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POSETS OF h-VECTORS OF STANDARD
DETERMINANTAL SCHEMES

MATEY MATEEV

We study the combinatorial structure of the poset H(t,c)
s consisting of

h-vectors of length s of codimension c standard determinantal schemes,
defined by the maximal minors of a t × (t + c− 1) homogeneous, poly-
nomial matrix. We show that H(t,c)

s obtains a natural stratification, where
each strata contains a maximum h-vector. Moreover, we prove that any
h-vector inH(t,c)

s is bounded from above by a h-vector of the same length
and which corresponds to a codimension c level standard determinantal
scheme. Furthermore, we show that the only strata in which there ex-
ists also a minimum h-vector is the one consisting of h-vectors of level
standard determinantal schemes.

1. Introduction

A scheme X ⊆ Pn of codimension c is called standard determinantal if its defin-
ing ideal is generated by the maximal minors of a homogeneous polynomial
t × (t + c− 1) matrix. Classical examples of such objects are rational normal
curves, rational normal scrolls and some Segre varieties. Due to their important
role, both in commutative algebra and algebraic geometry, the standard deter-
minantal schemes have been an active research area and received considerable
attention in the literature. We refer the reader to the books of W. Bruns and U.
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Vetter [3], of R. M. Miró Roig [13], and of C. Baetica [2] for overviews of this
subject.
The degree matrix of a standard determinantal scheme X is an integer matrix
whose entries are the degrees of the polynomials in the matrix which generates
the defining ideal of X . The defining ideal of a standard determinantal scheme
X is a Cohen-Macaulay ideal and its graded minimal free resolution is given
by the Eagon-Northcott complex (see [7]). It follows from [7] that the degree
matrix of X determines its graded Betti numbers and thus also its Hilbert func-
tion and h-vector. Using this fact, we study the combinatorial structure of the
poset (short for partially ordered set)H(t,c)

s consisting of h-vectors of length s of
codimension c standard determinantal schemes, having degree matrices of size
t × (t + c− 1) for some t ≥ 1. Hilbert functions of determinantal ideals have
been studied in a combinatorial context among many others by S. Abhyankar
[1], S. Ghorpade [8, 9], A. Conca and J. Herzog [5], and D. Kulkarni [12].
The paper is organized as follows. In section 2 we provide the necessary back-
ground results and fix some notation as well. The starting point of Section 3
is the observation that grouping all degree matrices of fixed size t× (t + c−1)
by the number of equal rows counted from top to bottom and considering the
posets consisting of the corresponding h-vectors gives a natural stratification on

the poset H(t,c)
s =

t⋃
r=1

H(t,r,c)
s . We prove that each strata and H(t,c)

s itself con-

tains a maximum, which we construct explicitly (Proposition 3.4, Proposition
3.14 and Corollary 3.20). Moreover, we show that the h-vector of any standard
determinantal scheme is bounded by the h-vector of some level standard deter-
minantal scheme of the same codimension (Theorem 3.18).
According to [6, Theorem 3.2] any element in the strata H(t,t,c)

s consisting of
h-vectors of level standard determinantal schemes is a pure O-sequence, i.e. it
is the h-vector of some artinian monomial level algebra. We show that the only
strata in H(t,c)

s where the existence of a minimum h-vector is granted is H(t,t,c)
s

and construct the minimum explicitly (Proposition 3.4).
Many of the results in this paper have been suggested using intensive computer
experiments done with CoCoA (see [4]) .

2. Preliminaries

Let S = K[X0, . . . ,Xn] be a polynomial ring over an infinite field K.
For any two integers t,c≥ 1, a matrix M of size t× (t +c−1), with polynomial
entries, is called homogeneous if and only if all its minors are homogeneous
polynomials (if and only if all its entries and 2×2 minors are homogeneous).
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An ideal I ⊆ S of height c is standard determinantal if it is generated by the
maximal minors of a t×(t+c−1) homogeneous matrix M = [ fi, j], with fi, j ∈ S
homogeneous polynomials of degree a j−bi. The matrix M is called the defining
matrix of I. Without loss of generality we can assume that the defining matrix
M of I does not contain invertible elements, i.e. fi, j = 0 for all i, j with a j = bi.
Clearly whenever a j < bi we have fi, j = 0. To the matrix M we assign a matrix of
integers A = [ai, j] ∈ Zt×(t+c−1), where ai, j = a j−bi, which is called the degree
matrix of the ideal I. Without loss of generality we will assume that a1≤ ·· · ≤ at

and b1 ≤ ·· · ≤ bt+c−1, so the entries of A increase from left to right and from
bottom to the top. Since ai,i ≤ 0 implies that all the minors containing the first i
columns are zero, we have ai,i > 0 for all i.
From now on, r will denote the number of maximal equal rows in a degree
matrix. Accordingly to the assumed ordering on A we have

r = max{i | a1,1 = · · ·= ai,1}.

When r = t we will say that A has equal rows. According to [6, Proposition
3.3] it appears that any level standard determinantal ideal I (that is the last free
module in the minimal free resolution of I is of the form S(−a)b) has a degree
matrix with equal rows.
Abusing language we will call any matrix of integers A = [ai, j] ∈ Zt×(t+c−1) a
degree matrix if it is the degree matrix of some standard determinantal ideal.
The matrices of integers that are also degree matrices can be characterized in
the following way:

Proposition 2.1. Let A = [ai, j] ∈ Zt×(t+c−1) be a matrix of integers. Then A is a
degree matrix if and only if it is homogeneous (i.e. ai, j +ak,l = ai,l +ak, j for all
i,k = 1, . . . , t and j, l = 1, . . . , t + c−1) and ai,i > 0, for all i = 1, . . . , t.

