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SOME SUBORDINATION AND SUPERORDINATION RESULTS
FOR THE GENERALIZED HYPERGEOMETRIC FUNCTIONS
ASSOCIATED WITH RUSCHEWEYH DERIVATIVE

ABDUL RAHMAN S. JUMA - FATEH S. AZIZ

Our purpose in this paper is to define a linear operator F, , s[ot,m],
then applying it to obtain some results on subordination and superordi-
nation preserving properties of holomorphic multivalent functions in the
open unit disc. And sandwich-type result for these holomorphic multiva-
lent functions is also considered.

1. Introduction and definitions

Let A(U) be the class of functions analytic in U = {z € C: |z| < 1} and Ala,n]
be the subclass of A(U) consisting of functions of the form f(z) = a + a,7" +
an112"H 4 ... with A, = A[0,1] and A = A[1,1]. Let A(p) denote the class of
all analytic functions of the form

fO=2+ Y a (peN={123,.}:z€U). M
n=1-+p

Let f and g be members of A(U). The function f(z) is said to be subordinate
to g(z), or g(z) is said to be superordinate to f(z) if there exists a function
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w(z) analytic in U, with w(0) =0 and |w(z)| < 1 (z € U), such that f(z) =

gw(2)) (z€U).
In such a case, we write

f=gorf(z)<g(2) (zeU).

If the function g(z) is univalent in U, then we have (see [8], [9])

f(z) <g(z) (zeU) if and only if f(0)=g(0) and f(U) C g(U).

Definition 1.1 ([8]). Let ¢ : C> x U — C and h(z) be univalent in U. If p(z) is
analytic in U and satisfies the differential subordination:

¢(p(2),2p'(2);2) < h(z) (z€ U), 2)

then p(z) is called a solution of the differential subordination (2). The univalent
function ¢(z) is called a dominant of the solutions of the differential subordina-
tion (2), or more simply a dominant, if p(z) < ¢(z) for all p(z) satisfying (2). A
univalent dominant § that satisfies § < g for all dominants g of (2) is said to be
the best dominant.

Definition 1.2 ([9]). Let ¢ : C> x U — C and let h(z) be analytic in U. If
p and @(p(z),zp'(z);z) are univalent in U and if p(z) satisfies the first order
differential superordination:

h(z) < (p(2),2p'(2):2) (z € V), 3)

then p(z) is called a solution of the differential superordination (3). An analytic
function g(z) is called a subordinant of the solutions of the differential superor-
dination (3), or more simply a subordinant, if ¢(z) < p(z) for all p(z) satisfying
(3). A univalent subordinant § that satisfies g < § for all subordinants g of (3) is
said to be the best subordinant.

Definition 1.3 ([9]). Denote by Q the class of functions f that are analytic and
injective on U \ E(f), where

E(f)={¢ €U :lim /() = =},
and are such that

f(8) #0 (£ € U\E(F)).

Definition 1.4 ([9]). A function L(z,1) (z€ U,t > 0) is said to be a subordination
chain if L(.;) is analytic and univalent in U for all t > 0, L(z;.) is continuously
differentiable on [0, ) for all z € U, and L(z,#;) < L(z,t;) forall 0 <1, <t1,.
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For analytic functions f(z) € A(p), given by (1) and ¢(z) € A(p) given by

(P(Z):Zp“‘ Z ann (pEN:{172737"'};Z6U)‘
n=1+p

The Hadamard product (or convolution) of f(z) and ¢(z), is defined by

)@ =2+ Y anba? = (05 £)(2). 4

n=1+p
For parameters o; € C(j =1,...,¢9) and ; € C\{0,—1,-2,...}(j=1,...,s),

the generalized hypergeometric function ,Fy(et, ..., ¢; Bi,. .., By z) is defined
by the following infinite series (see [3, 4]):

oo

qu(Oll,.--,O‘q,ﬁl""’ﬁs’z) _k;() (ﬁl)k...(ﬁs)k k!

(g<s+1;q,se N, =NU{0};z€ U),

where (a)y is the Pochhammer symbol (or the shifted factorial) defined (in terms
of the Gamma function) by

~ I(a+k) 1 fork=0
ala+1)(a+2)...(a+k—1) forke N={1,2,3,...}.

Corresponding to a function &, (0, ..., 0; B, ..., By z) defined by

hp(Oll,...,(Xq;ﬁl,...,ﬁs;z) :quFs((Xl,...,Olq;ﬁl,...,ﬁs;z).

