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EXPLICIT HIGHER REGULARITY ON A CAUCHY PROBLEM
WITH MIXED NEUMANN-POWER TYPE BOUNDARY

CONDITIONS

LUISA CONSIGLIERI

We investigate the regularity in Lp (p > 2) of the gradient of any weak
solution of a Cauchy problem with mixed Neumann-power type bound-
ary conditions. Under suitable assumptions we prove the existence of
weak solutions that satisfy explicit estimates. Some considerations on the
steady-state regularity are discussed.

1. Introduction

In the mathematical literature, the dependence on the data is commonly hidden
on the universal constants. These constants that are involved in the estimates
are systematically assumed abstract, i.e. they may change their numerical value
from line to line throughout the whole study in concern. Our objective is to find
explicit estimates (also known as quantitative estimates [7]) such that allow its
real and true application to other fields of science.

In the study of the regularity on the initial-boundary value problem for the
second order differential equation in divergence form, at least three shortcom-
ings appear from the real world applications. They are namely discontinuous
leading coefficient, nonlinear monotone boundary conditions, and nonsmooth
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Lipschitz domain. One of the approaches in the investigation of regularity is
based on the difference quotient technique. We refer to [14, 15, 27] where there
are no boundary terms. The elliptic regularity in the halfspace can be found
in [25]. For Neumann-type boundary conditions, an arbitrary bounded domain
is not globally invariant with respect to translations. The difference quotient
technique is only allowed by a suitable localization procedure [32]. Even the in-
terior regularity requires the differentiability of coefficient, which is not fulfilled
by our coefficient. The realization of the Laplace operator with generalized non-
linear Robin boundary conditions can be found in [6].

Also by the localization method, the higher regularity of the gradient is ob-
tained via the reverse Hölder inequality with increasing supports (known as
Gehring-Giaquinta-Modica theory, cf. [3, 4, 22, 28, 30] and the references
therein). Here, we adopt this approach to determine explicit estimates for the
Cauchy problem inspired in the nonlinear heat equation with the Neumann con-
dition on one part of the boundary of the domain, and the power law condition
on the remaining part of the boundary that includes the radiative effects [9, 13].
Also the constants involved in Lp,∞-estimate are determined.

Some considerations on the steady-state case are discussed in Section 7.

2. Maximal parabolic regularity on X

Let [0,T ] ⊂ R be the time interval with T > 0, and Ω ⊂ Rn (n ≥ 2) be a
(bounded) domain of class C1. The boundary ∂Ω is decomposed into two dis-
joint open subsets, namely Γ and ∂Ω\ Γ̄. Moreover we set QT = Ω×]0,T [, and
ΣT = Γ×]0,T [.

In the presence of Lebesgue, Sobolev, and Bochner spaces, the functional
framework is

Lp,∞(QT ) = L∞(0,T ;Lp(Ω));

Vp,`(Ω) = {v ∈W 1,p(Ω) : v|Γ ∈ L`(Γ)};
Vp,`(QT ) = {v ∈ Lp(0,T ;W 1,p(Ω)) : v|ΣT ∈ L`(ΣT )},

for p, ` > 1. For ` ≤ p∗, with p∗ = p(n− 1)/(n− p) if n > p, and any p∗ > p
if n = p, observe that Vp,`(QT ) = Lp(0,T ;W 1,p(Ω)) due to the trace embedding
W 1,p(Ω) ↪→ Lp∗(Γ).

Let us introduce the definition of a closed operator that admits maximal
parabolic regularity on a Banach space X [2, 24].

Definition 2.1. We say that B admits maximal parabolic regularity on X if
B is a closed (not necessarily linear) operator in X with dense domain D(B),
and for any F ∈ Lp(0,T ;X) (1 < p < ∞) there exists a unique function u ∈
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Lp(0,T ;D(B)), such that ∂tu ∈ Lp(0,T ;X), solving the abstract Cauchy prob-
lem

(ACP)
{ d

dt u(t)+Bu(t) = F(t), a.e. t ∈]0,T [
u(0) = u0 ∈ (D(B),X)1/p,p = (X ,D(B))1/p′,p

where (D(B),X)1/p,p = {v(0) : v ∈ Lp(0,T ;D(B)), ∂tv ∈ Lp(0,T ;X)} repre-
sents the interpolation space [19, Theorem 5.12], and D(B) is endowed with the
graph norm.

Recall that a densely defined closed operator B, such that there exists a
unique solution of (ACP) for all initial values in D(B), may be not a genera-
tor [1]. For every u0 ∈ D(B), if B is linear then this abstract Cauchy problem
(ACP) has the mild solution u ∈ C([0,T [;H) that verifies the variation of con-
stants formula

u(t) = exp[−tB]u0 +
∫ t

0
exp[−(t− τ)B]F(τ)dτ, t ∈ [0,T [.

Moreover, the fractional powers B1/2 and B−1/2 exist and global strong solutions
can be obtained [31].

Here we consider the nonlinear operator B : V2,`(Ω)→ [V2,`(Ω)]′ defined by

〈Bu,v〉 :=
∫

Ω

(A∇u) ·∇vdx+
∫

Γ

b(u)uvds, ∀v ∈V2,`(Ω),

with the assumptions on the coefficients A and b being

• A= [Ai j]i, j=1,··· ,n is a bounded measurable (n×n) matrix-valued function
such that

∃a# > 0, Ai j(x)ξiξ j ≥ a#|ξ |2, a.e. x ∈Ω, ∀ξ ∈ Rn, (1)

under the summation convention over repeated indices: Aa ·b=Ai ja jbi =
b>Aa.

• b : Γ×R→R is a Carathéodory function, that is, it is measurable in Γ and
continuous in R. Moreover, b is monotone with respect with the second
variable, and it verifies for some `≥ 2

∃b# > 0 : b(·,s)≥ b#|s|`−2; (2)

∃γ1 ∈ L∞(Γ) : |b(x,s)| ≤ γ1(x)|s|`−2, (3)

for all s, t ∈ R, and a.e. in Γ.
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Set

a# = ‖A‖∞,Ω, b# = ‖γ1‖∞,Γ. (4)

Under the assumptions (1)-(3), B is monotone, hemicontinuous, bounded,
and coercive. The existence and uniqueness of u of (ACP) is consequence of
[33, Theorem 4.1, p. 120] if provided by u0 ∈ L2(Ω). In particular, B admits
maximal parabolic regularity on [V2,`(Ω)]′, and its negative −B generates a C0-
semigroup on [V2,`(Ω)]′.

We seek for the Lp-integrability of the gradient of u ∈V2,`(QT ) that verifies
the variational formulation

∫ T

0
〈∂tu,v〉dt+

∫
QT

(A∇u) ·∇vdxdt+
∫

ΣT

b(u)uvdsdt =

=
∫

QT

f ·∇vdxdt+
∫

QT

f vdxdt+
∫

ΣT

hvdsdt (5)

for every v ∈V2,`(QT ). The symbol 〈·, ·〉 stands for the duality pairing in which
is meaningful.

Let p, `≥ 2. We denote byWp,` the set of functionals F ∈ [Vp′,`(QT )]
′ that

are the form defined by

F(v) :=
∫

QT

f ·∇vdxdt+
∫

QT

f vdxdt+
∫

ΣT

hvdsdt, ∀v ∈Vp′,`(QT ),

with f ∈ Lp(0,T ;Lp(Ω)), f ∈ Lp(QT ), and h ∈ L`/(`−1)(ΣT ). The identifica-
tion Lp(0,T ; [Vp′,`(Ω)]′)≡ [Lp′(0,T ;Vp′,`(Ω))]′ is due to the Phillips Theorem if
provided that Vp,`(Ω) is reflexive and 1 < p < ∞ [33, p. 104]. We simply write
Mp =Mp,2, and Vp(QT ) =Vp,2(QT ).