For the proof see e.g. [10, Proposition 1.2].
A standard determinantal scheme X ⊆ Pn of codimension c is a scheme

whose defining ideal IX is standard determinantal. Every standard determinan-
tal scheme is arithmetically Cohen-Macaulay. More precisely in codimension
1 or 2 the family of standard determinantal schemes is equal to the family of
arithmetically Cohen-Macaulay schemes. In codimension 3 or higher the inclu-
sion is strict, i.e. there are arithmetically Cohen-Macaulay schemes that are not
standard determinantal.

Let h : Z −→ Z be a numerical function. We define its first difference by
4h(i) = h(i)− h(i− 1) and its higher differences by 4dh = 4(4d−1h). We
also make the convention40(h) = h.

Definition 2.2. (A) Let X ⊆ Pn be an arithmetically Cohen-Macaulay projective
scheme of dimension d−1 with defining ideal IX .
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Let aX = (IX +(L1, . . . ,Ld)) ⊆ S, where Li ∈ S1 is a linear form such that Li ∈
NZDS(S/(IX +(L1, . . . ,Li−1))) for all i = 1, . . . ,d.
The ring S/aX ∼= R/JX , where R = K[X1, . . . ,Xc] ∼= S/(L1, . . . ,Ld) and JX ∼=
IX(S/(L1, . . . ,Ld)), is called an artinian reduction of X (or of its coordinate ring
S/IX ). It has Krull dimension 0 and for his Hilbert function holds:

HFR/JX (i) =4
dHFS/IX (i).

Furthermore, as [R/JX ]n = 0 for n� 0 the Hilbert function of R/JX is a finite
sequence of integers 1,h1,h2, . . . ,hs,0. The sequence
hX = (1,h1,, . . . ,hs) is called the h-vector of X .

(B) The series HSX(z) = ∑
i≥0

HFX(i)zi is called the Hilbert series of X . It is well

known, that it can be written in a rational form as

HSX(z) =
hp(z)

(1− z)d ,

where dim(S/IX) = d. The numerator

hp(z) = 1+h1z+h2z2 + · · ·+hszs,

with hs 6= 0 is called h-polynomial of X (or of S/IX ) and its coefficients form the
h-vector of X , hX = (1,h1, . . . ,hs).

Clearly hp(1) = h0 + · · ·+hs = deg(X) = e0(S/IX), where we set h0 = 1.
The number h1 is called the embedding codimension of X , i.e. h1 is the

codimension of X inside the smallest linear space containing it.
We denote by τ(hX) the degree of the h-polynomial.

The degree matrix A of a standard determinantal scheme X determines the
graded Betti-numbers of its homogeneous coordinate ring S/IX and thus also
hp(z) and hX . We will write therefore hpA(z) and hA instead of hp(z) and hX .

Definition 2.3. The defining ideal IX of any projective subscheme X ⊆ Pn of
codimension c is generated by at least c forms. If IX has exactly c minimal
generators, then we will call X a complete intersection scheme.

Remark 2.4. Recall that the h-polynomial of a complete intersection scheme
X ⊆ Pn generated in degrees (a1, . . . ,ac) is given by the formula

hp(a1,...,ac)(z) =
c

∏
i=1

(1+ z+ · · ·+ zai−1).
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Complete intersection schemes are the simplest example for a standard de-
terminantal scheme. An algorithm for computing the h-polynomial of any stan-
dard determinantal scheme can be found in [6, Proposition 2.1].

For any matrix A and positive integers k and l we use the following notation:
A(k,l) is the matrix obtained from A by deleting the k-th row and l-th column. By
convention, A(k,0) (respectively A(0,l) ) means that only the k-th row (respectively
the l-th column) has been deleted. With this notation the h-polynomial of any
standard determinantal scheme can be recursively described as follows:

Lemma 2.5 ([6], Lemma 1.1). Let A = [ai, j] ∈ Zt×(t+c−1) be a degree matrix.
For any k = 1, . . . , t and l = 1, . . . , t + c−1 such that ak,l ≥ 0, we have:

hpA(z) = zak,l hpA(k,l)
(z)+(1+ · · ·+ zak,l−1)hpA(0,l)

(z).

Remark 2.6. Lemma 2.5 implies the following recursive formula for the h-
vector of A:

hA
i = hA(k,l)

i−ak,l
+

ak,l−1

∑
k=0

hA(0,l)

i−k .

In particular, if A has some entry ak,l = 0, then hA = hA(k,l)
.

The degree and the leading coefficient of the h-polynomial of a standard
determinantal scheme can be precisely computed.

Lemma 2.7 ([6], Lemma 2.2). Let A = [ai, j] ∈ Zt×(t+c−1) be a degree matrix
and let hA = (h0, . . . ,hτ(hA)). Then:

(1) τ(hA) = a1,1 + · · ·+a1,c +a2,c+1 + · · ·+at,t+c−1− c,

(2) hτ(hA) =

(
r+ c−2

c−1

)
, where r = max{i|a1,1 = · · ·= ai,1}.

Notice that since a degree matrix is homogeneous Lemma 2.7 is telling us
how to obtain all h-vectors of standard determinantal schemes with prescribed
length and last entry.