Liu-Srivastava [7] defined the operator H,, ; s(01, ..., 04 B1, ..., Bs;2) 1 A(p) —
A(p) by the following Hadamard product (or convolution)

HP%S(OC]?'"7aq;B17'~7BS;Z)f(Z) :/’lp(ah-~-,05q;ﬁ1,...,l35;2)*f(Z).

Recently, Miller and Mocanu [9] considered differential superordinations,
as the dual problem of differential subordinations (see [1]). N.E. Cho [2], inves-
tigate the subordination and superordination preserving properties of the linear
operator H), , ;(c;) with the sandwich-type theorems.

For functions f(z) € A(p), in the form (1) using the (m+ p — 1)th order
Ruscheweyh derivative D"+~ for

(" flz))mr!
(m+p—1)!

Dm+pflf(z) —
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and m is any integer such that m > —p (see Kumar and Shukla [5, 6]),
where, it is easy to see that

Zp

D" f(z) = W *

f(2).
We define the linear operator F), , ;[ot1,m] : A(p) — A(p) as follows

Fpqslon,mlf(z) = Hp,q,sloq] « D" 7' £(2)

="+ Y AGup(e1)8(m+p—1,n)a,",

n=1+p
=1 T(B;) i1 T(aj+n—p)
where A = #, Onp(0y) = ==
I D) =1 D(Bj+n—p)
—1 —1
and finally 6(m+p —1,n) = (m—i—p o >
m+p—1

(&)
The importance of this operator rests on the following relation
A(Fpgslon,mlf(2)) = anFygslon +1,m]f(z) — (01 — p)Fp gl mlf(2), (6)

that one can easily verify it by direct calculations and applying (5).

2. A Set of Lemmas

The following lemmas are needed in the proofs of our results.

Lemma 2.1 ([10]). Let B,y € C with B # 0 and let h € A(U) with h(0) = c. If
R{Bh(z)+7} >0 (z€U),
then the solution of the following differential equation

)+ B;fzgzjy —h(2) (€ U: g(0) = o),

is analytic in U and satisfies the inequality
R{Bg(z)+7} >0 (z€U).

Lemma 2.2 ([11]). Suppose that the function H : C* — C satisfies the following
condition

R{H (is,1)} <0,
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for all real s and
2
< 0tsT)
- 2
If the function p(z) = 1 + puz" + pn12" + ... is analytic in U and

R{H(p(2),20'(2))} > 0 (z€V),

(neN).

then
R{pz)} >0 (z€U).
Lemma 2.3 ([12]). Let L(z,t) = ai(t)z+ ax(t)z* + ... with ai(t) # 0 for all
t >0 and tlim |ai(t)| = oo. Suppose that L(.;t) is analytic in U for all t > 0,
—>00
L(z;.) is continuously differentiable on [0,0) for all z € U. If L(z,t) satisfies

zdL(z,t)

J .
SK{ aLé,;) }>0 (zeU;t >0).
dt

and
|L(z,1)| < K,lai(t)],|z] <ro < 1,6 >0,

for some positive constants K, and r,, then L(z,t) is a subordination chain.
Lemma 2.4 ([11]). Let p € Q with p(0) = a and let
Q(Z) = a+anzn +an+lzn+l +...,

be analytic in U with
q(z) Za and n>1.

If q is not subordinate to p, then there exists two points
20 =r,e% €U and &, € QU\E(q),
such that
q(Uro) C p<U)’ Q(Z()) = p(C()) and Z()q/(zo) = mC()p/<Ca) (m > I’l)
Lemma 2.5 ([9]). Let p € Ala, 1] and ¢ : C> — C. Also set
¢(q(2),24'(2)) = h(z) (z€U).
IfL(z,t) = ¢(q(2),tzq'(2)) is a subordination chain and p € Ala,1]N Q, then
h(z) < 9(q(2),24'(2)) (z€U),
implies that

q(z) < p(z) (z€U).

Furthermore, if 9(q(z),24'(z)) = h(z) has a univalent solution q € Q, then q is
the best subordinant.
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3. Main Results

We shall assume in the remainder of this paper that the parameters 1, ¢, j =
l,...,qand B;,j=1,...,s5 (¢,s € N) are positive real numbers and (z € U).

