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COEFFICIENT BOUNDS FOR A GENERAL SUBCLASS OF
BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA - SIBEL YALÇIN

In the present investigation, we introduce and investigate a new sub-
class of the function class Σ of bi-univalent functions defined in the open
unit disc. We find estimates on the coefficients |a2| and |a3| for functions
in the function class SΣ (n,h,λ ). The results presented in this paper im-
prove or generalize the recent works of Jothibasu [13] and other authors.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z|< 1}

that have the form

f (z) = z+
∞

∑
n=2

anzn (1)

and let S be the class of all functions from A which are univalent in U .
The Koebe one-quarter theorem [8] states that the image of U under every

function f from S contains a disk of radius 1
4 . Thus every such univalent function

has an inverse f−1 which satisfies

f−1 ( f (z)) = z , (z ∈U)
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and

f
(

f−1 (w)
)
= w ,

(
|w|< r0 ( f ) , r0 ( f )≥ 1

4

)
,

where

f−1 (w) = w −a2w2 +
(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .

A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f−1 (z)
are univalent in U.

Let Σ denote the class of bi-univalent functions defined in the unit disk U .
For a brief history and interesting examples of functions in the class Σ; see [3].

The research into Σ was started by Lewin ([15]). It focused on problems
connected with coefficients and obtained the bound for the second coefficient.
Several authors have subsequently studied similar problems in this direction (see
[4], [19]). Thus, following Brannan and Taha [3], a function f (z) ∈ A is said to
be in the class S?

Σ
(α) of strongly bi-starlike functions of order α (0 < α ≤ 1) if

each of the following conditions is satisfied:

f ∈ Σ,

∣∣∣∣∣arg

(
z f
′
(z)

f (z)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, z ∈U)

and ∣∣∣∣∣arg

(
wg

′
(w)

g(w)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, w ∈U)

and is said to be in the class KΣ (α) of strongly bi-convex functions of order α

(0 < α ≤ 1) if each of the following conditions is satisfied:

f ∈ Σ,

∣∣∣∣∣arg

(
1+

z f
′
(z)

f (z)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, z ∈U)

and ∣∣∣∣∣arg

(
1+

wg
′
(w)

g(w)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, w ∈U)

where g is the extension of f−1 to U . The classes S?
Σ
(α) and KΣ (α) of bi-

starlike functions of order α and bi-convex functions of order α , corresponding
to the function classes S? (α) and K (α), were also introduced analogously. For
each of the function classes S?

Σ
(α) and KΣ (α), they found non-sharp estimates

on the initial coefficients. Recently, Srivastava et al. [22] introduced and in-
vestigated subclasses of the bi-univalent functions and obtained bounds for the
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initial coefficients; it was followed by such works as those by Murugunsun-
daramoorthy et al. [18], Frasin and Aouf [9], Çağlar et al. [6] and others (see,
for example, [1], [7], [14], [16], [17], [20], [24]).

Not much is known about the bounds on the general coefficient |an| for
n≥ 4. In the literature, the only a few works determining the general coefficient
bounds |an| for the analytic bi-univalent functions ([2], [5], [10], [11], [12]). The
coefficient estimate problem for each of |an| ( n ∈ N\{1,2} ; N= {1,2,3, ...})
is still an open problem.

Let f ∈ A. We define the differential operator Dn, n ∈N0 =N∪{0} by (see
[21])

D0 f (z) = f (z) ;

D1 f (z) = D f (z) = z f ′(z);
...

Dn f (z) = D1 (Dn−1 f (z)
)
.

In this paper, by using the method [23] different from that used by other
authors, we obtain bounds for the coefficients |a2| and |a3| for the subclasses
of bi-univalent functions considered Jothibasu and get more accurate estimates
than that given in [13].

Definition 1.1. Let the functions h, p : U → C be so constrained that

min{Re(h(z)) ,Re(p(z))}> 0

and

h(0) = p(0) = 1.

Definition 1.2. A function f ∈ Σ is said to be SΣ (n,h,λ ) , n∈N0 and 0≤ λ < 1,
if the following conditions are satisfied:

Dn+1 f (z)
(1−λ )Dn f (z)+λDn+1 f (z)

∈ h(U) (z ∈U) (2)

and
Dn+1g(w)

(1−λ )Dng(w)+λDn+1g(w)
∈ p(U) (w ∈U) (3)

where g(w) = f−1 (w).
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2. Coefficient Estimates

Theorem 2.1. Let f given by (1) be in the class SΣ (n,h,λ ) , n ∈ N0 and 0 ≤
λ < 1. Then

|a2| ≤min

{√
|h′ (0)|2 + |p′ (0)|2

2(1−λ )2 4n
,

√
|h′′ (0)|+ |p′′ (0)|

4 |(λ 2−1)4n +2(1−λ )3n|

}
(4)

and

|a3| ≤min



|h′ (0)|2 + |p′ (0)|2

2(1−λ )2 4n
+
|h′′ (0)|+ |p′′ (0)|

8(1−λ )3n ,

[
4(1−λ )3n +

(
λ 2−1

)
4n
]
|h′′ (0)|+

(
1−λ 2

)
4n |p′′ (0)|

8 |(λ 2−1)4n +2(1−λ )3n|(1−λ )3n


.