3. Posets of h-vectors

We would like to stress that the degree matrices we will deal with during this
section are allowed to have zero entries.

A poset (P,≤) (short for partially ordered set) is a set P equipped with a
binary relation ” ≤ ” that is reflexive (i.e. a ≤ a for all a ∈ P), antisymmetric
(a≤ b≤ a implies a = b) and transitive (a≤ b≤ c implies a≤ c).
For two degree matrices A and B we will write hA ≤ hB if hA

i ≤ hB
i for all i.

If hA ≤ hB we will write also A≤h B. With this order, the set
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M(c) :=
⋃
t≥1

M(t,c),

where

M(t,c) :=
{

A ∈ Zt×(t+c−1)|A is a degree matrix
}

,

becomes a poset for any fixed integer c≥ 1. For an integer s≥ 1 we define

N(c)
s :=

{
A ∈M(c)|τ(hA) = s

}
.

To N(c)
s we assign the poset

H(c)
s :=

{
hA|A ∈ N(c)

s

}
.

Notice that the degree matrices in N(c)
s are not of fixed size. This implies in

particular together with Remark 2.6 that the map

N(c)
s −→H(c)

s , A 7−→ hA

is surjective but certainly not bijective.

Definition 3.1. Let (P,≤) be a poset.
(1) An element x ∈ P is called a maximal element in P if there exists no

z ∈ P such that x≤ z.
(2) An element y∈ P is called a minimal element in P if there exists no z∈ P

such that z≤ y.
(3) A maximal element x which satisfies x≥ y for any y ∈ P is called maxi-

mum.
(4) A minimal element x which satisfies x ≤ y for any y ∈ P is called mini-

mum.

For totally ordered sets, the notions of maximal element and maximum,
respectively minimal element and minimum coincide.

The existence of a minimum and maximum h-vector in the poset H(c)
s can

be easily shown.

Lemma 3.2. There exist h-vectors hmin,hmax ∈H(c)
s such that

hmin ≤ h≤ hmax for all h ∈H(c)
s .
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Proof. Let A be the degree matrix A = [1, . . . ,1,s] ∈ Z1×c. Then clearly
hA ≤ hB for all B ∈ N(c)

s , so that hmin = hA = (1, . . . ,1).
Let C = [ci, j]∈Z(s+1)×(s+c) be a degree matrix with ci, j = 1, ∀i, j. We claim

that hmax = hC. Choose A ∈ N(c)
s and let X ⊆ Pn be a standard determinantal

scheme with degree matrix A. Let JX ⊆ R = K[X1, . . . ,Xc] be the artinian reduc-
tion of the defining ideal IX of X . Since hA = (h0, . . . ,hs) and hA

i = HFR/JX (i)
for all i, we have [JX ]i = Ri, ∀i≥ s+1, so that JX ⊇ Rs+1

+ . On the other hand the
ideal Rs+1

+ is standard determinantal with defining matrix
X1 · · · Xc 0 · · · 0
0
...

. . . . . .
...

0 · · · 0 X1 · · · Xc

 ∈ R(s+1)×(s+c)

and degree matrix C. We obtain therefore

hA
i = HFR/JX (i)≤ HFR/Rs+1

+
(i) = hC

i , for all i

and the assertion follows.

As we just have seen it is not difficult to determine the minimum and the
maximum in H(c)

s . The situation changes quickly if we study only subsets of
M(c) and N(c)

s consisting of degree matrices of fixed size.
Consider the following subset of M(t,c):

N(t,c)
s :=

{
A ∈M(t,c)|τ(hA) = s

}
,

for an integer s≥ t−1. We denote by

H(t,c)
s :=

{
hA|A ∈ N(t,c)

s

}
the corresponding set of h-vectors. For an integer 1≤ r ≤ t we define

N(t,r,c)
s =

{
A ∈ N(t,c)

s |a1,1 = · · ·= ar,1 > ar+1,1

}
and

H(t,r,c)
s :=

{
hA|A ∈ N(t,r,c)

s

}
.

We obtain a natural stratification on N(t,c)
s and onH(t,c)

s , namely

N(t,c)
s =N(t,1,c)

s ∪ . . .∪N(t,r,c)
s ∪ . . .∪N(t,t,c)

s

and
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H(t,c)
s =H(t,1,c)

s ∪ . . .∪H(t,r,c)
s ∪ . . .∪H(t,t,c)

s .

By [6, Proposition 3.3] any element in the poset H(t,t,c)
s is the h-vector of some

codimension c level standard determinantal scheme. Furthermore, by [6, The-
orem 3.2] any such h-vector is a pure O-sequence, i.e. the h-vector of some
artinian monomial level algebra. On the other hand [6, Proposition 3.3] shows
also that for 1≤ r≤ t−1 any element inH(t,r,c)

s is the h-vector of some non-level
standard determinantal scheme.

3.1. Posets of h-vectors of level standard determinantal schemes

We will show next that inH(t,t,c)
s there are a minimum and a maximum h-vector.

We introduce the following notation:

Ndeg
(t,c,s) :=

{
(a1, . . . ,at+c−1) ∈ Nt+c−1|

t+c−1

∑
i=1

ai = s+ c,a1 ≤ ·· · ≤ at+c−1

}
.

Thus an element a ∈ Ndeg
(t,c,s) is a partition of s+ c ordered in an increasing way.

Obviously, there exists one to one correspondence Ndeg
(t,c,s)←→ N(t,t,c)

s , given by
a 7−→ A , where each row of A is equal to a.

