SOME SUBORDINATION AND SUPERORDINATION RESULTS WITH AN INTEGRAL OPERATOR

H. E. DARWISH - A. Y. LASHIN - S. M. SOILEH

In this article, we obtain some subordination and superordination preserving properties of meromorphic univalent functions in the punctured open unit disk associated with an integral operator. Some Sandwich-type results are also presented.

1. Introduction

Let $\mathcal{H}=\mathcal{H}(\mathbb{U})$ denote the class of analytic functions in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

For $n \in \mathbb{N}=\{1,2, \ldots\}$ and $a \in \mathbb{C}$, let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots\right\}
$$

Let f and g be members of \mathcal{H}. The function f is said to be subordinate to g, or g is said to be superordinate to f, if there exists a function w analytic in \mathbb{U}, with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$, such that $f(z)=g(w(z))(z \in \mathbb{U})$.

In such a case, we write

$$
f \prec g(z \in \mathbb{U}) \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{U}) .
$$

If the function g is univalent in \mathbb{U}, then we have (cf. [5]),

$$
f \prec g(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

Definition 1.1 ([5]). Let $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and let $h(z)$ be univalent in \mathbb{U}. If $p(z)$ is analytic in \mathbb{U} and satisfies the differential subordination:

$$
\begin{equation*}
\phi\left(p(z) ; z p^{\prime}(z)\right) \prec h(z) \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

then $p(z)$ is called a solution of the differential subordination. The univalent function $q(z)$ is called a dominant of the solutions of the differential subordination, or more simply a dominant, if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1). A dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant.

Definition 1.2 ([6]). Let $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and let $h(z)$ be analytic in \mathbb{U}. If $p(z)$ and $\varphi\left(p(z), z p^{\prime}(z)\right)$ are univalent in \mathbb{U} and satisfy the differential superordination:

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z)\right)(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

then $p(z)$ is called a solution of the differential superordination. An analytic function $q(z)$ is called a subordinant of the solutions of the differential superordination, or more simply a subordinant if $q(z) \prec p(z)$ for all $p(z)$ satisfying (2). A univalent subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinants q of (2) is said to be the best subordinant.

Definition 1.3 ([5]). Denote by \mathcal{F} the set of all functions $q(z)$ that are analytic and injective on $\overline{\mathbb{U}} \backslash E(q)$, where

$$
E(q)=\left\{\zeta \in \partial \mathbb{U}: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}
$$

and are such that

$$
q^{\prime}(\zeta) \neq 0 \quad(\zeta \in \partial \mathbb{U} \backslash E(q))
$$

Further let the subclass of \mathcal{F} for which $q(0)=a$ be denoted by $\mathcal{F}(a), \mathcal{F}(0) \equiv$ \mathcal{F}_{0} and $\mathcal{F}(1) \equiv \mathcal{F}_{1}$.

Definition 1.4 ([6]). A function $L(z, t)(z \in \mathbb{U}, t \geq 0)$ is said to be a subordination chain if $L(\cdot, t)$ is analytic and univalent in \mathbb{U} for all $t \geq 0, L(z,$.$) is continuously$ differentiable on $[0, \infty)$ for all $z \in \mathbb{U}$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.

Let Σ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=1}^{\infty} a_{k} z^{k} \tag{3}
\end{equation*}
$$

which are analytic in the punctured open unit disk \mathbb{U}^{*}. For functions $f \in \Sigma$ given by (3), and $g \in \Sigma$ given by

$$
g(z):=\frac{1}{z}+\sum_{k=1}^{\infty} b_{k} z^{k}
$$

the Hadamard product (or convolution) $f * g$ of the functions f and g is defined by

$$
(f * g)(z):=\frac{1}{z}+\sum_{k=1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z)
$$

Analogous to the integral operator defined by Jung et al. [1], Lashin [2] introduced and investigated the following integral operator

$$
\begin{equation*}
Q_{\alpha, \beta}: \Sigma \rightarrow \Sigma \tag{4}
\end{equation*}
$$

defined in terms of the familiar Gamma function by

$$
\begin{gathered}
Q_{\alpha, \beta} f(z)=\frac{\Gamma(\beta+\alpha)}{\Gamma(\beta) \Gamma(\alpha)} \frac{1}{z^{\beta+1}} \int_{0}^{z} t^{\beta}\left(1-\frac{t}{z}\right)^{\alpha-1} f(t) d t \\
=\frac{1}{z}+\frac{\Gamma(\beta+\alpha)}{\Gamma(\beta)} \sum_{k=1}^{\infty} \frac{\Gamma(k+\beta+1)}{\Gamma(k+\beta+\alpha+1)} a_{k} z^{k}\left(\alpha>0 ; \beta>0 ; z \in \mathbb{U}^{*}\right)
\end{gathered}
$$