Theorem 3.1. Let the functions f,g € A(p) and

29" (2)
w1 a)
where Fo L@ o e
_ 1DPgs o+ 1,mjg(z p.q,s 01,M|8(Z %
$a)= Fpq.s[0,m]g(2) ( zP ) (®)
and

1+ (4P 1= ()
o
i

U= (a1 >0,n>04;z€U). 9)

Then, the following subordination condition

1

Fp7q7s[a1 + l,m]f(z) (Fp,q,s[alam]f(z)> n

Fpqsl0n,m]f(z) ZP

1

Fpgslou +1,mlg(z) <Fp7q7s[a1,m]g(z))n "
B Fpq.s[00,m]g(z) ZP , (10)

implies that

(W>% . (IWW)”. an

z? P

(Ml;m]g(z))l

Moreover, the function - n s the best dominant.

Proof. Define the functions

F(o) = ([W) and G(z) = ([m> 1)

P P

we assume here, without loss of generality, that G(z) is analytic, univalent on U
and

G'(§)#0 (Ig]=1).

If not, then we replace F(z) and G(z) by F(pz) and G(pz), respectively, with
0 < p < 1. These new functions have the desired properties on U, so we can use
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them in the proof of our result and the results would follow by letting p — 1.
We first show that, if

(zeU), (13)

then
R(g(z)) >0 (z€U).

Now, differentiating the second equation in (12) we get G'(z) =

1 (Fpgslonmg(2)\ 1" 2 (Fpgslon, mlg(2) — p Fygulon,mlg(2)
n % 72p '
(14)

Applying (6) in (14) we obtain

1

2G'(2) = 111 (Fp,q,s[al,m]g(z) > 7

zP qus[al m]
_(al_P)Fp,q,s[alv ]g()_pr,q,s[ala ]g(z)}, (15)

{O‘l pasloa +1,m]g(z)

or

)

ruG@:(@memmv%@WmHmMAA=@WMm@@

zP Fp,q,s[al ) m]g(z)
(16)

_ (Fp,q,s[al,m]g(Z)>" {1+Fp,q7s[a1 +1,mlg(z) — Fpgs[0n,m ]g(Z)}

Fp,q,s[al y m]g(z)

_ FP%S[O‘I + l,m]g(z) <Fp,q,s[051,m}g(z)
Fpqsl0n,m|g(z) zP

Differentiating both sides of (17) yields

W@:G®+%&@@+G@}

_Jn,2G"(2) /
—{( 0 +1)+1}G(z),

f—ma<m

(18)

using (13) in (18) gives

00 ={ La)+1} 00, (19)
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Again differentiating both sides of (19) once more we obtain

o) = { Ll +1} "G+ G E).

1

Now
20"(z) . A(Ga@)+1D)G"(2)+ g d ()G (2)}
e T Ta@+1160)
_1,.@ a2 (2)
G La+1
_ q'(zx)
=q(2) + g+ h(z).

From (7) and (9) yields

wfi 200 @)
{l—i- e —i—n >0,

hence (21) and (22) give that

%{h(z)+01;1}>0.

(20)

2D

(22)

Moreover, by Lemma 2.1, we conclude that the differential equation (21) has a

solution ¢(z) € A(U) with

Let us put

where U is given by (9).
From (21) and (23), we obtain

H(q(z2),2q'(z)) = q(2) + =&

hence
R{H(q(z),24'(z))} > 0.

Now, we proceed to show that

R{H(is,1)} <0 (s € Ret < —%(1 +2)).

(23)

(24)

(25)

(26)
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Indeed, from (23), we have

N t
fR{H(zs,t)}—ER{ZH—iS_i_O?;1 +/,L}

ta 2 ap\2
ol (5

— 27
Ty (27)
_ hy(s)
=R (@
where
h(s) = (1422 -S4 (A
n n n
= 2- (27 -
-GSy,

It is clear that A, (s) > 0, so applying (27) we get that (26) holds true.
Thus using Lemma 2.2, yields that

R{q(2)} > 0.

Moreover, we see that the condition
G (0) #0,

is satisfied. Hence the function G(z) defined by (12) is convex (univalent) in U.
To prove
F(z) < G(2), (29)

for the functions F and G defined by (12). We consider the function L(z,#) given
by
n(1+t)

L(z,t):G(z)—l—T]zG’(z) (0<t<oo; 00 >0,1n>0ay; z€U). (30)

We note that
dL(z,t)
0z

This shows that the function

=0 = G'(0)[as +n(1+1)] #0.