For two elements a,b ∈ Ndeg
(t,c,s) we will write a/b if and only if a = b or

there exist i < j ∈ N such that

a = (b1, . . . ,bi−1,bi−1,bi+1, . . . ,b j−1,b j +1,b j+1, . . . ,bt+c−1).

If there exist elements a1, . . . ,am ∈ Ndeg
(t,c,s) such that a = a1 / · · · / am = b, we

will use the notation a < b.
Obviously the relation / does not define a partial order on Ndeg

(t,c,s), since it
is not transitive. If a 6= b 6= c and a /b / c, it does not hold a / c. So, in order
to make Ndeg

(t,c,s) to a poset, we have to take the transitive closure of /, which is
given by <. It is easy to verify that a < b < a implies a = b.

We will show next, that the correspondence Ndeg
(t,c,s)←→N(t,t,c)

s preserves the
partial order.

Lemma 3.3. Let a,b∈Ndeg
(t,c,s) and let A,B∈N(t,t,c)

s be the corresponding degree
matrices with rows equal to a, respectively b. If a/b, then hA ≤ hB.

Proof. We may assume that a 6= b and a/b, hence that b = (b1, . . . ,bt+c−1) and
a = (b1, . . . ,bi−1, . . . ,b j +1, . . . ,bt+c−1). We will prove the claim by induction
on t and c. For c = 1 the claim is trivial.
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Let c > 1. For t = 1, by Remark 2.4 it holds that:

hpA(z) = hp(b1,...,bi−1,...,b j+1,...,bc)(z)

= hp(b1,...,bi−1,bi+1,...,b j−1,b j+1,...,bc)(z) ·hp(bi−1,b j+1)(z).

Since for any c,d ∈ N we have

h(c,d) = (1, . . . ,c−1,c, . . . ,c,c−1︸ ︷︷ ︸
d−c+3

, . . . ,1),

h(c−1,d+1) = (1, . . . ,c−1, . . . ,c−1︸ ︷︷ ︸
d−c+3

, . . . ,1)

and τ(h(c,d)) = τ(h(c−1,d+1)) (i.e. deg(hp(c,d)(z)) = deg(hp(c−1,d+1)(z))),
it holds that h(c,d) ≥ h(c−1,d+1), and therefore hA ≤ hB as claimed.

Let t > 1. We assume that j < t + c− 1. The case j = t + c− 1 is proved
similarly. Applying Remark 2.6 for bt+c−1 on B and A we have:

hB = hB(t,t+c−1)
+

bt+c−1−1

∑
k=0

hB(0,t+c−1)

i−k and hA = hA(t,t+c−1)
+

bt+c−1−1

∑
k=0

hA(0,t+c−1)

i−k .

As by induction it holds hB(t,t+c−1) ≥ hA(t,t+c−1)
and hB(0,t+c−1) ≥ hA(0,t+c−1)

, we con-
clude.

Lemma 3.3 provides the tool needed for showing the existence of the mini-
mum and the maximum h-vector in the posetH(t,t,c)

s .

Proposition 3.4. For any integer s≥ t−1 there exist h-vectors hmin and hmax in
H(t,t,c)

s such that hmin ≤ h≤ hmax, for all h ∈H(t,t,c)
s .

Proof. Fix s ≥ t − 1 and let a = (1, . . . ,1,s− t + 2) ∈ Ndeg
(t,c,s). To prove that

hA = hmin, by Lemma 3.3 it suffices to show that a < b for all b ∈ Ndeg
(t,c,s). Let

b∈Ndeg
(t,c,s),b 6= a. We can find integers i and j such that bi > 1 and b j < s−t+2.

It follows that

b.b′ = (b1, . . . ,bk−1, . . . ,bl +1, . . . ,bt+c−1),

where k = min{i|bi > 1} and l = max
{

j|b j < s− t +2
}

. If a = b′ , we are
done, otherwise we can repeat the process with b′ instead of b. Clearly after
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finitely many steps we will obtain a, since the result of each step is a non-
decreasing partition of s+ c, where the difference between the entries at the
positions k and l increases by 2.

Let c = (c1, . . . ,ct+c−1) ∈ Ndeg
(t,c,s), where c1 = · · · = ck = d and ck+1 = · · ·

= ct+c−1 = d + 1, for some d ∈ N. According to Lemma 3.3 in order to show
that hC = hmin it is enough to show that c > b for any b∈Ndeg

(t,c,s). Let b∈Ndeg
(t,c,s).

Since b 6= c there exist indexes i < j, such that b j−bi ≥ 2. Therefore

b/b′ = (b1, . . . ,bk +1, . . . ,bl−1, . . . ,bt+c−1),

where k = max{m|bm = bi} and l = min
{

n|bn = b j
}

. If b′ = c we are done,
otherwise we repeat the process with b′ instead of b. After finitely many steps
c will be reached, since the result of each step is a non-decreasing partition of
s+c, where the difference between the entries at the positions k and l decreases
by 2.

Remark 3.5. O. Greco, M. Mateev and C. Söger showed (see [11]) that a similar
result holds also for the poset of h-vectors of the union of two sets of points in
P2. More precisely the existence of a minimum in this poset was proved and the
existence of a maximum, conjectured.

Definition 3.6. Let (P,≤) be a poset and let x,y ∈ P. We say that x covers y (in
the poset P) if x 6= y and y ≤ x, and there does not exist z ∈ P\{x,y} such that
y≤ z≤ x.