We state our main result in the following theorem.

Theorem 2.2. Let Ω be a C1 domain, T > 0, and the assumptions (1)-(3) be
fulfilled. There exists δ > 0 such that for any p ∈ [2,2+ δ ] if f ∈ L2+δ (QT ),
f ∈ L2+δ (QT ), h ∈ L2+δ (ΣT ) and u0 ∈ L2+δ (Ω), then there exists a function u
in Lp,∞(QT )∩Vp,`+p−2(QT ) which is solution of (5) such that

ess sup
t∈[0,T ]

‖u‖p
p,Ω(t)≤ G(a#,b#, p)exp

[
(p−2+(p−1)ν1/(p−1)

0 )T
]

; (6)

‖u‖`+p−2
`+p−2,ΣT

≤ (b#)
−1E(a#,b#, p); (7)

‖∇u‖p,QT ≤M(a#,b#), (8)
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with

G(a#,b#, p) = ‖u0‖p
p,Ω +

1
ν0
‖ f‖p

p,QT
+

(
p−1

a#

)p/2

‖f‖p
p,QT

+

+
p(`−1)

(`+ p−2)b(p−1)/(`−1)
#

∫
ΣT

|h|
`+p−2
`−1 dsdt;

E(a#,b#, p) = G(a#,b#, p)
(

1+(p−2+(p−1)ν1/(p−1)
0 )T×

×exp
[
(p−2+(p−1)ν1/(p−1)

0 )T
])

; (9)

M(a#,b#) = C(n)

√E(a#,b#,2)
a#

+
(1+υ)1/p

a#

(√
1+a#‖f‖p,QT +

+
1
√

ν0
‖ f‖p,QT +

√
1+a#K2n/(n+1)‖h‖p,ΣT

)]
. (10)

Here, ν0 = ν0( f ) is a positive constant if f 6= 0, and ν0(0) = 0 otherwise, C(n)
is according to (50), K2n/(n+1) stands for the continuity constant of the trace
embedding W 1,2n/(n+1)(Ω) ↪→ L2(Γ), and

υ = (4n +1)
(

6
n+2

+2
n(n+1)

n+2 +2
n2

n+2 +22n+3 +22(n+1)×

×
(

29n−2

πnn2n (1−
2
n
)n−2

) 1
n+2
[

Γ(n)
Γ(n/2)

] 2
n+2
(

2
(

a#

a#

)2

+
19
8a#

) n
n+2
 n+2

n

. (11)

In particular, ∂tu ∈Wp,`.

If b# = 0 in (2), B is L2(Ω)-elliptic: 〈Bw,w〉+a#‖w‖2,Ω ≥ a#‖w‖1,2,Ω, but is
not coercive on H1(Ω). However, it is possible to reformulate the above theorem
such that similar estimates may be obtained by the Gehring-Giaquinta-Modica
theory if ` ≤ 2∗ is provided, i.e. W 1,2(Ω) ↪→ L`(Γ) for any ` ≥ 2 if n = 2, and
`≤ 2(n−1)/(n−2) if n > 2 (cf. Remark 3.3).

3. Lp,∞(QT ) and L`+p−2(ΣT ) estimates

Local Lp,∞(QT )-estimates can be obtained under the Gehring-Giaquinta-Modica
technique as can be found in [3]. Under the Moser technique as already devel-
oped in [11], Lp,∞(QT ) and L`+p−2(ΣT ) estimates can appear as consequence
of L∞(QT ) and L∞(ΣT ) estimates, respectively. Here we provide the explicit
estimates under the direct ”apriori” technique in the following proposition.
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Proposition 3.1. Any function u solving (5) satisfies, for all p≥ 2, (6) and

a#‖|u|(p−2)/2
∇u‖2

2,QT
+b#

∫ T

0

∫
Γ

|u|`+p−2dsdt≤ E(a#,b#, p), (12)

with E(a#,b#, p) being given by (9).

Proof. Fix t ∈]0,T [ arbitrary, and let χ]0,t[ ∈ L∞(]0,T [) be the characteristic
function. Taking v = χ]0,t[|u|p−2u as a test function in (5), applying the Hölder
and Young inequalities, and using (1) and (2), we obtain

1
p
‖u‖p

p,Ω(t)+a#(p−1)‖|u|(p−2)/2
∇u‖2

2,Qt
+b#

∫ t

0

∫
Γ

|u|`+p−2dsdτ ≤

≤ 1
p
‖u0‖p

p,Ω +
∫ t

0
‖ f‖p,Ω‖u‖p−1

p,Ω dτ +
p−1
2a#

∫ t

0
‖f‖2

p,Ω‖u‖
p−2
p,Ω dτ +

+
a#(p−1)

2
‖|u|(p−2)/2

∇u‖2
2,Qt

+
b#(p−1)
`+ p−2

∫ t

0

∫
Γ

|u|`+p−2dsdτ +

+
`−1

(`+ p−2)b(p−1)/(`−1)
#

∫ t

0

∫
Γ

|h|
`+p−2
`−1 dsdτ.

Rearranging the terms, we have

1
p
‖u‖p

p,Ω(t)+
a#(p−1)

2
‖|u|(p−2)/2

∇u‖2
2,Qt

+
b#(`−1)
`+ p−2

∫ t

0

∫
Γ

|u|`+p−2dsdτ

≤ 1
p

(
‖u0‖p

p,Ω +
1
ν0
‖ f‖p

p,Qt

)
+

1
p

(
p−2+(p−1)ν1/(p−1)

0

)∫ t

0
‖u‖p

p,Ωdτ

+
2
p

(
p−1
2a#

)p/2

‖f‖p
p,Qt

+
`−1

(`+ p−2)b(p−1)/(`−1)
#

∫ t

0

∫
Γ

|h|
`+p−2
`−1 dsdτ.

By Gronwall inequality, we find (6), and consequently (12) holds.

Remark 3.2. If f ∈ Lp(0,T ;Lpn/(p+n)(Ω)), Proposition 3.1 remains valid with
alternative estimates by considering∫

Ω

f |u|p−2udx≤ ‖ f‖pn/(p+n),ΩSp′
(
‖|u|p−1‖p′,Ω +(p−1)‖|u|p−2

∇u‖p′,Ω
)

≤ Sp′‖ f‖pn/(p+n),Ω

(
‖u‖p−1

p,Ω +(p−1)‖u‖(p−2)/2
p,Ω ‖|u|(p−2)/2

∇u‖2,Ω

)
≤

≤ 1+(p−1)p

pν0
(Sp′)

p‖ f‖p
pn/(p+n),Ω +

ν
1/p
0
2
‖|u|(p−2)/2

∇u‖2
2,Ω +

+

(
(p−1)ν1/(p−1)

0
p

+
(p−2)ν1/(p−2)

0
2p

)
‖u‖p

p,Ω,

where Sp′ (p′ < 2) stands for the continuity constant from the Sobolev embed-
ding W 1,p′(Ω) ↪→ Lpn/(pn−n−p)(Ω).
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Remark 3.3. The estimates (6) and (8) under b# = 0 read, respectively,

ess sup
t∈[0,T ]

‖u‖p
p,Ω(t)≤ G(a#, p)exp

[
(p−1)(1+ν

1/(p−1)
0 )T

]
;

‖∇u‖p,QT ≤C(n)

√G(a#,2)(1+(1+ν0)T exp [(1+ν0)T ])
a#

+

+
(1+υ)1/p

a#

(√
1+a#

(
‖f‖p,QT +K2n/(n+1)‖h‖p,ΣT

)
+

1
√

ν0
‖ f‖p,QT

)]
,

with

G(a#, p) = ‖u0‖p
p,Ω +

1
ν0
‖ f‖p

p,QT
+

(
p−1

a#

)p/2

‖f‖p
p,QT

+

+(p−1)

((
p2

2a#(p−1)

)1/(p−1)

+1

)
K2/(p−1)

2n/(n+1)|Ω|
[(p−1)n]−1‖h‖p′

p′,ΣT
.