By setting

$$
\begin{equation*}
f_{\alpha, \beta}(z):=\frac{1}{z}+\frac{\Gamma(\beta)}{\Gamma(\beta+\alpha)} \sum_{k=1}^{\infty} \frac{\Gamma(k+\beta+\alpha+1)}{\Gamma(k+\beta+1)} z^{k} \quad\left(\alpha>0 ; \beta>0 ; z \in \mathbb{U}^{*}\right) \tag{5}
\end{equation*}
$$

Wang et al. [8] defined and studied an integral operator $Q_{\alpha, \beta}^{\lambda}: \Sigma \rightarrow \Sigma$ which is defined as follows:

Let $f_{\alpha, \beta}^{\lambda}(z)$ be defined such that

$$
\begin{equation*}
f_{\alpha, \beta}(z) * f_{\alpha, \beta}^{\lambda}(z)=\frac{1}{z(1-z)^{\lambda}}\left(\alpha>0 ; \beta>0 ; \lambda>0 ; z \in \mathbb{U}^{*}\right) \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
Q_{\alpha, \beta}^{\lambda} f(z):=f_{\alpha, \beta}^{\lambda}(z) * f(z)\left(z \in \mathbb{U}^{*}, f \in \Sigma\right) \tag{7}
\end{equation*}
$$

From (5), (6) and (7) it follows that

$$
\begin{equation*}
Q_{\alpha, \beta}^{\lambda} f(z)=\frac{1}{z}+\frac{\Gamma(\beta+\alpha)}{\Gamma(\beta)} \sum_{k=1}^{\infty} \frac{(\lambda)_{k+1} \Gamma(k+\beta+1)}{(k+1)!\Gamma(k+\beta+\alpha+1)} a_{k} z^{k} \quad\left(z \in \mathbb{U}^{*}\right) \tag{8}
\end{equation*}
$$

where $(\boldsymbol{\lambda})_{k}$ is the Pochhammer symbol defined by

$$
(\lambda)_{k}=\left\{\begin{array}{l}
\left.1, \quad \begin{array}{l}
k=0 \\
\lambda(\lambda+1) \ldots(\lambda+k-1),
\end{array}\right), k \in \mathbb{N}:=\{1,2, \ldots\} \tag{9}
\end{array}\right\} .
$$

Clearly, we know that

$$
Q_{\alpha, \beta}^{1}=Q_{\alpha, \beta}
$$

It is readily verified from (8) that

$$
\begin{gather*}
z\left(Q_{\alpha, \beta}^{\lambda} f\right)^{\prime}(z)=\lambda Q_{\alpha, \beta}^{\lambda+1} f(z)-(\lambda+1) Q_{\alpha, \beta}^{\lambda} f(z) \tag{10}\\
z\left(Q_{\alpha, \beta}^{\lambda} f\right)^{\prime}(z)=(\beta+\alpha-1) Q_{\alpha-1, \beta}^{\lambda} f(z)-(\beta+\alpha) Q_{\alpha, \beta}^{\lambda} f(z) \tag{11}
\end{gather*}
$$

2. A Set of Lemmas

The following lemmas will be required in our present investigation.
Lemma 2.1 ([7]). The function $L(z, t): \mathbb{U} \times[0, \infty) \longrightarrow \mathbb{C}$ of the form: $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots$ with $a_{1}(t) \neq 0, t \geq 0$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if

$$
\mathfrak{R}\left\{\frac{\frac{z \partial L(z, t)}{\partial z}}{\frac{\partial L(z, t)}{\partial t}}\right\}>0 \quad(z \in \mathbb{U} ; 0 \leq t<\infty)
$$

