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REDUCED SECOND ZAGREB INDEX OF BICYCLIC GRAPHS
WITH PENDENT VERTICES

SÜLEYMAN EDIZ

Reduced second Zagreb index has been defined recently. In this pa-
per we characterized extremal bicyclic graphs with pendent vertices with
respect to this novel index.

1. Introduction

Let G be a simple connected graph with n vertices and m edges. dv is the number
of edges incident to the vertex v. A vertex of degree one is said to be a pendent
vertex. Unicyclic graphs are connected graphs with n vertices and n edges.
Bicyclic graphs are connected graphs with n vertices and n+1 edges.We write ∆

and δ for the largest and the smallest of all degrees of vertices of G, respectively.
The first Zagreb and the second Zagreb index of the graph G are defined as:

M1 = M1(G) = ∑
v∈V (G)

d2
v (1)

and
M2 = M2(G) = ∑

uv∈E(G)

du dv (2)
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respectively. In formula (2), uv denotes an edge connecting the vertices u and v.
In 1972, the quantities M1 and M2 were found to occur within certain approx-
imate expressions for the total π-electron energy [19]. The first Zagreb index
satisfies the identity

M1(G) = ∑
uv∈E(G)

(du +dv) (3)

where the notation is same as in equation(2) [20]. In view of the extensive
research on the two Zagreb indices, in particular, their difference M2−M1 , the
difference between the equations (2) and (3 ), has been never examined. In [17],
Furtula et al. examined M2−M1 and proposed a new degree based topological
index, named it ‘Reduced second Zagreb index’ and characterized the maximum
trees with respect to reduced second Zagreb index. Reduced second Zagreb
index is defined [17] as follows;

RM2 = RM2(G) = ∑
uv∈E(G)

(du−1)(dv−1) = M2(G)−M1(G)+m (4)

where m denotes the number of edges. Zagreb indices of bicyclic graphs are
investigated in [2–4, 9]. For other topological indices of bicyclic graphs see in
[1, 5–8, 10–16]. RM2 index of unicyclic graphs were investigated in [18]. In
this paper we investigate maximum and minimum bicyclic graphs with respect
to RM2 index.

2. Minimum and maximum RM2 index of bicyclic graphs

Let DC denote all bicyclic graphs with n vertex , n+ 1 edges and k pendent
vertices (here, DC stands for double cycle). The arrangement of cycles of DC
has at most three possible cases.
Case 1: DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb) is the set of G ∈ DC in which the
cycles Ca and Cb have only one common vertex. Here,

k1,k2, . . . ,ka,s2,s3, . . . ,sb

denote the number of pendent vertices of corresponding

v1,v2, . . . ,va,v2
′,v3

′, . . . ,vb
′

vertices. See Figure 1.
Case 2: DCl

a,b (k1,k2, . . . ,ka,r1,r2, . . . ,rl,s1,s2, . . . ,sb) is the set of G ∈ DC
in which the cycles Ca and Cb have no common vertex for l ≥ 0. Here

k1,k2, . . . ,ka,r1,r2, . . . ,rl,s1,s2, . . . ,sb
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Figure 1: The first class of bicyclic graphs with k pendent vertices:
DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb)

denote the number of pendent vertices of corresponding

v1,v2, . . . ,va,n1,n2, . . . ,nl,u1,u2, . . . ,ub

vertices. See Figure 2.

Figure 2: The second class of bicyclic graphs with k pendent vertices:
DCl

a,b (k1,k2, . . . ,ka,r1,r2, . . . ,rl,s1,s2, . . . ,sb)

Case 3: DCl
a+b (k1,k2, . . . ,ka−l,r1,r2, . . . ,rl,s2, . . . ,sb−l−1) is the set of G ∈

DC in which the cycles Ca and Cb have a common path of length l+1 for l ≥ 0.
Here

k1,k2, . . . ,ka−l,r1,r2, . . . ,rl,s2, . . . ,sb−l−1

denote the number of pendent vertices of corresponding

v1,v2, . . . ,va−l,n1,n2, . . . ,nl,v2
′,v3

′, . . . ,v′b−l−1

vertices. See Figure 3.
With direct calculations, we get the following propositions.
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Figure 3: The third class of bicyclic graphs with k pendent vertices:
DCl

a+b (k1,k2, . . . ,ka,r1,r2, . . . ,rl,s2, . . . ,sb−l−1)

Proposition 2.1. Let DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb) be the set of G ∈ DC.
Then

RM2(G) = (k1 +3)(k2 + ka + s2 + sb +4)+(k2 +1)(k3 +1)+ . . .