To this aim, it is sufficient to consider in the proof of Proposition 3.1∫
Γ

huds≤ ‖h‖p′,Γ‖|u|p/2‖2/p
2,Γ ≤

≤ ‖h‖p′,ΓK2/p
2n/(n+1)|Ω|

(pn)−1
( p

2
‖|u|(p−2)/2

∇u‖2,Ω +‖u‖p/2
p,Ω

)2/p
≤

≤ 1
p
‖u‖p

p,Ω +
a#(p−1)

2p
‖|u|(p−2)/2

∇u‖2
2,Ω +

+
1
p′

((
p2

2a#(p−1)

)1/(p−1)

+1

)
K2/(p−1)

2n/(n+1)|Ω|
[(p−1)n]−1‖h‖p′

p′,Γ.

4. Auxiliary results

First, let us state a Caccioppoli-type inequality, under letting U ∈ L2(R) be de-
fined either by U ≡ 0, or by

U(t) =
(∫

Ω

η
2(x)dx

)−1 ∫
Ω

η
2(x)u(x, t)dx, if supp(η)∩Γ = /0, (13)

where η ∈W 1,∞
0 (Rn) satisfies 0≤ η ≤ 1 in Rn.

Proposition 4.1. Let Ω be a C1 domain, and T > 0. If there exists δ > 0 such
that f ∈ L2+δ (QT ), f ∈ L2+δ (QT ), h ∈ L2+δ (ΣT ) and u0 ∈ L2+δ (Ω), then any
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function u ∈V2,`(QT )∩C([0,T ]; [V2,`(Ω)]′) solving (5) verifies

ess sup
t∈]t0−R2,t0+R2[

‖η(u−U)‖2
2,Ω(t)+a#(1− (ν1 +ν2))‖∇u‖2

2,Qr(z0)
≤

≤
(

2(a#)2

a#
+2+ν0 +

3ν2

2

)
2

(R− r)2 ‖η(u−U)‖2
2,QR(z0)

+
1
ν0
‖ f‖2

2,QR(z0)

+

(
1

a#ν1
+2
)
‖f‖2

2,QR(z0)
+2R

(K2n/(n+1))
2

ν2

(
1
a#

+2
)
‖h‖2

2,ΣR(z0)
, (14)

for every z0 = (x0, t0) ∈ Ω× [0,T ], and 0 < R <
√

T . Here ν0 = ν0( f ), ν1 =
ν1(f), and ν2 = ν2(h) are positive constants if f 6= 0, f 6= 0, h 6= 0, respectively,
and ν0(0) = ν1(0) = ν2(0) = 0 otherwise; and u (analogously for each function
f , f, h, and U) should be understood as

ũ(x, t) =


u(x,−t), −T < t ≤ 0
u(x, t), 0 < t < T
u(x,2T − t), T ≤ t < 2T

. (15)

Proof. Fix−T < t# < t1 < t2 < t# < 2T , and t ∈]0,T [∩]t#, t#[. Let η ∈W 1,∞
0 (Rn)

satisfy 0≤ η ≤ 1 in Rn, and ζ ∈W 1,∞(R) be such that 0≤ ζ ≤ 1 in R, ζ ≡ 1 in
]t1, t2[ and ζ ≡ 0 in R\ [t#, t]. Since W 1,∞

0 (R) ↪→C(R) then ζ (t#) = 0. If t#, t1 < 0
and/or t2, t# > T , since u (analogously f , f, h, and U) is only defined on ]0,T [,
then the extension (15) should be taken into account. For the sake of simplicity,
we write briefly u instead of ũ (analogously for each function f , f, h, and U).

Taking v(x,τ) = χ]−T,t[(τ)ζ
2(τ)η2(x)(u(x,τ)−U(τ)) ∈ V2,`(QT ) as a test

function in (5), making use of (1)-(2) and (4), standard computations yield

1
2

ζ
2‖η(u−U)‖2

2,Ω

∣∣∣t
t#
+

a#

2
‖ζ η∇u‖2

2,Ω×]t#,t[+b#

∫ t

t#
‖ζ η(u−U)‖``,Γdτ ≤

≤
∫ t

t#
ζ |ζ ′|‖η(u−U)‖2

2,Ωdτ +

(
2(a#)2

a#
+1
)
‖(u−U)∇η‖2

2,Ω×]t#,t[+

+
a#ν1

2
‖ζ η∇u‖2

2,Ω×]t#,t[+

(
1

2ν1a#
+1
)
‖ηf‖2

2,Ω×]t#,t[+

+
∫ t

t#
‖ζ η f‖2,Ω‖ζ η(u−U)‖2,Ωdτ +

∫ t

t#
‖ζ ηh‖2,Γ‖ζ η(u−U)‖2,Γdτ. (16)

Making use of the trace constant K2n/(n+1) correspondent to the function
η(u−U) ∈W 1,2n/(n+1)(Ω) with 2n/(n + 1) < 2 ≤ n, and after applying the
Young inequality, the last boundary integral in (16), denoted by I, can be com-
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puted as

I ≤
∫ t

t#
‖ζ ηh‖2,ΓK2n/(n+1)|supp(η)|

1
2n ζ (‖η∇u‖2,Ω+

+‖(u−U)∇η‖2,Ω +‖(u−U)η‖2,Ω)dτ ≤

≤ (K2n/(n+1))
2|supp(η)|

1
n

(
1

2a#ν2
+

1
ν2

)
‖ηh‖2

2,Γ×]t#,t[+

+
a#ν2

2
‖ζ η∇u‖2

2,Ω×]t#,t[+
ν2

2

∫ t

t#
ζ

2 (‖(u−U)∇η‖2
2,Ω +‖(u−U)η‖2

2,Ω
)

dτ.

Applying the Young inequality in (16), and inserting the above inequality, we
deduce

1
2

ess sup
t∈]t#,t#[

ζ
2‖η(u−U)‖2

2,Ω(t)+
a#

2
(1− (ν1 +ν2))‖η∇u‖2

2,Ω×]t1,t2[ ≤

≤
∫ t#

t#

(
|ζ ′|+ ν0

2
+

ν2

2

)
‖η(u−U)‖2

2,Ωdτ +
1

2ν0
‖η f‖2

2,Ω×]t#,t#[+

+

(
2(a#)2

a#
+1+

ν2

2

)
‖(u−U)∇η‖2

2,Ω×]t#,t#[+

(
1

2a#ν1
+1
)
‖ηf‖2

2,Ω×]t#,t#[

+(K2n/(n+1))
2|supp(η)|

1
n

(
1

2a#ν2
+

1
ν2

)
‖ηh‖2

2,Γ×]t#,t#[.

Then, we conclude (14), by taking η ≡ 1 in Qr(x0), η ≡ 0 in Rn \QR(x0),
and |∇η | ≤ (R− r)−1 a.e. in QR(x0)\Qr(x0) for any 0 < r < R such that (R−
r)2 ≤ 2; and |ζ ′| ≤ (R− r)−2 with t# = t0−R2, t1 = t0− r2, t2 = t0 + r2, and
t# = t0 +R2.

Let us recall a result on the Stieltjes integral in the form that we are going
to use (for the general form see [4]).