Lemma 2.2 ([3]). Suppose that the function $H: \mathbb{C}^{2} \rightarrow \mathbb{C}$ satisfies the following condition:

$$
\mathfrak{R}\{H(i s, t)\} \leq 0
$$

for all real s, and

$$
t \leq-n\left(1+s^{2}\right) / 2(n \in \mathbb{N})
$$

If the function $p(z)=1+p_{n} z^{n}+p_{n+1} z^{n+1}+\ldots$ is analytic in \mathbb{U} and

$$
\mathfrak{R}\left\{H\left(p(z), z p^{\prime}(z)\right)\right\}>0 \quad(z \in \mathbb{U})
$$

then

$$
\mathfrak{R}\{p(z)\}>0 \quad(z \in \mathbb{U})
$$

Lemma 2.3 ([4]). Let $k, \gamma \in \mathbb{C}$ with $k \neq 0$ and $h \in \mathcal{H}(\mathbb{U})$ with $h(0)=c$. If

$$
\mathfrak{R}\{k h(z)+\gamma\}>0 \quad(z \in \mathbb{U})
$$

then the solution of the following differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{k q(z)+\gamma}=h(z) \quad(z \in \mathbb{U} ; q(0)=c)
$$

is analytic in \mathbb{U} and satisfies the inequality

$$
\mathfrak{R}\{k q(z)+\gamma\}>0 \quad(z \in \mathbb{U})
$$

Lemma 2.4 ([5]). Let $p \in \mathcal{F}(a)$ and let

$$
q(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots
$$

be analytic in \mathbb{U} with

$$
q(z) \neq a \text { and } n \geq 1
$$

If q is not subordinate to p, then there exist two points

$$
z_{0}=r_{0} e^{i \theta} \in \mathbb{U} \text { and } \zeta_{0} \in \partial \mathbb{U} \backslash E(q)
$$

such that

$$
q\left(\mathbb{U}_{r_{0}}\right) \subset p(\mathbb{U}), q\left(z_{0}\right)=p\left(\zeta_{0}\right) \text { and } z_{0} q^{\prime}\left(z_{0}\right)=m \zeta_{0} p^{\prime}\left(\zeta_{0}\right) \quad(m \geq n)
$$

Lemma 2.5 ([6]). Let $q \in \mathcal{H}[a, 1]$ and $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Also set

$$
\varphi\left(q(z), z q^{\prime}(z)\right) \equiv h(z) \quad(z \in \mathbb{U})
$$

If $L(z, t)=\varphi\left(q(z), t z q^{\prime}(z)\right)$ is a subordination chain and $p \in \mathcal{H}[a, 1] \cap \mathcal{F}(a)$, then

$$
h(z) \prec \varphi\left(p(z), z p^{\prime}(z)\right) \quad(z \in \mathbb{U})
$$

implies that

$$
q(z) \prec p(z) \quad(z \in \mathbb{U})
$$

Furthermore, if $\varphi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in \mathcal{F}(a)$, then q is the best subordinant.

In this paper, we aim to prove some subordination and superordinationpreserving properties associated with the integral operator $Q_{\alpha, \beta}^{\lambda}$. Sandwich-type results involving this operator is also derived.

3. Main Results

We begin with proving the following subordination theorem involving the operator $Q_{\alpha, \beta}^{\lambda} f$ defined by (8).

Theorem 3.1. Let $f, g \in \Sigma$ and
$\mathfrak{R}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta,\left(\phi(z)=\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} ; z \in \mathbb{U}\right)$,

$$
(\lambda>0 ; \alpha>1 ; \beta>0 ; \mu>0)
$$

where δ is given by

$$
\begin{equation*}
\delta=\frac{1+\mu^{2}(\beta+\alpha-1)^{2}-\left|1-\mu^{2}(\beta+\alpha-1)^{2}\right|}{4 \mu(\beta+\alpha-1)} \quad(z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

Then the subordination condition

$$
\begin{equation*}
\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \tag{14}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \tag{15}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu}$ is the best dominant.
Proof. Let us define the functions $F(z)$ and $G(z)$ in \mathbb{U} by

$$
\begin{equation*}
F(z):=\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \text { and } G(z):=\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu}(z \in \mathbb{U}) \tag{16}
\end{equation*}
$$

We first show that if the function q is defined by

$$
\begin{equation*}
q(z):=1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)} \quad(z \in \mathbb{U}) \tag{17}
\end{equation*}
$$

then

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U})
$$

From (11) and the definition of functions G and ϕ, we obtain that

$$
\begin{equation*}
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{\mu(\beta+\alpha-1)} \tag{18}
\end{equation*}
$$

Differentiating both sides of (18) with respect to z yields

$$
\begin{equation*}
\phi^{\prime}(z)=\left(1+\frac{1}{\mu(\beta+\alpha-1)}\right) G^{\prime}(z)+\frac{z G^{\prime \prime}(z)}{\mu(\beta+\alpha-1)} \tag{19}
\end{equation*}
$$