A useful tool for dealing with finite posets is the Hasse diagram.

Definition 3.7. Starting with a poset (P,≤), we define a directed graph with
vertex set P by the rule that (x,y) is an edge if x covers y in P. The digraph H
is called a Hasse digraph for P. When it is drawn in the plane with edges as
straight lines going from the lower endpoint to the upper endpoint it is called a
Hasse diagram.

Using Hasse diagrams we can easily visualize the structure of the posets
H(t,r,c)

s , as illustrated in the following example:

Example 3.8. Consider the poset H(2,2,3)
7 . Computing the possible partitions

of 10, we can obtain the Hasse diagram of Ndeg
(2,3,7) by drawing an edge for any

a,b ∈ Ndeg
(2,3,7) with a/b.
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(2,2,3,3) = a1

((vv
a2 = (1,3,3,3)

��

(2,2,2,4) = a3

��rr
a4 = (1,2,3,4)

�� ((

// (1,2,2,5) = a5

vv ��
a6 = (1,1,4,4) // a7 = (1,1,3,5) // (1,1,2,6) = a8

��
(1,1,1,7) = a9

In the notation of Lemma 3.3 the corresponding h-vectors are

hA1 = (1,3,6,10,14,14,9,3), hA6 = (1,3,5,7,9,7,5,3),

hA2 = (1,3,6,10,12,12,7,3), hA7 = (1,3,5,7,7,7,5,3),

hA3 = (1,3,6,10,12,12,9,3), hA8 = (1,3,5,5,5,5,5,3),

hA4 = (1,3,6,9,11,10,7,3), hA9 = (1,3,3,3,3,3,3,3),

hA5 = (1,3,6,8,8,8,7,3).

We can easily see that H(2,2,3)
7 has the same Hasse diagram as Ndeg

(2,3,7) and the
minimum, respectively maximum h-vector corresponds to a9, respectively a1.

3.2. Posets of h-vectors of non-level standard determinantal
schemes

Having seen that H(t,t,c)
s contains a minimum and a maximum h-vector, it is

natural to ask whether the same is true for any H(t,r,c)
s , 1 ≤ r ≤ t − 1. As the

following example shows if r ≤ t−1 the existence of a minimum is in general
not granted.

Example 3.9. Consider the set N(4,3,3)
7 . By Lemma 2.7 it consists of the follow-
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ing degree matrices

A1 =


1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2 2
0 1 1 1 1 1

 , A2 =


1 1 2 2 2 3
1 1 2 2 2 3
1 1 2 2 2 3
0 0 1 1 1 2

 ,

A3 =


1 1 1 2 2 4
1 1 1 2 2 4
1 1 1 2 2 4
0 0 0 1 1 3

 , A4 =


1 1 1 2 3 3
1 1 1 2 3 3
1 1 1 2 3 3
0 0 0 1 2 2

 ,

A5 =


1 1 1 3 3 3
1 1 1 3 3 3
1 1 1 3 3 3
−1 −1 −1 1 1 1

.

In particular it follows thatH(4,3,3)
7 consists of the h-vectors

hA1 = (1,3,6,10,15,21,18,6), hA4 = (1,3,6,10,14,16,12,6),

hA2 = (1,3,6,10,15,18,15,6), hA5 = (1,3,6,10,12,15,9,6).

hA3 = (1,3,6,10,13,13,12,6),

The corresponding Hasse diagram shows that in H(4,3,3)
7 there is no minimum

and is given by:

hA1

��
hA2

��
hA4

!!}}
hA5 hA3

Remark 3.10. Notice that for any matrix B ∈ N(t,r,c)
s , we have

b1,1 + · · ·+b1,t+c−1 ≥ s+ c+(t− r).
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This follows directly from Lemma 2.7 since

s+ c = b1,1 + · · ·+b1,c +b2,c +br,c+(r−1)+br+1,c+r + · · ·+bt,t+c−1

and

bi,c+(i−1) = b1,c+(i−1), for all i = 2, . . . ,r

bi,c+(i−1) ≤ b1,c+(i−1)−1, for all i = r+1, . . . , t.

We will show next that for any 1 ≤ r ≤ t − 1, the poset H(t,r,c)
s contains a

maximum h-vector, which correspond to a matrix of the form

A =



a1 · · · at+c−1
...

...
a1 · · · at+c−1

a1−1 · · · at+c−1−1
...

...
a1−1 · · · at+c−1−1


, (1)

where a1 + · · ·+at+c−1 = s+c+(t− r) and the matrix A′ ∈ Zr×(t+c−1) consist-
ing of the first r equal rows of A satisfies hA′ = hmax ∈H(r,r,c+(t−r))

s .

We introduce the following notation

L(t,r,c)
s =

{
B ∈ N(t,r,c)

s |a1,1−ai,1 = 1, ∀i≥ r+1
}

R(t,r,c)
s = {B ∈ N(t,r,c)

s |B /∈ L(t,r,c)
s }= N(t,r,c)

s \L(t,r,c)
s .

Obviously, it holds N(t,r,c)
s = L(t,r,c)

s ∪ R(t,r,c)
s . Furthermore, by definition any

B = [bi, j] ∈ L(t,r,c)
s is of the form

B =



b1 · · · bt+c−1
...

...
b1 · · · bt+c−1

b1−1 · · · bt+c−1−1
...