Lemma 4.2. Suppose that q ∈]0,∞[, and a ∈]1,∞[. If h,Hi : [1,∞[→ [0,∞[ are
nonincreasing functions such that

lim
ι→∞

h(ι) = lim
ι→∞

Hi(ι) = 0, i = 1, · · · ,M0, (17)

and that

−
∫

∞

ι

τ
qdh(τ)≤ a[ιqh(t)+

M0

∑
i=1

Hβi
i (ι)], ∀ι ≥ 1, (18)

with βi ≥ 1, then, for γ ∈ [q,aq/(a−1)[

−
∫

∞

1
ι

γdh(ι)≤ q
aq− (a−1)γ

(
−
∫

∞

1
ι

qdh(ι)
)
+

+
aγ

aq− (a−1)γ

M0

∑
i=1

Hβi−1
i (1)

(
−
∫

∞

1
ι

γ−qdHi(ι)

)
. (19)
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Throughout this section, z = (x, t) stands for spatiotemporal points. Under
the parabolic metric in Rn+1 being given by

d(z(1),z(2) = max
i=1,··· ,n

{|x(1)i − x(2)i |, |t
(1)− t(2)|1/2},

we use the following standard notation for the parabolic parallelepiped

QR(z) := {(y,τ) ∈ Rn+1 : d((y,τ),(x, t))< R}
= Q(n)

R (x)×]t−R2, t +R2[, (20)

where the spatial cubic interval Q(n)
R (x) stands for the cube with edges parallel

to coordinate planes centered at the point x with the radius R > 0. When no
confusion arises, we shall omit the space dimension and write briefly QR(x).
Furthermore, we set

Q+
R (z) := {(y,τ) ∈ QR(z) : yn > xn};

ΣR(z) := {y ∈ QR(z) : yn = xn}.

Next, we determine an explicit constant involved in the reverse Hölder in-
equality with increasing supports and an additional surface integral, where the
data exponents improve the ones in [4]. Observe that in [4] the assumed restric-
tion (n−1)/l1 +2/l2 ≥ (n+2)/s is not true for l1 = l2 = s. The elliptic version
of the below result is stated in [10].

Proposition 4.3. Let R0 > 0, and z0 = (x0, t0) with x0 = (x′0,0) ∈Rn and t0 ≥ 0.
For p > 1 and δ > 0, suppose that the nonnegative functions Φ ∈ Lp(Q+

R0
(z0)),

F ∈ Lm1+δ ,m2+δ (Q+
R0
(z0)), G∈ Ll1+δ ,l2+δ (ΣR0(z0)), and ϕ ∈ L1+δ (Q+

R0
(x0)) sat-

isfy the estimate

1
Rn+2

∫
QαR(z)∩Q+

R0
(z0)

Φ
pdz≤ B

( 1
Rn+2

∫
QR(z)∩Q+

R0
(z0)

Φdz
)p

+

+
1

Rn+2

(
‖F‖r

m1,m2,QR(z)∩Q+
R0
(z0)

+‖ϕ‖d
1,QR(x)∩Q+

R0
(x0)

)
+

+
1

Rn+1 ‖G‖
s
l1,l2,QR(z)∩ΣR0 (z0)

, (21)

for all z ∈ QR0(z0), and all R > 0 such that QR(z)∩ΣR0(z0) 6= /0 and QR(z)⊂⊂
QR0(z0), with some constants α ∈ [1/2,1[, B > 0, and

n
m1

+
2

m2
≥ n+2

r
, r ≥ m2 ≥ m1 ≥ 1; (22)

n−1
l1

+
2
l2
≥ n+1

s
, s≥ l2 ≥ l1 ≥ 1; (23)

nd ≥ n+2. (24)
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Then, Φ ∈ Lp+ε(ω ∩Q+
R0
(z0)), for all ε ∈ [0,δ ]∩ [0,(p−1)/(υ−1)[ and mea-

surable set ω ⊂⊂ QR0(z0). In particular, if R0 ≤ 3/2, and dist(ω,∂QR0(z0)) =
βR0 with β ∈]0,1[, it verifies

‖Φ‖p+ε

p+ε,ω∩Q+
R0
(z0)
≤ β−(n+2)(1+ε/p)

p−1− (υ−1)ε

[
p−1

R(n+2)ε/p
0

(
‖Φ‖p+ε

p,Q+
R0
(z0)

+

+‖Φ‖p
p,Q+

R0
(z0)

(
‖F‖rε/p

m1,m2,Q+
R0
(z0)

+
2R0

3
‖G‖sε/p

l1,l2,ΣR0 (z0)
+

4R2
0

9
‖ϕ‖dε/p

1,Q+
R0
(x0)

))
+υ(p−1+ ε)

(
E1‖F‖m2+rε/p

m1+rε/p,m2+rε/p,Q+
R0
(z0)
‖F‖r−m2

m1,m2,Q+
R0
(z0)

+

+E2‖G‖l2+sε/p
l1+sε/p,l2+sε/p,ΣR0 (z0)

‖G‖s−l2
l1,l2,ΣR0 (z0)

+

+3nd−(n+2)(2R0)
n+2−nd‖ϕ‖1+dε/p

1+dε/p,Q+
R0
(x0)
‖ϕ‖d−1

1,Q+
R0
(x0)

)]
, (25)

where E1 and E2 are given by (32)-(33), respectively, and

υ = (4n +1)
(

2n+2(2n+2B)1/p +
3
p′
+

+2(n/m1+1/m2)r/p +2((n−1)/l1+1/l2)s/p +2nd/p +22n+3
)p

. (26)

Proof. We prolong Φ (analogously F) and ϕ as even functions with respect to
ΣR0(z0):

Φ̃(x, ·) =
{

Φ(x′,xn, ·), xn > 0
Φ(x′,−xn, ·), xn < 0

ϕ̃(x′,xn) =
{

ϕ(x′,xn), xn > 0
ϕ(x′,−xn), xn < 0.

Transforming QR0(z0) into Q=Q3/2(0)×]−9/4,9/4[ by the passage to new
coordinates system (y,τ) = (3(x− x0)/(2R0),9(t− t0)/(4R2

0)), and setting

M =
3n+2

(2R0)n+2

(
‖Φ̃‖p

p,QR0 (z0)
+‖F̃‖r

m1,m2,QR0 (z0)
+

2R0

3
‖G‖s

l1,l2,ΣR0 (z0)
+

+
4R2

0
9
‖ϕ̃‖d

1,QR0 (x0)

)
,

we define Φ(y,τ) = M−1/pΦ̃(x0+2R0y/3, t0+4R2
0t/9), F(y,τ) = M−1/rF̃(x0+

2R0y/3, t0 +4R2
0t/9), G(y,τ) = M−1/sG(x0 +2R0y/3, t0 +4R2

0t/9), and ϕ(y) =
M−1/dϕ̃(x0 +2R0y/3).

Setting Σ = Σ3/2(0)×]−9/4,9/4[ with Σ3/2(0) = Q(n−1)
3/2 (0)×{0}. we have

max{‖Φ‖p
p,Q,‖F‖

r
m1,m2,Q,‖G‖

s
l1,l2,Σ,‖ϕ‖

d
1,Q(n)

3/2(0)
} ≤ 1.
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Let us define Φ0(y,τ) = Φ(y,τ)[dist((y,τ),∂Q)](n+2)/p.
In order to apply Lemma 4.2, our objective is to prove that∫

Q[Φ0>ι ]
Φ

p
0dydτ ≤ υ

(
ι

p−1h(ι)+Hr/m2
1 (ι)+Hs/l2

2 (ι)+Hd
3 (ι)

)
, (27)

for any ι ∈ [1,∞[, with υ being as in (26), and

h(ι) =
∫

Q[Φ0>ι ]
Φ0dydτ;

H1(ι) =
∫ 9/4

−9/4

(∫
Q3/2(0)[F(·,τ)>ι p/r]

Fm1dy
)m2/m1

dτ;

H2(ι) =
∫ 9/4

−9/4

(∫
Σ3/2(0)[G(·,τ)>ι p/s]

Gl1dsy

)l2/l1
dτ;

H3(ι) =
∫

Q3/2(0)[ϕ>ι p/d ]
ϕdy.