+(ka−1 +1)(ka +1)+(s2 +1)(s3 +1)+ · · ·+(sb−1 +1)(sb +1) .

Proposition 2.2. Let DCl
a,b (k1,k2, . . . ,ka,r1,r2, . . . ,rl,s1,s2, . . . ,sb) be the set of

G ∈ DC then

(a) RM2(G) = (ka + k2 +2)+(k1 +2)(s1 +2)+(k2 +1)(k3 +1)+ . . .

+(ka−1 +1)(ka +1)+(s2 +1)(s3 +1)+ · · ·+(sb−1 +1)(sb +1)

for l = 0.

(b) RM2 (G) = (k1 +2)(k2 + ka + r1 +3)+(k2 +1)(k3 +1)+ . . .

+(ka−1 +1)(ka +1)+(r1 +1)(r2 +1)+ · · ·+(rl−1 +1)(rl +1)

+(s1 +2)(s2 + sb + rl +3)+(s2 +1)(s3 +1)+ · · ·+(sb−1 +1)(sb +1)

for l ≥ 1.

Proposition 2.3. Let DCl
a+b (k1,k2, . . . ,ka−l,r1,r2, . . . ,rl,s2, . . . ,sb−l−1) be the
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set of G ∈ DC then

(a) RM2 (G) = (k1 +2)(k2 + s2 + r1 +3)

+(ka−l +2)(ka−l−1 + sb−l−1 + rl +3)

+(k2 +1)(k3 +1)+ · · ·+(ka−l−2 +1)(ka−l−1 +1)+

(s2 +1)(s3 +1)+ · · ·+(sb−l−2 +1)(sb−l−1 +1)

+(r1 +1)(r2 +1)+ . . . .+(rl−1 +1)(rl +1)

for 1≤ l ≤ n−4.

(b) RM2(G) = (k1 +2)(k2 + s2 +2)+(k2 +1)(k3 +1)+ . . .

+(ka−2 +1)(ka−1 +1)+(ka +2)(ka−1 + sb−1 +2)

+(s2 +1)(s3 +1)+ · · ·+(sb−2 +1)(sb−1 +1)+(k1 +2)(ka +2)

for l = 0.

Lemma 2.4. Let G1 ∈ DCa,b with no pendent vertex and n vertices. Let G2 ∈
DCa,b with k ≥ 1 pendent vertices and n vertices. Then RM2(G1)< RM2(G2).

Proof. Let k = 1. Let uvl be a path of G1 where all degrees are 2. Then, we
obtain G2 from G1 by taking u attached to v as a pendent vertex. In this case
RM2(G2)−RM2(G1) = 1 > 0. On the other hand, let uvl be a path of G1 and
v = v1 so that dv = 4. Then, we obtain G2 from G1 by taking u attached to v as a
pendent vertex. In this case RM2(G2)−RM2(G1) = 6. The other cases for k≥ 2
are similar.

Now, we give the following lemmas whose proofs are similar to that of
Lemma 2.4.

Lemma 2.5. Let G1 ∈ DCl
a,b with no pendent vertex and n vertices. Let G2 ∈

DCl
a,b with k ≥ 1 pendent vertices and n vertices. Then RM2(G1)< RM2(G2).

Lemma 2.6. Let G1 ∈ DCl
a+b with no pendent vertex and n vertices. Let G2 ∈

DCl
a+b with k ≥ 1 pendent vertices and n vertices. Then RM2(G1)< RM2(G2).