...
b1−1 · · · bt+c−1−1


, (2)

and it holds b1 + · · ·+bt+c−1 = s+ c+(t− r).
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Lemma 3.11. Let A = [ai, j] ∈ Zt×(t+c−1) be a degree matrix and assume that
there exist indexes 1≤ i < j ≤ t + c−1 such that a1, j−a1,i ≥ 2.
Let k = max{m|a1,i = · · ·= a1,m} and l = min

{
n|a1,n = · · ·= a1, j

}
. If B is the

degree matrix obtained from A by adding 1 to the k-th column and subtracting
1 from the l-th column, then hA ≤ hB.

Proof. We prove the claim by induction on t and c. For t = 1 the claim follows
from Lemma 3.3. Let t > 1, for c = 1 the claim is trivial, so let c > 1.

Without loss of generality we may apply Remark 2.6 for at,t+c−1, assuming
that B(t,t+c−1) and B(0,t+c−1) contain the modified columns of A. It follows then
by induction that hA(t,t+c−1) ≤ hB(t,t+c−1)

and hA(0,t+c−1) ≤ hB(0,t+c−1)
, so we conclude.

Lemma 3.12. Let A = [ai, j] ∈ Zt×(t+c−1) be a degree matrix which satisfies the
following conditions:

(1) A has r ≤ t−1 maximal rows, i.e. a1,1 = · · ·= ar,1,

(2) there exists an index 1≤ j ≤ t + c−1 such that a1, j ≥ 2 and
a1, j−a1, j−1 ≥ 1,

(3) there exists an index r+1≤ i≤ t such that ai−1,1−ai,1 ≥ 1 and
if i = r+1, then ar,1−ar+1,1 ≥ 2.

Let B be the matrix obtained from A by adding 1 to the i-th row and subtracting
1 from the j-th column. Then hA ≤ hB.

Proof. We proceed by induction on t and c. For c = 1 and t ≥ 1 the claim is
trivial. Let c > 1, t = 2 and let

B =

[
a1,1 · · · a1, j−1 a1, j−1 a1, j+1 · · · a1,t+c−1

a2,1 +1 · · · a2, j−1 +1 a2, j a2, j+1 +1 · · · a2,t+c−1 +1

]
be the matrix obtained from A by adding 1 to the second row and subtracting
1 from the j-th column. We assume that j < t + c− 1. The computation for
j = t + c−1 is analogous. Applying Remark 2.6 for a1,t+c−1 we have

hB
i = h(a2,1+1,...,a2, j,...,a2,t+c−2+1)

i−a1,t+c−1
+

a1,t+c−1−1

∑
k=0

hB(0,t+c−1)

i−k .

By the inductive hypothesis on c it holds hB(0,t+c−1) ≥ hA(0,t+c−1)
. Since we obvi-

ously have h(a2,1+1,...,a2, j,...,a2,t+c−2+1) ≥ h(a2,1,...,a2, j,...,a2,t+c−2), the claim follows.
Let t > 2. Obviously there is an entry ak,l > 0 which remains unchanged

by performing the operation described in the statement and such that B(k,l) and
B(0,l) contain the modified row and column of A. By the inductive hypothesis on
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t and c we have hB(k,l) ≥ hA(k,l)
, and hB(0,l) ≥ hA(0,l)

. The assertion follows therefore
from Remark 2.6 applied for the indexes (k, l).

Remark 3.13. Notice that the operation defined in Lemma 3.12 does not change
the number of equal rows or the length of the corresponding h-vector.

Proposition 3.14. Let r, t,c be positive integers, where t ≥ 2 and r≤ t−1. There
exists a h-vector hmax ∈H(t,r,c)

s , such that h≤ hmax for all h∈H(t,r,c)
s . Moreover,

it holds hmax = hA, where A is the degree matrix described in (1).

Proof. Let C = [ci, j] ∈ N(t,r,c)
s . We can assume that C ∈ L(t,r,c)

s , as for any
C ∈ R(t,r,c)

s repeated application of Lemma 3.12, will produce a matrix
B = [bi, j] ∈ L(t,r,c)

s , which has the form described in (2). Furthermore, for the
corresponding h-vectors it holds that hC ≤ hB . Notice that since by each step
the entries in a certain non-maximal row increase by one, only finitely many
steps are needed to obtain B. If C ∈ L(t,r,c)

s is not equal to the matrix A defined in
(1), then there have to be entries c1,i < c1, j, such that c1, j− c1,i ≥ 2. Applying
Lemma 3.11 on C will produce a degree matrix A′ ∈ L(t,r,c)

s , such that hA′ ≥ hC.
If A = A′ we have found the maximal h-vector, otherwise we apply Lemma 3.11
on A′. Since each time we lower the difference between a pair of columns of the
matrix, after finitely many steps we will reach the matrix A.

The next example illustrates the operations described in Lemma 3.11 and
Lemma 3.12.

Example 3.15. Consider again the set N(4,3,3)
7 from Example 3.9. We have

L(4,3,3)
7 = {A1,A2,A3,A4} and R(4,3,3)

7 = {A5}.

Writing A
(+,−)

(i, j)
// B , respectively A

(+−)

(i, j)
// B for the degree matrix B obtained

from A by applying Lemma 3.11 on the columns i and j or respectively applying
Lemma 3.12 on the i-th row and j-th column of A, we have

A5
(+−)

(4,4)
// A4

(+,−)

(3,4)
// A2

(+,−)

(2,6)
// A1

A3

(5,6) (+,−)

OO
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3.3. Maximum h-vector

The next problem we will approach is whether there exists a maximum h-vector
in the posetH(t,c)

s . We will show in this section that there is one and it is equal to
the maximum h-vector hmax inH(t,t,c)

s . We start with some preparatory lemmas.