Fix ι ≥ 1. Decompose Q = ∪k∈N0C
(k) = ∪k∈N0 ∪i=1,··· ,I D(k)

i , with C(0) =
Q1/2(0), and for each k ≥ 1, C(k) = {(y,τ) ∈ Q : 2−k < dist((y,τ),∂Q) ≤
2−k+1}, and D(k)

i are disjoint cubic intervals of size 1/2k+2 such that finitely
(I ∈ N) decompose each set C(k), k ∈ N0. Since

1

|D(k)
i |

∫
D(k)

i

Φ
p
0(y,τ)dydτ ≤ 23(n+2),

the parabolic version of the Calderon-Zygmund subdivision argument implies
that (for details see [4, 10]) if there exists λ > 23(n+2) then there exists a dis-
joint sequence of cubic intervals Q(k)

j =Q
r(k)j

(y(k, j),τ(k, j))⊂C(k) such that r(k)j <

2−(k+3), and ∫
Q[Φ0>ι

p√
λ ]

Φ
p
0dydτ ≤ 2n+2

ι
p
λ ∑

k≥0
∑
j≥1
|Q(k)

j |; (28)

ι
p
λ <

2−(k−1)(n+2)

(2r(k)j )n+2

∫
Q(k)

j

Φ
pdydτ. (29)

Next, in order to estimate the right hand side in (28), let us prove, for all
k ≥ 0, and j ≥ 1, there exists R = Rk j ∈]r

(k)
j ,2r(k)j ] that verifies

ι22n+3Rn+2 <
∫

QR[Φ0>ι ]
Φ0dydτ +

+ι
−p+1

(
I1(R,y(k, j),τ(k, j))+ I2(R,y(k, j),τ(k, j))+ I3(R,y(k, j))

)
, (30)
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with the notation QR = QR(y(k, j),τ(k, j)), for the points (y(k, j),τ(k, j)) such that
QR∩Σ has positive (n−1)-Lebesgue measure, and

I1(R,x, t) =

(∫ t+R2

t−R2

(∫
{y∈QR(x): F(y,τ)>ι p/r}

Fm1dy
)m2/m1

dτ

)r/m2

;

I2(R,x, t) =

(∫ t+R2

t−R2

(∫
{y∈ΣR(x): G(y,τ)>ι p/s}

Gl1dsy

)l2/l1
dτ

)s/l2

;

I3(R,x) =

(∫
{y∈QR(x): ϕ(y)>ι p/d}

ϕdy
)d

.

Since R ≤ 2r(k)j < 2−(k+1), each QR only intersects the sets C(k−1), C(k), and
C(k+1). We denote by T that family {QR(y(k, j),τ(k, j))}k≥0, j≥1.

Rewriting (21) in terms of the new coordinates system, taking z = (x0 +
2R0y(k, j)/3, t0 + 4R2

0τ(k, j)/9), and dividing the resultant inequality by M, we
deduce

1
Rn+2

∫
QαR

Φ
pdydτ ≤ B

(
1

Rn+2

∫
QR

Φdydτ

)p

+

+
1

Rn+2 ‖F‖
r
m1,m2,QR

+
1

Rn+1 ‖G‖
s
l1,l2,ΣR

+
1

Rn ‖ϕ‖
d
1,Q(n)

R
,

where QαR =QαR(y(k, j),τ(k, j))⊂C(k), R∈]r(k)j ,2r(k)j ], and α = r(k)j /R∈ [1/2,1[,
and taking (22)-(24) and R0 ≤ 3/2 into account.

Inserting the above inequality into (29), we obtain

(ιRn+2)p
λ < 2n+2B

(∫
QR

Φ0dydτ

)p

+R(n+2)(p−1)‖F‖r
m1,m2,QR

+

+R(n+2)(p−1)‖ϕ‖d
1,Q(n)

R
+R(n+2)p−(n+1)‖G‖s

l1,l2,ΣR
. (31)

Each term of the above right hand side is computed as follows∫
QR

Φ0dydτ ≤
∫

QR[Φ0>ι ]
Φ0dydτ + ι(2R)n+2;

R(n+2)(p−1)/p‖F‖r/p
m1,m2,QR

≤

≤ R(n+2)(p−1)/p
(

I1/p
1 (R,y(k, j),τ(k, j))+ ι2

(
n

m1
+ 1

m2

)
r
p R
(

n
m1

+ 2
m2

)
r
p

)
≤ ι−(p−1)

p
I1(R,y(k, j),τ(k, j))+ ιRn+2

(
1
p′
+2(n/m1+1/m2)r/p

)
;
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R(n+2)(p−1)/p‖ϕ‖d/p
1,QR
≤ ι−(p−1)

p
I3(R,y(k, j))+ ιRn+2

(
1
p′
+2nd/p

)
;

R(n+2)−(n+1)/p‖G‖s/p
l1,l2,ΣR

≤ R(n+2)(p−1)/p‖G‖s/p
l1,l2,ΣR

≤

≤ ι−(p−1)

p
I2(R,y(k, j),τ(k, j))+ ιRn+2

(
1
p′
+2((n−1)/l1+1/l2)s/p

)
.

Defining

λ =

(
2n+2(2n+2B)1/p +

3
p′
+2

(
n

m1
+ 1

m2

)
r
p +2

(
n−1
l1

+ 1
l2

)
s
p +2nd/p +22n+3

)p

,

we gather the above inequalities with (31) obtaining (30).
According to the Vitali covering lemma, there exist σ ∈]3,4[ and a sequence

of disjoint cubic intervals {QRi(y
(i),τ(i))}i≥1 from the collection T such that

∪k≥0∪ j≥1 QR(y(k, j),τ(k, j))⊂ ∪i≥1QσRi(y
(i),τ(i))⊂ Q.

Hence,

∑
k≥0

∑
j≥1
|Q(k)

j | ≤ ∑
k≥0

∑
j≥1
|QR(y(k, j),τ(k, j))| ≤ σ

n
∑
i≥1
|QRi(y

(i),τ(i))|.

Combining the above with (28), and (30), we find∫
Q[Φ0>ι

p√
λ ]

Φ
p
0dydτ ≤ λσ

n
(

ι
p−1h(ι)+Hr/m2

1 (ι)+Hs/l2
2 (ι)+Hd

3 (ι)
)
,

which implies (27), by taking υ ≥ λ (σn +1).
We have the relations (for details see [4], if r ≥ m2, s≥ l2, and d ≥ 1)

−
∫

∞

1
ι

γ−p+1dH1(ι) ≤
m2

m1
3n(m2/m1−1)/(m1+δ1)‖F‖m2+δ1

m1+δ1,m2+δ1,Q
;

−
∫

∞

1
ι

γ−p+1dH2(ι) ≤
l2
l1

3(n−1)(l2/l1−1)/(l1+δ2)‖G‖l2+δ2
l1+δ2,l2+δ2,Σ

;

−
∫

∞

1
ι

γ−p+1dH3(ι) ≤ ‖ϕ‖1+δ3

1+δ3,Q
(n)
3/2(0)

,

with δ1 = r(γ− p+1)/p, δ2 = s(γ− p+1)/p, and δ3 = d(γ− p+1)/p.
Therefore, Lemma 4.2 can be applied, concluding that, for γ = p+ ε − 1

such that p≤ γ +1 < p+(p−1)/(υ−1), (19) implies∫
Q[Φ0>1]

Φ
p+ε

0 dydτ ≤ p−1
υ(p−1)− (υ−1)γ

∫
Q[Φ0>1]