Corollary 2.7. (a) Let G ∈ DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb). Then the mini-
mum RM2 index of G is DCa,b (0,0, . . . ,0).
(b) Let G ∈ DCl

a,b (k1,k2, . . . ,ka,r1,r2, . . . ,rl,s1,s2, . . . ,sb). Then the minimum
RM2 index of G is DCl

a,b (0,0, . . . ,0).
(c) Let G∈DCl

a+b (k1,k2, . . . ,ka−l,r1,r2, . . . ,rl,s1,s2, . . . ,sb−l−1). Then the min-
imum RM2 index of G is DCl

a+b (0,0, . . . ,0).
Notice that in all three cases G has no pendent vertices.
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Proposition 2.8. Let G ∈ DCa,b (0,0, . . . ,0). Then the minimum RM2 index is
RM2(G) = n+9.

Proof. From Proposition 2.1 and Corollary 2.7, RM2(G) = a+ b+ 8. Since
a+b = n+1, the desired result is acquired.

Proposition 2.9. Let G ∈ DCl
a,b (0,0, . . . ,0). Then the minimum RM2 index is

RM2(DCl
a,b) = n+7 for l ≥ 1.

Proof. From Proposition 2.2b and Corollary 2.7, RM2(G) = a+b+ l+7. Since
n = a+b+ l, the desired result is acquired.

Proposition 2.10. Let G ∈DCl
a+b (0,0, . . . ,0). Then the minimum RM2 index is

RM2(DCl
a+b) = n+7 for l ≥ 1.

Proof. From Proposition 2.3a and Corollary 2.7, RM2(G) = a+b− l+5. Since
a+b− l = n+2, the desired result is acquired.

Definition 2.11. Let Ξ be a family of the set DC3,3 (k1,k2,k3,s2,s3) such that
s2 = s3 = 0 and ki− k j = 0 or ki− k j = 1 for 1 ≤ i ≤ j ≤ 3. Or by symmetry,
k2 = k3 = 0 and si− s j = 0 or si− s j = 1 for 1≤ i≤ j ≤ 3. See Figure 4 .

Figure 4: G = DC3,3 (r−1,r−1,r−2,0,0) ∈ Ξ for n = 3r+1, r ≥ 2.

Proposition 2.12. Let G ∈ Ξ with n vertices and n−5 pendent vertices. Then

(a) RM2 (G) = 3r2 +2r+2 f or n = 3r,r ≥ 2.

(b) RM2 (G) = 3r2 +4r+3 f or n = 3r+1,r ≥ 2.

(c) RM2 (G) = 3r2 +6r+1 f or n = 3r+2,r ≥ 2.

Proof. We only prove the case (b), the other cases are similar. From Proposition
2.1 and Figure 4, we can directly write

RM2 (G) = (r+2)(r+ r−1+2)+ r (r−1)+1

= (r+2)(2r+1)+ r2− r+1 = 3r2 +4r+3
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Lemma 2.13. Let a,b,c,d,e be non-negative integers and a+ b+ c+ d = e.
Then ab+ cd takes its maximum value when a =

⌈ e
2

⌉
, b =

⌊ e
2

⌋
and c = d = 0.

Or by symmetry c =
⌈ e

2

⌉
, d =

⌊ e
2

⌋
and a = b = 0.

Lemma 2.14. Let a,b,c,d,e, f be non-negative integers and a+b+c+d+e =
f . Then ab+ ac+ de takes its maximum value when e =

⌈
f
2

⌉
, d =

⌊
f
2

⌋
and

a = b = c = 0. Or by symmetry a =
⌈

f
2

⌉
, b+ c =

⌊
f
2

⌋
and d = e = 0.

Proof. Let b+ c = x. Then ab+ ac+ ed = a(b+ c) + ed = ax + ed. From
Lemma 2.13, the desired is result acquired.