Lemma 3.16. Given a=(a1, . . . .an) and b=(b1, . . . ,bn) two integer sequences,
such that ai ≤ bi for all i = 1, . . . ,n. Let c = (c1, . . . ,cn) and d = (d1, . . . ,dn) be
two permutations of a, respectively b such that c1 ≤ ·· · ≤ cn and d1 ≤ ·· · ≤ dn.
Then ci ≤ di for all i = 1, . . . ,n.

Proof. We will prove the claim by induction on n. For n = 2 we have the fol-
lowing possibilities

• a1 ≤ a2 and b1 ≤ b2,

• a1 ≥ a2 and b1 ≥ b2,

• a1 ≤ a2 and b1 ≥ b2,

• a1 ≥ a2 and b1 ≤ b2.

Obviously in the first two cases there is nothing to show. The inequalities in the
third and the fourth case imply a1≤ a2≤ b2≤ b1 respectively a2≤ a1≤ b1≤ b2
and the claim follows.

Let n≥ 2 and

ai = min{ak|k = 1, . . . ,n}, b j = min{bk|k = 1, . . . ,n}.

We have the sequences

(ai,a1, . . . ,ai−1, âi,ai+1, . . . ,a j−1,a j,a j+1, . . . ,an)

and

(b j,b1, . . . ,bi−1,bi,bi+1, . . . ,b j−1b̂ j,b j+1, . . . ,bn),

where ai ≤ a j ≤ b j ≤ bi. Let

a′ = (a1, . . . ,ai−1,ai+1, . . . ,a j−1,a j,a j+1, . . . ,an)

and

b′ = (b1, . . . ,bi−1,bi+1, . . . ,b j−1,bi,b j+1, . . . ,bn),
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be the sequences obtained from a and b after removing ai and b j and moving bi

to the j-th position in b′. If we denote by ã, respectively b̃ the nondecreasing
reordering of a′, respectively b′, then as a j ≤ b j ≤ bi, it holds by induction
ãi ≤ b̃i for any i and the assertion follows.

The next result gives us a direct way how to compare h-vectors correspond-
ing to degree matrices with equal rows.

Lemma 3.17. Let A = [ai, j] ∈ Zt×(t+c−1) andB = [bi, j] ∈ Zt×(t+c−1) be two
degree matrices with equal rows, such that ai, j ≤ bi, j for all i = 1, . . . , t and
j = 1, . . . , t + c−1. Then hA ≤ hB.

Proof. The claim follows directly from [6, Theorem 2.4]

Next, using Lemma 3.16 and Lemma 3.17 we show that the h-vector of any
standard determinantal scheme is bounded from above by the h-vector of a level
standard determinantal scheme.

Theorem 3.18. To any standard determinantal scheme X ⊆ Pn there exists a
level standard determinantal scheme Y ⊆ Pn of the same codimension such that

hX ≤ hY and τ(hX) = τ(hY ).

Proof. Let A be the degree matrix of X . Without loss of generality we can
assume that τ(hX) = s and A ∈ N(t,c)

s . To prove the claim it suffices to show that
there is a degree matrix B ∈ N(t,t,c)

s such that hA ≤ hB. We will show this by
induction on t and c.

When t = 1 the claim is trivial, so let t > 1 and c = 1.
Let B ∈ N(t,t,1)

s be the degree matrix, whose rows are equal to a nondecreasing
reordering aσ(1),σ(1) ≤ ·· · ≤ aσ(t),σ(t) of the diagonal elements of A. We have
then obviously hA = hB.
Let c > 1 and ai0, j0 = min{a1,1, . . . ,a1,c,a2,c+1, . . . ,at,t+c−1}. If (b1, . . . ,bt+c−1)
is a nondecreasing reordering of (a1,1, . . . ,a1,c,a2,c+1, . . . ,at,t+c−1) and
B ∈ N(t,t,c)

s is the matrix whose rows are equal to (b1, . . . ,bt+c−1), then
b1 = ai0, j0 and by Remark 2.6, applied on A for the indices (i0, j0) and on B for
(1,1), we have

hA
i = hA(i0 , j0)

i−ai0 , j0
+

ai0 , j0−1

∑
k=0

hA(0, j0)

i−k and hB
i = hB(1,1)

i−b1
+

b1−1

∑
k=0

hB(0,1)

i−k .

We distinguish the following cases:
Case 1: i0 ∈ {1, t}. Since the proof of the claim for i0 = 1 is the same as

for i0 = t, we will show it only for i0 = 1 (notice that i0 = 1 implies j0 = 1).
Consider first A(1,1). As
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a1,2 · · · a1,c a2,c+1 · · · at,t+c−1

≤ ≤ = =

a2,2 · · · a2,c a2,c+1 · · · at,t+c−1

by Lemma 3.16 we have

b2 ≤ ·· · ≤ bt+c−1

≤ ≤

d2 ≤ ·· · ≤ dt+c−1

,

where (d2, · · · ,dt+c−1) is the nondecreasing reordering of
(a2,2, . . . ,a2,c,a2,c+1, . . . ,at,t+c−1). If D is the matrix with rows equal to
(d2, · · · ,dt+c−1), then Lemma 3.17 together with the inductive hypothesis shows
that hA(1,1) ≤ hD ≤ hB(1,1)