Φ
p
0dydτ+

+
υγ

υ(p−1)− (υ−1)γ

(
m2

m1
3

n(m2/m1−1)
m1+rε/p ‖F‖m2+rε/p

m1+rε/p,m2+rε/p,QHr/m2−1
1 (1)+

+
l2
l1

3
(n−1)(l2/l1−1)

l1+sε/p ‖G‖l2+sε/p
l1+sε/p,l2+sε/p,ΣHs/l2−1

2 (1)+‖ϕ‖1+dε/p

1+dε/p,Q(n)
3/2(0)

Hd−1
3 (1)

)
.
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On the other hand, since Φ
p+ε

0 ≤ Φ
p
0 a.e. in Q \Q[Φ0 > 1], we find for any

ω ⊂⊂ Q = Q3/2(0)

[dist(ω,∂Q)](n+2)(1+ε/p)
∫

ω

Φ
p+εdydτ ≤ (p−1)3n+2

(γ−υε)2n+2

∫
Q

Φ
pdydτ +

+
υγ

γ−υε

(
m2

m1
3

n(m2−m1)
m1(m1+rε/p) ‖F‖m2+rε/p

m1+rε/p,m2+rε/p,Q‖F‖
r−m2
m1,m2,Q+

+
l2
l1

3
(n−1)(l2−l1)
l1(l1+sε/p) ‖G‖l2+sε/p

l1+sε/p,l2+sε/p,Σ‖G‖
s−l2
l1,l2,Σ +‖ϕ‖

1+dε/p

1+dε/p,Q(n)
3/2(0)
‖ϕ‖d−1

1,Q(n)
3/2(0)

)
.

Keeping the same designation to the transformed set ω ⊂⊂QR0(z0), we deduce[
dist(ω,∂QR0(z0))

3
2R0

](n+2)(1+ε/p) ∫
ω

Φ̃
p+εdz≤

≤ (p−1)3n+2

(p−1− (υ−1)ε)2n+2 Mε/p
∫

QR0 (z0)
Φ̃

pdz+

+
υ(p−1+ ε)

p−1− (υ−1)ε

(
E1‖F̃‖m2+rε/p

m1+rε/p,m2+rε/p,QR0 (z0)
‖F̃‖r−m2

m1,m2,QR0 (z0)
+

+E2‖G‖l2+sε/p
l1+sε/p,l2+sε/p,ΣR0 (z0)

‖G‖s−l2
l1,l2,ΣR0 (z0)

+

+‖ϕ̃‖1+dε/p
1+dε/p,QR0 (x0)

‖ϕ̃‖d−1
1,QR0 (x0)

3nd−(n+2)(2R0)
n+2−nd

)
,

with

E1 =
m2

m1
3

n(m2−m1)
m1(m1+rε/p)

(
3

2R0

)n
(

m2+rε/p
m1+rε/p−

m2
m1

)
(2R0)

n+23r(n/m1+2/m2)

3n+2(2R0)r(n/m1+2/m2)
; (32)

E2 =
l2
l1

3
(n−1)(l2−l1)
l1(l1+sε/p)

(
3

2R0

)(n−1)
(

l2+sε/p
l1+sε/p−

l2
l1

)
(2R0)

n+23s((n−1)/l1+2/l2)

3n+2(2R0)s((n−1)/l1+2/l2)
. (33)

Therefore, by applying (22)-(24) we conclude (25) which completes the proof.

In a similar manner that we have Proposition 4.3 the following Proposition
can be obtained.

Proposition 4.4. Under the conditions of Proposition 4.3, if instead of (21),

1
Rn+2

∫
QαR(z)

Φ
pdz≤ BI

(
1

Rn+2

∫
QR(z)

Φdz
)p

+
1

Rn+2 ‖F‖
r
m1,m2,QR(z)+

+
1

Rn+2 ‖ϕ‖
d
1,QR(x), (34)
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holds for R < min{
√

T ,dist(x,∂Ω)/
√

n}, then Φ ∈ Lp+ε(Qr(z0)), for all ε ∈
[0,δ ]∩ [0,(p−1)/(υI−1)[, with

υI = (4n +1)
(

2n+2(2n+2BI)
1/p +

3
p′
+2

(
n

m1
+ 1

m2

)
r
p +2nd/p +22n+3

)p

, (35)

and r = (1−β )R0 with β ∈]0,1[. In particular, it verifies

‖Φ‖p+ε

p+ε,Qr(z0)
≤ β−(n+2)ε/p

p−1− (υI−1)ε

[
p−1

R(n+2)ε/p
0

(
‖Φ‖p+ε

p,QR0 (z0)
+

+ ‖Φ‖p
p,QR0 (z0)

(
‖F‖rε/p

m1,m2,QR0 (z0)
+

4R2
0

9
‖ϕ‖dε/p

1,QR0 (x0)

))
+

+υI(p−1+ ε)
(

E1‖F‖m2+rε/p
m1+rε/p,m2+rε/p,QR0 (z0)

‖F‖r−m2
m1,m2,QR0 (z0)

+

+3nd−(n+2)(2R0)
n+2−nd‖ϕ‖1+dε/p

1+dε/p,QR0 (x0)
‖ϕ‖d−1

1,QR0 (x0)

)]
, (36)

where E1 and E2 are given by (32)-(33), respectively.

Remark 4.5. If ϕ = 0, then (26)-(35) read

υ = (4n +1)
(

2(n+2)(1+ 1
p )B

1
p +

3
p′
+2

(
n

m1
+ 1

m2

)
r
p +2

(
n−1
l1

+ 1
l2

)
s
p +22n+3

)p

; (37)

υI = (4n +1)
(

2n+2(2n+2BI)
1/p +

3
p′
+2(n/m1+1/m2)r/p +22n+3

)p

. (38)

Finally, we state a local Poincaré inequality.

Lemma 4.6. For any x ∈Rn and 0 < R < ε(2S2n/(n+2))
−1, every (non constant)

u ∈W 1,2n/(n+2)(QR(x)) verifies

‖u‖2,QR(x) ≤
S2n/(n+2)

1− ε
‖∇u‖2n/(n+2),QR(x), (39)

where S2n/(n+2) = π−1/2n(2−3n)/(2n)(n−2)(n−2)/(2n)[Γ(n)/Γ(n/2)]1/n.

Proof. Making use of the Sobolev embedding with q = 2n/(n+2)< 2, and the
Hölder inequality, we obtain

‖u‖2,QR(x) ≤ S2n/(n+2)

(
‖∇u‖2n/(n+2),QR(x)+ |QR(x)|1/n‖u‖2,QR(x)

)
.

Hence, we conclude (39).
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5. Proof of Theorem 2.2

Let u ∈ V2,`(QT )∩C([0,T ]; [V2,`(Ω)]′) solve (5) for all v ∈ V2,`(QT ). Let 0 <
r < R <

√
T , and z0 = (x0, t0) ∈Ω× [0,T ]. Proposition 4.1 can be applied.

We split the proof by beginning to show the local interior and lateral higher
integrability of the gradient of u.

5.1. Local interior higher integrability of the gradient

If x0 ∈Ω, we may take R < dist(x0,∂Ω)/
√

n. Considering R <
√

T , r = R/2≤
1, ν1 = 1/2, and ν2 = 0, (14) reads

ess sup
t∈]t0−R2,t0+R2[

‖η(u−U)‖2
2,QR(x0)

(t)+
a#

2
‖∇u‖2

2,Qr(z0)
≤

≤
(

2(a#)2

a#
+2+ν0

)
23

R2 ‖η(u−U)‖2
2,QR(z0)

+

+2
(

1
a#

+1
)
‖f‖2

2,QR(z0)
+

1
ν0
‖ f‖2

2,QR(z0)
. (40)

In the presence of Lemma 4.6 it is sufficient to take U = 0, and we restrict to
R < (4S2n/(n+2))

−1. Denoting by Y = 2S2n/(n+2) the constant in the inequality
(39), we integrate over time to obtain∫ t0+R2

t0−R2
‖ηu‖2,QR(x0)‖u‖2,QR(x0)dt≤ Y ess sup

t∈]t0−R2,t0+R2[

‖ηu‖2,QR(x0)×

×(2R2)n−2/(2n)‖∇u‖2n/(n+2),QR(z0). (41)

Inserting the above inequality into (40), and after applying the Young inequality,
we deduce

a#

2
‖∇u‖2

2,QR/2(z0)
≤
(

2(a#)2

a#
+2+ν0

)2 25−2/nY 2

R2(n+2)/n
‖∇u‖2

2n/(n+2),QR(z0)
+

+2
(

1
a#

+1
)
‖f‖2

2,QR(z0)
+

1
ν0
‖ f‖2

2,QR(z0)
.

