dx,1Dy,1Dz,1Dw,1.
The following computation may be regarded as a particular case of Propo-

sition 5.5.

i6 : f=x*w-y*z;

i7 : DifferentialOperator(f)

o7 = | 1 d_0d_1d_2d_3yz |

It means that, in this case, the differential operator produced is Dx,1Dy,1Dz,1Dw,1 ·
yz.

Next, a homogeneous quadric (cf. Proposition 5.7).

i6 : f=x^2+y^2+x*y+z^2+w^2;

i7 : DifferentialOperator(f)

o7 = | 1 d_0d_1d_2d_3zw |

We finish with a homogeneous cubic.

ii12 : f=x^3+y^3+z^3+w^3;

ii13 : L=differentialOperatorLevel(f);

ii14 : L
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oo14 = (2, ideal (w, z, y, x))

oo14 : Sequence

ii15 : DifferentialOperator(f)

oo15 = | w2 d_0^3d_1^3d_2^3d_3^3x3z3w |

| z2 d_0^3d_1^3d_2^3d_3^3x3zw3 |

| y2 d_0^3d_1^3d_2^3d_3^3yz3w3 |

| x2 d_0^3d_1^3d_2^3d_3^3xy3z3 |

This means that our differential operator in this case turns out to be

w2 ·Dx,3Dy,3Dz,3Dw,3 · x3z3w + z2 ·Dx,3Dy,3Dz,3Dw,3 · x3zw3

+ y2 ·Dx,3Dy,3Dz,3Dw,3 · yz3w3 + x2 ·Dx,3Dy,3Dz,3Dw,3 · xy3z3.

8. The code of the algorithm

The aim of this final section is to show our implementation in Macaulay2 of
the algorithm described in Section 3 of this manuscript; the whole code can be
found in [6]. Throughout this section, R = Fp[x1, . . . ,xd ] will be the polynomial
ring with d variables with coefficients in the field Fp.

First of all, we write down the code of a procedure which, given an ideal
I of R, return as output I[p

e], i.e., the ideal generated by all the peth powers of
elements in I. The method below is based on code written by M. Katzman and
included, among other places, in [13].

frobeniusPower(Ideal,ZZ) := (I,e) ->(

R:=ring I;

p:=char R;

local u;

local answer;

G:=first entries gens I;

if (#G==0) then

{

answer=ideal(0_R);

}

else

{

N:=p^e;

answer=ideal(apply(G, u->u^N));

};

answer

);
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Now, we exhibit the code of a function which, given ideals A,B of R, produces
as output the ideal Ie(A)+B. For our purposes in this manuscript, B = (0) and
A is a principal ideal. Once again, this is based on code written by Katzman and
included in [13].

ethRoot(Ideal,Ideal,ZZ):= (A,B,e) ->(

R:=ring(A);

pp:=char(R);

F:=coefficientRing(R);

n:=rank source vars(R);

vv:=first entries vars(R);

R1:=F[vv, Y_1..Y_n, MonomialOrder=>ProductOrder{n,n},

MonomialSize=>16];

q:=pp^e;

J0:=apply(1..n, i->Y_i-substitute(vv#(i-1)^q,R1));

S:=toList apply(1..n, i->Y_i=>substitute(vv#(i-1),R1));

G:=first entries

compress( (gens substitute(A,R1))%gens(ideal(J0)) );

L:=ideal 0_R1;

apply(G, t->

{

L=L+ideal((coefficients(t,Variables=>vv))#1);

});

L1:=L+substitute(B,R1);

L2:=mingens L1;

L3:=first entries L2;

L4:=apply(L3, t->substitute(t,S));

use(R);

substitute(ideal L4,R)

);

Next, we provide the code of our implementation of Algorithm 3.1. Namely,
given f ∈ R, the procedure below gives as output the pair

(
e, Ie

(
f pe−1

))
, where

e is the level of f , and Ie
(

f pe−1
)

is the ideal where the chain (1) stabilizes. As
the reader can easily point out, this method is just turning Theorem 2.5 into an
algorithm.

differentialOperatorLevel(RingElement):=(f) ->(

R:=ring(f);

p:=char(R);

local J;
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local I;

local e;

e=0;

flag:=true;

local q;

local N;

while (flag) do

{

e=e+1;

q=p^e;

N=q-1;

I=ethRoot(ideal(f^N),ideal(0_R),e);

J=frobeniusPower(I,e);

N=q-p;

if ((f^N)% J==0) then flag=false;

};

(e,I)

);

Now, let x = xi (for some 1 6 i 6 d), n > 0, and f ∈ R. The below procedure
returns as output

1
n!

∂ n f
∂xn .

It is worth noting that, in some intermediate step of this method, we have to lift
our data to characteristic zero in order to avoid problems with the calculation of
1/n!.

DiffOperator(RingElement,ZZ,RingElement):=(el,numb,funct)->

(

R:=ring(el);

vv:=first entries vars(R);

S:=QQ[vv];

funct1:=substitute(funct,S);

el=substitute(el,S);

for i to numb-1 do

funct1=diff(el,funct1);

funct1=1/(numb!)*funct1;

funct=substitute(funct1,R);

el=substitute(el,R);

use R;

return funct;

);
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Next, we provide a method which, given a monomial xα = xa1
1 · · ·x

ad
d with 0 6

ai 6 p−1 for all i, returns as output the differential operator δα ∈ D(e)
R where,

for any other monomial xβ = xb1
1 · · ·x

bd
d with 0 6 bi 6 p−1 for all i, δα acts in

the following way:

δα

(
xβ

)
=

{
1, if α = β ,

0, otherwise.

As the reader can easily point out, the below method is just turning Claim 3.4
into an algorithm.