. On the other hand, for A(0,1), as (b2, . . . ,bt+c−1) is
the nondecreasing reordering of (a1,2, . . . ,a1,c,a2,c+1, . . .at,t+c−1), it holds by
induction that hA(0,1) ≤ hB(0,1)

and we can conclude.
Case 2: 2≤ i0 ≤ t−1. Looking at the matrix A(0, j0) we obtain the inequali-

ties

a1,1 · · · a1,c−1 a1,c · · · ai0−1, j0−1 ai0+1, j0+1 · · · at,t+c−1

= = ≤ ≤ = =

a1,1 · · · a1,c−1 a2,c · · · ai0, j0−1 ai0+1, j0+1 · · · at,t+c−1

,

which according to Lemma 3.16 imply the following inequalities on the corre-
sponding nondecreasing reorderings:

b2 ≤ ·· · ≤ bt+c−1

≤ ≤

f2 ≤ ·· · ≤ ft+c−1

.

By the induction hypothesis and Lemma 3.17 we have hA(0, j0) ≤ hF ≤ hB(0,1)
,

where F is the matrix whose rows are equal to ( f2, . . . , ft+c−1).
Considering the matrix A(i0, j0) and using the fact that the nondecreasing reorder-
ing of (a1,1, . . . ,a1,c,a2,c+1, . . . ,ai0−1, j0−1,ai0+1, j0+1, . . .at,t+c−1) is
(b2, . . . ,bt+c−1) we have by induction hA(i0, j0) ≤ hB(1,1)

and the claim follows from
Remark 2.6 applied on A and B for the indices (i0, j0), respectively (1,1).

Example 3.19. Consider the matrix A =

 1 2 3 3 5
0 1 2 3 3
−1 0 1 2 2

 ∈ N(3,3)
8 ,

with corresponding h-vector hA = (1,3,6,9,10,9,6,3,1). The nondecreasing
reordering of (1,2,3,3,2) is (1,2,2,3,3), therefore we obtain the matrix



POSETS OF h-VECTORS OF STANDARD DETERMINANTAL SCHEMES 209

B =

1 2 2 3 3
1 2 2 3 3
1 2 2 3 3

,

whose corresponding h-vector is hB = (1,3,6,10,15,20,21,15,6) and hA ≤ hB.

Theorem 3.18 provides the tool needed for showing the existence of the
maximum inH(t,c)

s =H(t,1,c)
s ∪ . . .∪H(t,t,c)

s .

Corollary 3.20. For any positive integers t,c,s ∈ Nands ≥ t − 1 there exists
a h-vector Hmax ∈ H(t,c)

s , such that h ≤ Hmax for all h ∈ H(t,c)
s . Furthermore

Hmax = hmax ∈H(t,t,c)
s .

Proof. Let A ∈ N(t,c)
s . By Theorem 3.18 there is a matrix B ∈ N(t,t,c)

s such that
hA ≤ hB. By Proposition 3.4 there exists a degree matrix C ∈ N(t,t,c)

s such that
hC = hmin ∈H(t,t,c)

s . We have therefore hA ≤ hB ≤ hC and the claim follows.

According to Corollary 3.20,H(t,c)
s =H(t,1,c)

s ∪ . . .∪H(t,t,c)
s contains a max-

imum h-vector, which is the maximum in the stratum H(t,t,c)
s . Therefore it is

natural to ask whether there exists a minimum h-vector in H(t,c)
s . Obviously if

there exist one, then by Lemma 2.7 it has to come from H(t,1,c)
s . As we have

seen in the previous section the poset H(t,1,c)
s does not have a minimum in gen-

eral (see also Example 3.21). It turns out that the same is true also for H(t,c)
s .

The following example is a good illustration for this fact.

Example 3.21. Consider the poset H(2,3)
7 =H(2,1,3)

7 ∪H(2,2,3)
7 . Then the strata

H(2,1,3)
7 consist of the h-vectors:

hA1 = (1,3,6,10,12,9,4,1), hA2 = (1,3,6,9,10,8,4,1),

hA3 = (1,3,6,8,8,6,3,1), hA4 = (1,3,6,7,7,7,4,1),

hA5 = (1,3,5,7,7,5,3,1), hA6 = (1,3,4,5,4,4,2,1),

hA7 = (1,3,4,4,4,4,3,1).

ForH(2,2,3)
7 we have

hB1 = (1,3,6,10,14,14,9,3), hB2 = (1,3,6,10,12,12,9,3),

hB3 = (1,3,6,10,12,12,7,3), hB4 = (1,3,6,9,11,10,7,3),

hB5 = (1,3,5,7,9,7,5,3), hB6 = (1,3,6,8,8,8,7,3),

hB7 = (1,3,5,7,7,7,5,3), hB8 = (1,3,5,5,5,5,5,3),

hB9 = (1,3,3,3,3,3,3,3).
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The Hasse diagram corresponding to H(2,3)
7 can be seen in the next page: there

exist more than one minimal h-vector.
Notice that in the poset H(2,1,3)

7 there are two minimal elements (so, there
is no minimum in H(2,1,3)

7 ) and none of them is comparable to the minimum
h-vector inH(2,2,3)

7 .

hB1

��
hB2

��
hB3

!!}}
hB4

�� !!

hA1

��
hB5

�� !!

hB6

�� !! ((

hA2

�� !!
hB7

�� !! &&

hB8

�� �� !!

hA4

!!

hA3

��
hA5

}} ��
hB9 hA6 hA7
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