Employing Proposition 4.4 with Φ= |∇u|2n/(n+2), p=(n+2)/n, m1 =m2 =
r = 2, and

BI =
22(2−1/n)

a#

(
2(a#)2

a#
+2+ν0

)
(4S2n/(n+2))

2; (42)

F =

(
4(1/a# +1)|f|2 +2| f |2/ν0

a#

)1/2

∈ L2+δ (QR(z0)), (43)
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the interior estimate

‖∇u‖2+ε,Q(1−β )R(z0) ≤

(
2nβ−ε(n+2)/2

4− (n+2)(υI−1)ε

)1/(2+ε)

×

×

[(
2(4+ ε)

n(2+ ε)Rε(n+2)/2

)1/(2+ε)

‖∇u‖2,QR(z0)+

+

(
21+ε(n+1)/2ε

n(2+ ε)
+υI

(
4+ ε(n+2)

2n

))1/(2+ε)

×

×

(
2
√

(1+a#)

a#
‖f‖2+ε,QR(z0)+

√
2

a#ν0
‖ f‖2+ε,QR(z0)

)]
(44)

holds, for any R < min{
√

T ,dist(x0,∂Ω)/
√

n,(4S2n/(n+2))
−1}, and for all ε ∈

[0,δ ] with δ < 2/[n(υI−1)], and υI being defined by (38), i.e.

υI = (4n +1)
(

22(n+1)Bn/(n+2)
I +

6
n+2

+2n(n+1)/(n+2)+22n+3
)n/(n+2)

.

Remark 5.1. The constant BI defined in (42) may be differently given. For
instance, it may depend on the Poincaré constant, denoted by CΩ,p, if we use in
(41) the Minkowski, Sobolev, and Poincaré inequalities to successively compute

‖η(u−U)‖2,QR(x0) ≤ 2‖u−−
∫

QR(x0)
udx‖2,QR(x0)

≤ 2S2n/(n+2)

(
‖∇u‖2n/(n+2),QR(x0)+‖u−−

∫
QR(x0)

udx‖2n/(n+2),QR(x0)

)
≤ 2S2n/(n+2)

(
1+CQR(x0),2n/(n+2)

)
‖∇u‖2n/(n+2),QR(x0),

since u ∈W 1,2n/(n+2)(QR(x0)) with 2n/(n+2)< 2≤ n. Here U is defined from
(13). With this approach, the restriction of R < (4S2n/(n+2))

−1 can be removed.

5.2. Local higher integrability up to the spatial boundary of the
gradient

For reader’s convenience, we recall the definition of C1 domain. We use the
notation y′ = (y1, . . . ,yn−1) ∈ Rn−1.

Definition 5.2. We say that Ω is a domain of class C1 (or simply C1 domain),
if Ω is an open, bounded, connected, nonempty set of Rn and it verifies the
following:

∃M ∈ N ∃ρ,ν > 0 : ∂Ω = ∪M
m=1Γm,

with
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1. Γm = O−1
m ({y = (y′,yn) ∈ Q(n−1)

ρ (0)×R : yn = ϖm(y′)},

2. O−1
m ({y = (y′,yn) ∈ Q(n−1)

ρ (0)×R : ϖm(y′)< yn < ϖm(y′)+ν})⊂Ω,

3. O−1
m ({y ∈ Q(n−1)

ρ (0)×R : ϖm(y′)−ν < yn < ϖm(y′)})⊂ Rn \Ω,

where

Q(n−1)
ρ (0) = {y′ = (y1, · · · ,yn−1) ∈ Rn−1 : |yi|< ρ, i = 1, · · · ,n−1},

and for each m = 1, · · · ,M, Om : Rn→ Rn denotes a local coordinate system:

y(m) = Om(x) = Ox+b, O−1 = OT , detO= 1;

and ϖm ∈C1(Q(n−1)
ρ (0)).

By Definition 5.2, there exist M ∈N and ρ,ν > 0 such that for any x0 ∈ ∂Ω

there is m ∈ {1, · · · ,M} such that a local coordinate system y(m) = Om(x) and a
local C1-mapping ϖm verify

x0 ∈ Γm = O−1
m ◦φ

−1
m

(
Q(n−1)

ρ (0)×{0}
)
, (45)

where φm : Q(n−1)
ρ (0)×R→ Rn of class C1 is defined by

φm(y) =
(

y′

yn−ϖm(y′)

)
. (46)

For each m ∈ {1, · · · ,M}, we consider the change of variables

y ∈ Q(n−1)
ρ (0)×]−ν ,ν [ 7→ x = O−1(φ−1

m (y)). (47)

Since the Jacobian of the transformation O−1
m ◦φ−1

m is equal to 1, let us denote
by the same letter any function f = f ◦O−1

m ◦φ−1
m .

Fix x0 ∈ ∂Ω, and m ∈ {1, · · · ,M} such that x0 ∈ Γm is in accordance with
(45). Set y0 = φm ◦Om(x0), and

ΣR(y0) = {y ∈ Q(n−1)
ρ (0)×]−ν ,ν [: |y′− y′0|< R, yn = 0},

for any 0 < R≤ R0 = min{ρ,ν ,dist(y′0,∂
′Q(n−1)

ρ (0))}. Notice that y0 = (y′0,0).
Inasmuch as Γ0 = O−1

m ◦φ−1
m (ΣR0(y0)), different cases occur, namely Γ0∩Γ 6= /0

and Γ0 ∩ (∂Ω \Γ) 6= /0; Γ0 ⊂ Γ, and Γ0 ⊂ ∂Ω \Γ. Throughout the sequel, we
refer to ‖ · ‖2,ΣR(y0) including cases where the set is empty.
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Reorganizing the terms in (14) with ν2 = 1/4 as in Section 5.1, we have

‖∇u‖2
2,Q+

r (z0)
≤ B

R2(n+2)/n
‖∇u‖2

2n/(n+2),Q+
R (z0)

+

+
4
a#

[
2
(

1
a#

+1
)
‖f‖2

2,Q+
R (z0)

+
1
ν0
‖ f‖2

2,Q+
R (z0)

+

+8R
(

1
a#

+2
)
(K2n/(n+1))

2‖h‖2
2,ΣR(z0)

]
.