Proposition 2.15. Let G ∈ DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb) with a,b ≥ 4 and
k2 + ka + s2 + sb = Ω. Then, the maximum RM2 index of G is
DCa,b (k1,k2, . . . ,ka,s2,s3, . . . ,sb) such that k3 = k4 = · · ·= ka−1 = 0 , s3 = s4 =
· · ·= sb−1 = 0 and k1 = Ω or |k1−Ω|= 1.

Proof. By Proposition 2.1,

RM2(G) = (k1 +3)(k2 + ka + s2 + sb +4)+(k2 +1)(k3 +1)+ . . .

+(ka−1 +1)(ka +1)+(s2 +1)(s3 +1)+ · · ·+(sb−1 +1)(sb +1)

= k1k2 + k1ka + k1s2 + k1sb +4k1 +3k2 +3ka +3s2 +3sb +12

+ k2k3 + k2 + k3 +1+ · · ·+ ka−1ka + ka−1 + ka +1+ s2s3 + s2 + s3 +1+ . . .

+ sb−1sb + sb−1 + sb +1

= k1k2 + k1ka + k1s2 + k1sb + k2k3 + k3k4 + · · ·+ ka−2ka−1 + ka−1ka

+ s2s3 + s3s4 + · · ·+ sb−2sb−1 + sb−1sb +4k1 +4k2 +2k3 + · · ·+2ka−1

+4ka +4s2 +2s3 + · · ·+2sa−1 +4sb +a+b+8 =

= k1k2 + k1ka + k1s2 + k1sb + k2k3 + k3k4 + · · ·+ ka−2ka−1 + ka−1ka

+ s2s3 + s3s4 + · · ·+ sb−2sb−1 + sb−1sb

+2(k1 + k2 + · · ·+ ka + s2 + s3 + · · ·+ sb)

+2(k1 + k2 + ka + s2 + sb)+a+b+8

Since k1 + k2 + · · ·+ ka + s2 + s3 + · · ·+ sb = n−a−b+1, then
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RM2 (G) = k1k2 + k1ka + k1s2 + k1sb + k2k3 + k3k4 + · · ·+ ka−2ka−1 + ka−1ka

+ s2s3 + s3s4 + · · ·+ sb−2sb−1 + sb−1sb +2n−2a−2b+2

+2(k1 + k2 + ka + s2 + sb)+a+b+8

= k1 (k2 + ka + s2 + sb)+ k2k3 + k3k4 + · · ·+ ka−2ka−1 + ka−1ka

+ s2s3 + s3s4 + · · ·+ sb−2sb−1 + sb−1sb

+2(k1 + k2 + ka + s2 + sb)+2n−a−b+10

= k1Ω+ k2k3 + k3k4 + · · ·+ ka−2ka−1 + ka−1ka

+ s2s3 + s3s4 + · · ·+ sb−2sb−1 + sb−1sb +2(k1 +Ω)+2n−a−b+10.

Clearly from the last equality by using Lemma 2.13, RM2 takes its maximum
value when k3 = k4 = · · · = ka−1 = 0 , s3 = s4 = · · · = sb−1 = 0 and k1 = Ω or
|k1−Ω|= 1.

Theorem 2.16. Let G ∈ Ξ with n vertices and n− 5 pendent vertices. Then G
has maximum RM2 value among the all graphs belong to DCa,b with n vertices.

Proof. We only consider n = 3r + 1 for r ≥ 2. The other cases are similar.
Firstly, we show that G has maximum RM2 value among all the graphs belong-
ing to DC3,3 (k1,k2,k3,s2,s3). From the definition of RM2 index,

RM2 (G) = (k1 +3)(k2 + k3 + s2 + s3 +4)+(k2 +1)(k3 +1)+(s2 +1)(s3 +1)

= (k1 +3)(k2 + k3 + s2 + s3 +4)+(k2 + k3 + s2 + s3)+ k2k3 + s2s3 +2

Since k2 + k3 + s2 + s3 = n− k1−5 = 3r− k1−4 then

RM2 (G) = (k1 +3)(3r− k1)+3r− k1−4+ k2k3 + s2s3 +2.