Combining (17) and (19), we easily get

$$
\begin{equation*}
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}=q(z)+\frac{z q^{\prime}(z)}{\mu(\beta+\alpha-1)+q(z)}=h(z)(z \in \mathbb{U}) \tag{20}
\end{equation*}
$$

It follows from (12) and (20) that

$$
\begin{equation*}
\mathfrak{R}\{h(z)+\mu(\beta+\alpha-1)\}>0 \quad(z \in \mathbb{U}) \tag{21}
\end{equation*}
$$

Moreover, by using Lemma 2.3, we conclude the differential equation (20) has a solution $q(z) \in \mathcal{H}(\mathbb{U})$ with $h(0)=q(0)=1$. Let

$$
\begin{equation*}
H(u, v)=u+\frac{v}{u+\mu(\beta+\alpha-1)}+\delta \tag{22}
\end{equation*}
$$

where δ is given by (13). From (20) and (21) we obtain

$$
\mathfrak{R}\left\{H\left(q(z), z q^{\prime}(z)\right)\right\}>0 \quad(z \in \mathbb{U}) .
$$

To verify the condition

$$
\begin{equation*}
\Re\{H(i v, t)\} \leq 0 \quad\left(v \in \mathbb{R} ; t \leq-\frac{1}{2}\left(1+v^{2}\right)\right) \tag{23}
\end{equation*}
$$

we proceed as follows:

$$
\begin{gathered}
\Re\{H(i v, t)\}=\Re\left\{i v+\frac{t}{\mu(\beta+\alpha-1)+i v}+\delta\right\} \\
=\frac{t \mu(\beta+\alpha-1)}{|\mu(\beta+\alpha-1)+i v|^{2}}+\delta \leq-\frac{E_{\delta}(v)}{2|\mu(\beta+\alpha-1)+i v|^{2}},
\end{gathered}
$$

where

$$
\begin{equation*}
E_{\delta}(v):=[\mu(\beta+\alpha-1)-2 \delta] v^{2}-\mu(\beta+\alpha-1)[2 \delta \mu(\beta+\alpha-1)-1] \tag{24}
\end{equation*}
$$

For δ given by (13), we can prove easily that the expression $E_{\delta}(v)$ given by (24) is greater than or equal to zero. Hence, from (22), we see that (23) holds true. Thus, using Lemma 2.2, we conclude that

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U}) .
$$

Moreover, we see that the condition $G^{\prime}(0) \neq 0$ is satisfied. Hence, the function G defined by (16) is convex (univalent) in \mathbb{U}.
Next, we prove that the subordination condition (14) implies that

$$
F(z) \prec G(z) \quad(z \in \mathbb{U})
$$

for the functions F and G defined by (16). Without loss of generality, we can assume that G is analytic and univalent on $\overline{\mathbb{U}}$ and

$$
G^{\prime}(\zeta) \neq 0 \quad(\zeta \in \partial \mathbb{U})
$$

For this purpose, we consider the function $L(z, t)$ given by

$$
\begin{gather*}
L(z, t):=G(z)+\frac{(1+t)}{\mu(\beta+\alpha-1)} z G^{\prime}(z) \tag{25}\\
(0 \leq t<\infty ; z \in \mathbb{U} ; \alpha>1 ; \beta>0 ; \mu>0)
\end{gather*}
$$

We note that

$$
\begin{aligned}
& \left.\frac{\partial L(z, t)}{\partial z}\right|_{z=0}=G^{\prime}(0)\left(1+\frac{(1+t)}{\mu(\beta+\alpha-1)}\right) \neq 0 \\
& (0 \leq t<\infty ; z \in \mathbb{U} ; \alpha>1 ; \beta>0 ; \mu>0)
\end{aligned}
$$

This shows that the function

$$
L(z, t)=a_{1}(t) z+\ldots
$$

satisfies the condition $a_{1}(t) \neq 0(0 \leq t<\infty)$. Furthermore, we have

$$
\mathfrak{R}\left\{\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right\}=\mathfrak{R}\left\{\mu(\beta+\alpha-1)+(1+t)\left(1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right)\right\}>0
$$

Therefore, by using of Lemma 2.1, we deduce that $L(z, t)$ is a subordination chain, since

$$
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{\mu(\beta+\alpha-1)}=L(z, 0)
$$

it follows from the definition of subordinations chains

$$
L(z, 0) \prec L(z, t) \quad(0 \leq t<\infty),
$$

which implies that

$$
\begin{equation*}
L(\zeta, t) \notin L(\mathbb{U}, 0)=\phi(\mathbb{U})(\zeta \in \partial \mathbb{U} ; 0 \leq t<\infty) \tag{26}
\end{equation*}
$$