(5)

Proof. Let f ∈ SΣ (n,h,λ ) and 0≤ λ < 1. It follows from (2) and (3) that

Dn+1 f (z)
(1−λ )Dn f (z)+λDn+1 f (z)

= h(z) (6)

and
Dn+1g(w)

(1−λ )Dng(w)+λDn+1g(w)
= p(w) , (7)

where h(z) and p(w) satisfy the conditions of Definiton 1. Furthermore, the
functions h(z) and p(w) have the following Taylor-Maclaurin series expan-
sions:

h(z) = 1+h1z+h2z2 + · · ·

and
p(w) = 1+ p1w+ p2w2 + · · · ,

respectively. It follows from (6) and (7) that

(1−λ )2na2 = h1, (8)(
λ

2−1
)

4na2
2 +2(1−λ )3na3 = h2, (9)

and
−(1−λ )2na2 = p1, (10)

2(1−λ )3n (2a2
2−a3

)
+
(
λ

2−1
)

4na2
2 = p2. (11)

From (8) and (10) we obtain
h1 =−p1, (12)
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and
2(1−λ )2 4na2

2 = h2
1 + p2

1. (13)

By adding (9) to (11), we find that[
2
(
λ

2−1
)

4n +4(1−λ )3n]a2
2 = h2 + p2, (14)

which gives us the desired estimate on |a2| as asserted in (4).
Next, in order to find the bound on |a3|, by subtracting (11) from (9), we

obtain
4(1−λ )3na3−4(1−λ )3na2

2 = h2− p2. (15)

Then, in view of (13), (14) and (15) , it follows that

a3 =
h2

1 + p2
1

2(1−λ )2 4n
+

h2− p2

4(1−λ )3n

and
a3 =

h2 + p2

2(λ 2−1)4n +4(1−λ )3n +
h2− p2

4(1−λ )3n .

as claimed. This completes the proof of Theorem 2.1.

3. Corollaries and Consequences

By setting n = 0 and λ = 0 in Theorem 2.1, we get Corollary 3.1 below.

Corollary 3.1. Let the function f (z) given by (1) be in the class SΣ (h)
(0≤ λ < 1). Then

|a2| ≤min


√
|h′ (0)|2 + |p′ (0)|2

2
,

√
|h′′ (0)|+ |p′′ (0)|

4


and

|a3| ≤min

{
|h′ (0)|2 + |p′ (0)|2

2
+
|h′′ (0)|+ |p′′ (0)|

8
,
3 |h′′ (0)|+ |p′′ (0)|

8

}
.

By setting n = 1 and λ = 0 in Theorem 2.1, we get Corollary 3.2 below.

Corollary 3.2. Let the function f (z) given by (1) be in the class KΣ (h)
(0≤ λ < 1). Then

|a2| ≤min


√
|h′ (0)|2 + |p′ (0)|2

8
,

√
|h′′ (0)|+ |p′′ (0)|

8
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and

|a3| ≤min

{
|h′ (0)|2 + |p′ (0)|2

8
+
|h′′ (0)|+ |p′′ (0)|

24
,
2 |h′′ (0)|+ |p′′ (0)|

12

}
.

Corollary 3.3. If

h(z) = p(z) =
(

1+ z
1− z

)α

= 1+2αz+2α
2z2 + ... (0 < α ≤ 1) ,

then inequalities (4) and (5) become

|a2| ≤min

{
2α

(1−λ )2n ,

√
2

|(λ 2−1)4n +2(1−λ )3n|α

}

and

|a3| ≤min

{
4α2

(1−λ )2 4n
+

α2

(1−λ )3n ,
2α2

|(λ 2−1)4n +2(1−λ )3n|

}
.

Remark 3.4. Putting n = 0 and λ = 0 in Corollary 3.3, we obtain the following
corollary.

Corollary 3.5 (See also [23]). Let the function f (z) given by (1) be in the class
S∗

Σ
(α). Then

|a2| ≤
√

2α

and
|a3| ≤ 2α

2.

The estimates on the coefficient |a2| and |a3| of Corollary 3.5 are improvement
of the estimates obtained in [13] and [18].

Remark 3.6. Putting n = 1 and λ = 0 in Corollary 3.3, we obtain the following
corollary.

Corollary 3.7. Let the function f (z) given by (1) be in the class KΣ (α). Then

|a2| ≤ α

and
|a3| ≤ α

2.

The estimate on the coefficient |a3| of Corollary 3.7 is improvement of the esti-
mates obtained in [13].
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Corollary 3.8. If

h(z) = p(z) =
1+(1−2β )z

1− z
= 1+2(1−β )z+2(1−β )z2+ · · · (0≤ β < 1) ,

then inequalities (4) and (5) become

|a2| ≤min

{
2(1−β )

(1−λ )2n ,

√
2(1−β )

|(λ 2−1)4n +2(1−λ )3n|

}
.

and

|a3| ≤min

{
4(1−β )2

(1−λ )2 4n
+

1−β

(1−λ )3n ,
2(1−β )

|(λ 2−1)4n +2(1−λ )3n|

}
.

Remark 3.9. Putting n = 0 and λ = 0 in Corollary 3.8, we obtain the following
corollary.

Corollary 3.10. Let the function f (z) given by (1) be in the class KΣ (β ). Then

|a2| ≤
√

2(1−β )

and
|a3| ≤ 2(1−β ) .

The estimate on the coefficient |a3| of Corollary 3.10 is improvement of the esti-
mates obtained in [13] and [18].

Remark 3.11. Further, taking n = 1 and λ = 0 in Corollary 3.8, we obtain the
following corollary.

Corollary 3.12. Let the function f (z) given by (1) be in the class KΣ (β ). Then

|a2| ≤
√

1−β

and
|a3| ≤ (1−β ) .

The estimate on the coefficient |a3| of Corollary 3.12 is improvement of the
estimates obtained in [3] and [13].
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