By Lemma 2.13, k2k3 + s2s3 takes its maximum value when k2 = k3 or k2 =
k3 +1 and s2 = s3 = 0. Or by symmetry s2 = s3 or s2 = s3 +1 and k2 = k3 = 0.
We only consider the first part of the Lemma 2.13. The second part can be
handled similarly. Then

RM2 (G) = f (k1,k2,k3) = (k1 +3)(3r− k1)+3r− k1−4+ k2k3 +2.

Since k1 + k2 + k3 = 3r−4, then

g(k1,k2,k3) = 3r−4− k1− k2− k3 = 0 (5)

can be written. By using the Lagrange multipliers method, we obtain; 3r−2k1−
4 = k2 and 3r− 2k1− 4 = k3. Thus, k2 + k3 = 6r− 4k1− 8. From Equation 5,
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k2 + k3 = 3r− k1−4. And from these last two equalities k1 = r−1. By Defini-
tion 2.11, k2 = r−1 and k3 = r−2.
Secondly, we show that G has maximum RM2 value among all the graphs be-
longing to DCa,b (k1, . . . ,ka,s2, . . . ,sb) for a+ b ≥ 7 with n vertices. There are
two cases in this situation.
Case 1: Let a = 4 and b = 3. See Figure 5. From the definition of RM2 index,

RM2 (G) = (k1 +3)(k2 + k4 + s2 + s3 +4)+(k2 +1)(k3 +1)

+(k3 +1)(k4 +1)+(s2 +1)(s3 +1) .

Since k2 + k4 + s2 + s3 = n−6− k1 = 3r−5− k1, then

RM2 (G) = (k1 +3)(3r− k1−1)+ k2 + k4 + s2 + s3

+ k3 + k2k3 + k3k4 + s2s3 +3

= (k1 +3)(3r− k1−1)+3r−5− k1 + k3 + k2k3 + k3k4 + s2s3 +3.

By Lemma 2.14, k2k3 + k3k4 + s2s3 takes its maximum value when k2 = k3 =
k4 = 0 and s2 = s3 or s2 = s3 +1. Therefore

RM2 (G) = f (k1,s2,s3) = (k1 +3)(3r− k1−1)+3r−5− k1 + s2s3 +3.

Since s2 + s3 = 3r−5− k1, then

g(k1,s2,s3) = 3r−5− k1− s2− s3 = 0 (6)

can be written. By using the Lagrange multipliers method, we get s2 = 3r−
k1− 5 and s3 = 3r− k1− 5. Thus, s2 + s3 = 6r− 4k1− 10. From Equation 6,
s2 + s3 = 3r− k1− 5. And from these last two equalities k1 = r− 1, s2 = s3 =
r−2 can be found. Thus,

RM2 (G) = (r+2)(r−2+ r−2+4)+(r−1)2 +2

= r2 +2r+ r2−2r+1+2 = 2r2 +3.

This last value is smaller than that of Proposition 2.12 (b). For a≥ 5 and b = 3
the proof is similar.

Case 2: Let a≥ 4 and b≥ 4. By Proposition 2.15 the proof is clear.

Now, we begin to investigate the maximum RM2-index of the second class
of bicyclic graphs with k pendent vertices.

Proposition 2.17. Let G ∈ DC0
3,3(k1,k2,k3,s1,s2,s3) with n vertices and n− 6

pendent vertices. Then G = Ψ = DC0
3,3(k1,0,0,s1,0,0), with k1 = s1 or |k1− s1|

= 1, has maximum RM2 index among all the graphs belonging to
DC0

3,3(k1,k2,k3,s1,s2,s3).
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Figure 5: G = DC4,3 (k1,k2,k3,s2,s3) for the Case 1 of Theorem 2.16

Proof. From Proposition 2.2 (a),

RM2 (G) = (k1 +2)(s1 +2)+(k1 +2)(k2 + k3 +2)+(k2 +1)(k3 +1)

+(s1 +2)(s2 + s3 +2)+(s2 +1)(s3 +1)

= k1s1 + k1 (k2 + k3)+ s1 (s2 + s3)+ k2k3 + s2s3 +14.

f (k1,k2,k3,s1,s2,s3) = k1s1 + k1 (k2 + k3)+ s1 (s2 + s3)+ k2k3 + s2s3 +14.