Now, suppose that F is not subordinate to G, then by Lemma 2.4, there exist two points $z_{0} \in \mathbb{U}$ and $\zeta_{0} \in \partial \mathbb{U}$, such that

$$
\begin{equation*}
F\left(z_{0}\right)=G\left(\zeta_{0}\right) \text { and } z_{0} F^{\prime}\left(z_{0}\right)=(1+t) \zeta_{0} G^{\prime}\left(\zeta_{0}\right) \quad(0 \leq t<\infty) \tag{27}
\end{equation*}
$$

Hence, by using (16), (25), (27) and (14), we have

$$
\begin{gathered}
L\left(\zeta_{0}, t\right)=G\left(\zeta_{0}\right)+\frac{(1+t)}{\mu(\beta+\alpha-1)} \zeta_{0} G^{\prime}\left(\zeta_{0}\right)=F\left(z_{0}\right)+\frac{1}{\mu(\beta+\alpha-1)} z_{0} F^{\prime}\left(z_{0}\right) \\
=\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)\left(z_{0}\right)}{Q_{\alpha, \beta}^{\lambda}(f)\left(z_{0}\right)}\right)\left(z_{0} Q_{\alpha, \beta}^{\lambda}(f)\left(z_{0}\right)\right)^{\mu} \in \phi(\mathbb{U})
\end{gathered}
$$

This contradicts (26). Thus, we deduce that $F \prec G$.
Considering $F=G$, we see that the function G is the best dominant. This completes the proof of Theorem 3.1.

Theorem 3.2. Let $f, g \in \Sigma$ and

$$
\begin{gather*}
\mathfrak{R}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta\left(\phi(z)=\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} ; z \in \mathbb{U}\right) \tag{28}\\
(\lambda>0 ; \alpha>0 ; \beta>0 ; \mu>0)
\end{gather*}
$$

where δ is given by

$$
\begin{equation*}
\delta=\frac{1+\lambda^{2} \mu^{2}-\left|1-\lambda^{2} \mu^{2}\right|}{4 \mu \lambda \mu} \quad(z \in \mathbb{U}) \tag{29}
\end{equation*}
$$

Then the subordination condition

$$
\begin{equation*}
\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \tag{30}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \tag{31}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu}$ is the best dominant.
Proof. Let us define the functions $F(z)$ and $G(z)$ in \mathbb{U} by (16). Taking the logarithmic differentiation on both sides of the second equation in (16) and using the equation (10), the proof is similar to that of Theorem 3.1.

Theorem 3.3. Let $f, g \in \Sigma$ and

$$
\begin{gather*}
\Re\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta,\left(\phi(z)=\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} ; z \in \mathbb{U}\right) \tag{32}\\
(\lambda>0 ; \alpha>1 ; \beta>0 ; \mu>0)
\end{gather*}
$$

where δ is given by (13). If the function

$$
\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}
$$

is univalent in \mathbb{U} and $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \in \mathcal{F}$, then the superordination condition

$$
\begin{equation*}
\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \tag{33}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \tag{34}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}$ is the best subordinant.
Proof. Suppose that the function F, G and q are defined by (16) and (17), respectively. By applying similar method as in the proof of Theorem 3.1, we get

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U})
$$

Next to arrive at our desired result, we show that $G \prec F$. For this, we suppose that the function $L(z, t)$ is defined by (25). Since G is convex, by applying a similar method as in Theorem 3.1, we deduce that $L(z, t)$ is a subordination chain. Therefore, by using Lemma 2.5 , we conclude that $G \prec F$. Moreover, since the differential equation

$$
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{\mu(\beta+\alpha-1)}=\phi\left(G(z), G^{\prime}(z)\right)
$$

has a univalent solution G, it is the best subordinant. This completes the proof of Theorem 3.3.

Theorem 3.4. Let $f, g \in \Sigma$ and

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta,\left(\phi(z)=\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} ; z \in \mathbb{U}\right) \tag{35}
\end{equation*}
$$

$$
(\lambda>0 ; \alpha>0 ; \beta>0 ; \mu>0)
$$

where δ is given by (29). If the function

$$
\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}
$$

is univalent in \mathbb{U} and $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \in \mathcal{F}$, then the superordination condition

$$
\begin{equation*}
\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(g)(z)}{Q_{\alpha, \beta}^{\lambda}(g)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \tag{36}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}(g)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \tag{37}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}$ is the best subordinant.