DeltaOperator(RingElement,ZZ):=(el,pe)->

(

R:=ring(el);

indet:=vars(R);

for i to numColumns(indet)-1 do

(

deg:=degree(indet_(0,i),el);

listdiff_i=pe-1-deg;

);

return listdiff;

);

The next two methods are quite technical; however, both are necessary in order
to avoid problems during the execution of our main procedure, which we are
almost ready to describe.

checkcondition=method();

--- checkcondition finds a random monomial in

--- startingpol//pol with all the variables in degree <p^e

checkcondition(ZZ,RingElement,Ideal,ZZ):=

(pe,startingpol,J,indexvar) ->

(

pol:=(first entries gens J)_indexvar;

genJ=first entries gens J;

R:=ring(pol);

var:=vars R;

nvars:=numColumns var;

for i to numgens J-1 do

sett_i=set first entries
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monomials(startingpol//genJ_i);

supportpol= first entries monomials (startingpol//pol);

contat=0;

for i to #supportpol-1 do

(

flag=true;

for k to nvars-1 do

if degree(var_(0,k),supportpol_i)>pe-1 then

flag=false;

if flag then

(

rightsupport_contat=supportpol_i;

contat=contat+1;

);

);

correctmon=rightsupport_(random contat);

return correctmon;

);

-----------------------------------------

DifferentialAction=method();

--- DifferentialAction computes differential(element)

DifferentialAction(RingElement,RingElement):=

(differential,element)->

(

R:=ring(element);

T:=ring(differential);

var:=vars T;

nvars:=numColumns var;

total=0;

diffmonomials=first entries monomials (differential);

for i to #diffmonomials-1 do

(

moltiplication=substitute(element,T);

for j to floor(nvars/2)-1 do

moltiplication=moltiplication*

var_(0,floor(nvars/2)+j)^

(degree(var_(0,floor(nvars/2)+j),diffmonomials_i));
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differentiation=coefficient(diffmonomials_i,

differential)*moltiplication;

for j to floor(nvars/2)-1 do

differentiation=DiffOperator(var_(0,nvars-1-j),

degree(var_(0,floor(nvars/2)-1-j),diffmonomials_i),

differentiation);

total=total+differentiation;

);

return total;

);

We conclude showing our implementation of the algorithm described in Section
3, which is the main result of this paper.

DifferentialOperator(RingElement):=(f)->

(

R:=ring(f);

p:=char(R);

(e,J)=differentialOperatorLevel(f);

variable:=vars(R);

variable1:=first entries variable;

genJ:=first entries gens J;

nvars:=numColumns vars R;

powerf:=f^(p^e-1);

--creating ring of differentials

T:=ZZ/p[d_0..d_(nvars-1),variable1];

varDelta:=first entries vars T;

powerfT=substitute(powerf,T);

use R;

condition:=true;

while condition do

(

for i to numgens J-1 do

(

listsupport=checkcondition(p^e,powerf,J,i);

listdiff=DeltaOperator(listsupport,p^e);

delta1=1;

delta2=1;

for j to nvars-1 do

(

use T;

delta1=delta1*varDelta_j^(p^e-1);
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expon2=listdiff_j;

delta2=delta2*varDelta_(nvars+j)^expon2;

);

delta_i=delta1*delta2;

newgen_i=DifferentialAction(delta_i,powerfT);

);

newgenmatr=matrix(newgen_0);

for i from 1 to numgens J-1 do

newgenmatr=newgenmatr|newgen_i;

newgenmatrR=substitute(newgenmatr,R);

if J==ideal(newgenmatrR) then

(

matalpha=f^(p^e-p)//newgenmatrR;

matalpha=substitute(matalpha,T);

for i to numgens J-1 do

if i==0 then

matrixdiff=matrix{{matalpha_(i,0),delta_i}}

else

matrixdiff=matrixdiff||

matrix{{matalpha_(i,0),delta_i}};

totale=0;

for i to numgens J-1 do

totale=totale+matalpha_(i,0)*

DifferentialAction(delta_i,powerf);

powerfp=substitute(f^(p^e-p),T);

return matrixdiff;

condition=false;

);

);

use R;

);
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et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32, 1967.

[11] D. Husemoller, Elliptic curves, Graduate Texts in Mathematics 111, Springer-
Verlag, New York, 1987.

[12] S. B. Iyengar - G. J. Leuschke - A. Leykin - C. Miller - E. Miller - A. K. Singh -
U. Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathe-
matics 87, American Mathematical Society, Providence, RI, 2007.

[13] M. Katzman - K. Schwede, FSplitting, a Macaulay2 package implementing an
algorithm for computing compatibly Frobenius split subvarieties, Available at
http://katzman.staff.shef.ac.uk/FSplitting/, 2012.

[14] M. Katzman - K. Schwede, An algorithm for computing compatibly Frobenius
split subvarieties, J. Symbolic Comput. 47 (8) (2012), 996–1008.

[15] E. Lucas, Sur les congruences des nombres eulériens et les coefficients dif-
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Astérisque 208 (1992).



AN ALGORITHM FOR DIFFERENTIAL OPERATORS 271

ALBERTO F. BOIX
Department of Economics and Business

Universitat Pompeu Fabra
Jaume I Building, Ramon Trias Fargas 25-27

08005 Barcelona, Spain.
e-mail: alberto.fernandezb@upf.edu

ALESSANDRO DE STEFANI
Department of Mathematics

University of Virginia
141 Cabell Drive, Kerchof Hall Charlottesville

VA 22903, USA.
e-mail: ad9fa@virginia.edu

DAVIDE VANZO
Dipartimento di Matematica e Informatica
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