Since k1 + k2 + k3 + s1 + s2 + s3 = n−6 then,

g(k1,k2,k3,s1,s2,s3) = n− k1− k2− k3− s1− s2− s3−6 = 0.

And by using the Lagrange multipliers method k2 = k3 = 0 , s2 = s3 = 0, k1 = s1
or |k1− s1|= 1.

Corollary 2.18. Let Ψ ∈ DC0
3,3(k1,k2,k3,s1,s2,s3). Then

RM2 (Ψ) =

⌈
n−2

2

⌉⌊
n−2

2

⌋
.

Proof. Without loss of generality, from Proposition 2.17, let k1 =
⌈n−6

2

⌉
and

s1 =
⌊n−6

2

⌋
. Then with direct calculations the desired result is acquired.

Theorem 2.19. Let Ψ∈DC0
3,3(k1,k2,k3,s1,s2,s3) with n vertices and n−6 pen-

dent vertices. Then Ψ has maximum RM2 value among all the graphs belonging
to DCl

a,b with n vertices and k pendent vertices.

Proof. From Proposition 2.2, Lemma 2.14, Proposition 2.17 and Corollary 2.18
the desired result is acquired.

Now, we begin to investigate the maximum RM2-index of the third class of
bicyclic graphs with k pendent vertices.
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Proposition 2.20. Let G ∈ DC0
3+3(k1,k2,k3,s2) with n vertices and n− 4 pen-

dent vertices. Then G = Z = DC0
3+3(k1,k2,k3,s2), with |k1− k3| ≤ 1 and∣∣k j− (k2 + s2)

∣∣ ≤ 1 ( j = 1 or j = 3), has maximum RM2 index among all the
graphs belonging to DC0

3+3(k1,k2,k3,s2).

Proof. From Proposition 2.3 (b),

RM2 (G) = (k1 + k3 +4)(k2 + s2 +2)+(k1 +2)(k3 +2) .

If we put k2 + s2 = x then

RM2 (G) = f (k1,k3,x) = k1x+ k3x+4x+ k1k3 +2k1 +2k3 +12.

Since k1+k3+x= n−4 then g(k1,k3,x)= n−k1−k3−x−4= 0 can be written.
And by using the Lagrange multipliers method we get k1 = k3 = x = n−4

3 . Thus,
|k1− k3| ≤ 1 and |k1,3− (k2 + s2)| ≤ 1.

Proposition 2.21. Let G ∈ Z with n vertices and n−4 pendent vertices. Then

(a) RM2 (G) = 3r2 +4r+1 f or n = 3r,r ≥ 2.

(b) RM2 (G) = 3r2 +6r+3 f or n = 3r+1,r ≥ 2.

(c) RM2 (G) = 3r2 +8r+5 f or n = 3r+2,r ≥ 2.

Proof. By Proposition 2.3 and Proposition 2.20 we get the desired result.

Theorem 2.22. Let Z ∈ DC0
3+3(k1,k2,k3,s2) with n vertices and n− 4 pendent

vertices. Then Z has maximum RM2 value among all the graphs belonging to
DCl

a+b with n vertices and k pendent vertices.

Proof. From Proposition 2.3, Lemma 2.14, Proposition 2.20 and Proposition
2.21 the desired result is obtained.

And now, from Theorem 2.16 , Theorem 2.19 and Theorem 2.22 we can
state the following corollary.

Corollary 2.23. Among all the bicyclic graphs with n vertices and k pendent
vertices Z = DC0

3+3(k1,k2,k3,s2), with |k1− k3| ≤ 1 and
∣∣k j− (k2 + s2)

∣∣ ≤ 1
( j = 1 or j = 3), has maximum RM2 index.
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[19] I. Gutman - N. Trinajstić, Graph theory and molecular orbitals. Total π-electron

energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1971), 535–538.
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