Proof. The proof is similar to that of Theorem 3.3.
Combining the above-mentioned subordination and superordination results involving the operator $Q_{\alpha, \beta}^{\lambda}$ the following "Sandwich-type result" is derived.

Theorem 3.5. Let $f, g_{j} \in \Sigma(j=1,2)$ and

$$
\mathfrak{R}\left\{1+\frac{z \phi_{j}^{\prime \prime}(z)}{\phi_{j}^{\prime}(z)}\right\}>-\delta,
$$

where

$$
\begin{aligned}
& \phi_{j}(z)=\left(\frac{Q_{\alpha-1, \beta}^{\lambda}\left(g_{j}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{j}\right)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{j}\right)(z)\right)^{\mu} \\
& (j=1,2 ; z \in \mathbb{U} ; \lambda>0 ; \alpha>1 ; \beta>0 ; \mu>0)
\end{aligned}
$$

and δ is given by (13). If the function

$$
\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}
$$

is univalent in \mathbb{U} and $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \in \mathcal{F}$, then the condition

$$
\begin{align*}
\left(\frac{Q_{\alpha-1, \beta}^{\lambda}\left(g_{1}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)}\right) & \left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha-1, \beta}^{\lambda}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \\
& \prec\left(\frac{Q_{\alpha-1, \beta}^{\lambda}\left(g_{2}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu} \tag{38}
\end{align*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu} \tag{39}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu}$ and $\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu}$ are respectively, the best subordinant and the best dominant.

Theorem 3.6. Let $f, g_{j} \in \Sigma(j=1,2)$ and
$\mathfrak{R}\left\{1+\frac{z \phi_{j}^{\prime \prime}(z)}{\phi_{j}^{\prime}(z)}\right\}>-\delta,\left(\phi_{j}(z)=\left(\frac{Q_{\alpha, \beta}^{\lambda+1}\left(g_{j}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{j}\right)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{j}\right)(z)\right)^{\mu} ; z \in \mathbb{U}\right)$,

$$
(\lambda>0 ; \alpha>0 ; \beta>0 ; \mu>0)
$$

where δ is given by (29). If the function

$$
\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu}
$$

is univalent in \mathbb{U} and $\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \in \mathcal{F}$, then the condition

$$
\begin{align*}
\left(\frac{Q_{\alpha, \beta}^{\lambda+1}\left(g_{1}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)}\right) & \left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu} \prec\left(\frac{Q_{\alpha, \beta}^{\lambda+1}(f)(z)}{Q_{\alpha, \beta}^{\lambda}(f)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \\
& \prec\left(\frac{Q_{\alpha, \beta}^{\lambda+1}\left(g_{2}\right)(z)}{Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)}\right)\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu} \tag{40}
\end{align*}
$$

implies that

$$
\begin{equation*}
\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}(f)(z)\right)^{\mu} \prec\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu} \tag{41}
\end{equation*}
$$

where $\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{1}\right)(z)\right)^{\mu}$ and $\left(z Q_{\alpha, \beta}^{\lambda}\left(g_{2}\right)(z)\right)^{\mu}$ are respectively, the best subordinant and the best dominant.

Acknowledgements

The authors would like to thank the referee for his/her careful reading and making some valuable comments which have essentially improved the presentation of this paper.

REFERENCES

[1] I. B. Jung - Y. C. Kim - H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1) (1993), 138-147.
[2] A. Y. Lashin, On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math. Appl. 59 (2009), 524-531.
[3] S. S. Miller - P.T. Mocanu, Differential subordination and univalent functions, Michigan Math. J. 28 (2) (1981), 157-171.
[4] S. S. Miller - P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations J. Different. Eq. 56 (3) (1985), 297-309.
[5] S. S. Miller - P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc, New York and Basel, 2000.
[6] S. S. Miller - P. T. Mocanu, Subordination of differential superordinations Complex Var. Theory Appl. 48 (10) (2003), 815-826.
[7] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
[8] Z-G. Wang - Z-H. Liu - Y. Sun, Some subclasses of meromorphic functions associated with a family of integral operators, J. Inequal. Appl. 18 (2009), 1-18.
H. E. DARWISH

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura 35516, Egypt.
e-mail: Darwish333@yahoo.com
A. Y. LASHIN

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura 35516, Egypt.
e-mail: aylashin@mans.edu.eg
S. M. SOILEH

Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura 35516, Egypt.
e-mail: s_soileh@yahoo.com