L(z,t) =a(t)z+...

satisfies the condition
ai(t) #0 (0<t <eo).
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Further, we have

29L(zt) o
J _

Jt

Therefore by virtue of Lemma 2.3, L(z,?) is a subordination chain. It follows
from the definition of subordination chain that

0(2) = G(2) + —12G(2) = L(z,0),

1

and
L(z,0) < L(z,t) (0<t<oo5z€U),

which implies that
L(C,1) ¢ L(U,0) = ¢(U) (0<1<eo;§ € dU). €29

If F is not subordinate to G, by using Lemma 2.4, we know that there exist two
points z, € U and &, € dU, such that

F(z0) = G(&) and zF'(z0) = (1+1)6,G' (&) (0=t <e0).  (32)

Hence, by using (12), (6) (30), (32) and (10) we have

L&) = G6(&)+ MU e (g,

(04]
— Flz0) + L2 F(z,)
o

_ <Fp,q,s[0€1,m]f(zo)> " (F,,,q,s[al +1,mlf(z)

Zg Fp,q,s[alvm]f(zo)

By virtue of the subordination condition (10). This contradicts (31) L({,,7) ¢
¢ (U). Therefore, the subordination condition (10) must imply the subordination
given by (29). Considering F(z) = G(z), we see that the function G is the best
dominant.

This completes the proof of Theorem 3.1. U

>e¢(U).

Next, we provide a dual problem of Theorem 3.1, in the sense that the sub-
ordinations are replaced by superordinations.

Theorem 3.2. Let the functions f,g € A(p). Suppose that

i)
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where

i

1
(P(Z) _ Fp,q,s[al + l,m]g(z) (Fp7q,s[alum]g(z)> 1
Fp7q,s [Ol] ) m]g(z) v
and UL is given by (9).

If the function

Fpgslon+1,m|f(z) (Fp7q7s[a1,m]f(z)> n

Fp,q,s[alam]f(z) z

Fp,qs [al 7m]g(z)
zP

is univalent in U and ( )% € Q. Then the following superordination

condition

Fpgslon +1,m]g(2) (Fp,q,s[al,m]g@ ) m
Fp,q,s [OC] ) m]g(z) z°

)

_ Frgslen + Lmf(2) <F[a ,m1f<z>> "

Fp,q,s [al ) m]f(Z) P

implies that

<W>%<(W>%

1 )
1 is the best subordinant.

o Fpgslo,
Moreover, the function (M)

Proof. Suppose that the functions F,G and ¢ are defined by (12) and (13), re-
spectively.
By applying similar method as in the proof of Theorem 3.1, we get

R{q(z)} >0 (z€U).

So we get the desired result, that G < F. To do this, we assume that the function
L(z,t) be defined by (30). Since G is convex, then by applying a similar method
as in Theorem 3.1, we deduce that L(z,#) is subordination chain. Hence, apply-
ing Lemma 2.5, we get that G < F.

Moreover, since the differential equation

n
¢(z) =G(2) + azG’(Z) = 0(G(2),2G (),
has a univalent solution G, it is the best subordinant.

This completes the proof of Theorem 3.2. O
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Combining Theorems 3.1 and 3.2, we obtain the following sandwich-type
result.

Theorem 3.3. Let the functions f,g; € A(p) (j=1,2), and

297 (z)
R+ - 33

1

_ Fpgslon+1,mlg;(z) (Fpqslou,mlg;(z)\ "
#ie) = Igp-,q,S[ahm]gj(Z) < ' zP > ’

where

and W is given by (9).

If the function
1
Fpg,s[a] +1,m]f(2) (Fp,q,s[al ,m]f(z)> K
Fpgslou,m|f(z) 2 ’
. . Fpqs[on.mlf(z)y L »
is univalent in U and (~=3===)n € Q. Then the condition

Fyqslon + 1,mlg1(2) <F,,7q,s[a1,m]g1<z>> i
Fpqslou,mlgi(z) zP
_ Frgslon + 1,mlf(2) (Fp,q,s[al,mmz) > "
Fp,q,s[ahm]f(z) z°
Fygslon +1,mlg:(2) (Fp,qys[al m)ga(2) ) i
Fp,q,S[alam]gz (Z) zP ’

implies that, for z € U

(Fp’q’s[al’m]gl(z)y < (FMS[O‘“m]f(Z)Y' < (Fpg,s[ahm]gZ(Z))?]? |

P zP P

1 , 1
Moreover, the functions ( M)" and (w) n are the best
subordinant and the best dominant, respectively.

Proof. The proof of this theorem consists of the proofs of the Theorems 3.1 and
3.2. O
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