Here B is defined by (compare to (42))

B =
25−2/n

a#

(
2(a#)2

a#
+

19
8
+ν0

)
(4S2n/(n+2))

2. (48)

Proposition 4.3 with Φ = |∇u|2n/(n+2), p = (n+ 2)/n, l1 = l2 = s = 2, and
F being defined by, instead of (43),

F = 2
(

2(1/a# +1)|f|2 + | f |2/ν0

a#

)1/2

∈ L2+δ (QR(z0)),

and

G = 4
[

2
a#

(
1
a#

+2
)]1/2

K2n/(n+1)|h| ∈ L2+δ (ΣR(z0)),

and the application of the passage to the initial coordinates system upon choos-
ing the neighborhood Q0 =O−1

m ◦φ−1
m (QR0(y0)) of the subset Γ0 of the boundary

∂Ω, imply that

‖∇u‖2+ε,Q(1−β )R(z0) ≤

(
2nβ−ε(n+2)/2

4− (n+2)(υ−1)ε

)1/(2+ε)

×

×

[(
2(4+ ε)

n(2+ ε)Rε(n+2)/2

)1/(2+ε)

‖∇u‖2,QR(z0)+

+

(
21+ε(n+1)/2ε

n(2+ ε)
+υ

(
4+ ε(n+2)

2n

))1/(2+ε)

×

×

(
2
√

2(1+a#)

a#
‖f‖2+ε,QR(z0)+

2
√

a#ν0
‖ f‖2+ε,QR(z0)

)
+

+

(
21+εn/2ε

n(2+ ε)Rε/2 +υ

(
4+ ε(n+2)

2n

))1/(2+ε)

×

× 4
a#

√
2(1+a#)K2n/(n+1)‖h‖2+ε,ΣR(z0)

]
, (49)
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for any R < min{
√

T ,R0,(4S2n/(n+2))
−1}, for all ε ∈ [0,δ ] with δ < 2/[n(υ −

1)], and υ being defined by (37) with (48), that is (11).

5.3. Global higher integrability

On the one hand, Section 5.1 ensures that for each point z ∈ Ω× [0,T ] it is
associated a sequence of cubic intervals Qr(z)/2(z), with side lengths r(z) > 0
tending to zero, such that (44) is verified. On the other hand, Section 5.2 ensures
that for each point z ∈ ∂Ω× [0,T ] it is associated a sequence of cubic intervals
Qr(z)/2(z), with side lengths r(z)> 0 tending to zero, such that (49) is verified.

From the mathematical point of view, it is indifferent to continue the proof
by considering thoses cubic intervals. With in mind the view point of real and
numerical applications we prefer to proceed by analysing separately the spatial
domain.

According to the Besicovitch covering theorem [21, Theorem 1.2], there
exists a sequence of spatial cubic intervals {Qrm/2(x(m))}m≥1 from the above
collection of cubic intervals such that: Ω ⊂ ∪m≥1Qrm/2(x(m)); and every point
of Rn belongs to at most 2n+1 cubes in {Qrm/2(x(m))}m≥1. Since Ω is bounded,
this cover is finite, i.e. its cardinal is an integer number M. Let us define

r# = min{rm : m = 1, · · · ,M}.

Indeed, there exists N (depending on the dimension of the space) families
of pairwise disjoint cubes such that (for details see [10, 21])

{Qrm(x
(m))}m=1,··· ,M = ∪N

m=1{Qri(x
(i))}i=1,··· ,I(m)∪J (m),

where I(m) contains the indices with x(i) ∈ Ω, while J (m) contains the in-
dices with x(i) ∈ ∂Ω. For each i ∈ I(m) (analogously for i ∈ J (m)) there
exists d = di > 0 such that dr2

i /4 = T . If d < 1, we take t(i) = 0 observing
that ]0,T [⊂]0,r2

i /4[. If the integer part bdc is even, i.e. bdc = 2k, k ∈ N,
then we may build k+ 1 parabolic interval cubes Qri(z

(i, j)) centered at z(i, j) =
(x(i), t( j)) where t( j) = 2( j−1)r2

i /4 for j = 1, · · · ,k+1 :=K(i), observing that
t(m+1) = 2mr2

i /4 < T . If bdc is odd, i.e. bdc = 2k− 1, k ∈ N, then we may
build k parabolic interval cubes Qri(z

(i, j)) centered at z(i, j) = (x(i), t( j)) where
t( j) = (2 j−1)r2

i /4 for j = 1, · · · ,k :=K(i).
Hence, combining (44) and (49) with

‖∇u‖p,QT ≤
N

∑
m=1

 ∑
i∈I(m)

j=1,··· ,K(i)

‖∇u‖p,Qri/2(z(i, j))
+ ∑

i∈J (m)
j=1,··· ,K(i)

‖∇u‖p,Qri/2(z(i, j))∩Ω

 ,
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we find the no optimal, but simplified, estimate

‖∇u‖p,QT ≤C(n)

[
‖∇u‖2,QT +

(1+υ)1/(2+ε)

a#

(√
1+a#‖f‖2+ε,QT +

+
1
√

ν0
‖ f‖2+ε,QT +

√
1+a#K2n/(n+1)‖h‖2+ε,ΣT

)]
,

where

C(n) = N2c(n)(r#)
−(n+2)/2

(
2nβ−ε(n+2)/2

4− (n+2)(υ−1)ε

)1/(2+ε)

. (50)

Here, c(n) stands for a positive polynomial function of degree 1 on the space
dimension n. Therefore, from (12) we conclude (8).

6. W 1,p regularity (`= 2 and isotropic case)

In this section, we reformulate the explicit Lp-estimate of the gradient of a weak
solution. The leading coefficient is assumed to be A= aI.

Let us state the following results whose extends to the problem under study
the result obtained in [5, 29] for the Dirichlet problem. To this end, we introduce
the Robin-Laplacian operator ∆R ∈ L(Vp(QT );Wp) and the perturbation P : u ∈
Vp(QT ) 7→ Pu ∈Wp defined by

〈−∆
Ru,v〉 :=

∫
QT

∇u ·∇vdxdt+
∫

ΣT

uvdsdt;

〈Pu,v〉 :=
∫

QT

(1−a)∇u ·∇vdxdt+
∫

ΣT

(1−b(u))uvdsdt,

for all v ∈ Vp′(QT ). The term b(u)uv belongs to L1(ΣT ) due to the embed-
ding L2(0,T ;W 1,2(Ω)) ↪→ L2(ΣT ), and the growthness of b implies that b(u) ∈
L∞(ΣT ).

The following first result is established.

Proposition 6.1. If L−1 :Wp→Vp(QT ) is an isomorphism, then

‖L−1Pu‖Vp(QT ) ≤ ‖L
−1‖op ((1−a#)‖∇u‖p,QT +(1−b#)‖u‖2,ΣT ) ,

where ‖L‖op stands for the operator norm of L.

Proof. This property is a consequence of definition of P, and the assumptions
(1)-(3) with a#,b# < 1 and `= 2.
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The existence and uniqueness of weak solutions to the linearized variational
problem (5), i.e. A= I and b≡ 1, guarantee that L = ∂t−∆R is an isomorphism
from {w ∈D(L) : Lw ∈Wp} ontoWp, for any 1 < p < p̄ and some p̄ > 1, such
that D(L)⊂Wp ⊂ R(L). In particular, this restriction of L toWp (called theWp

realization of the operator L) satisfies

‖L−1‖op ≤ sup
f∈Lp(QT )
‖f‖p,QT

=1

sup
f∈Lp(QT )
‖ f‖p,QT

=1

sup
h∈L2(ΣT )
‖h‖2,ΣT

=1

(M(1,1)+E(1,1, p)) |`=2 := Λp,

whereM(1,1) and E(1,1, p) are according to (10) and (9), respectively.
Therefore, we state the following version of [5, Thm. 2.2, p. 272].

Proposition 6.2. Under the assumptions (1)-(3) with a#,b# ∈]1−1/Λp,1[ and
`= 2, then any weak solution u ∈V2(QT ) of (5) enjoys the following properties

1. u satisfies the variational problem 〈Lu−Pu−F,v〉[Vp′ (QT )]′×Vp′ (QT ) = 0,

2. u verifies the following estimate

(1−Λp(1−a#))‖∇u‖p,QT +(1−Λp(1−b#))‖u‖2,ΣT ≤
≤ Λp (‖f‖p,QT +‖ f‖p,QT +‖h‖2,ΣT ) .

Proof. The point 1 is consequence of the definitions of the operators. We give an
outline of the proof of the point 2. From the point 1, we have u = L−1(Pu+F).
Then, the claimed estimate follows from Proposition 6.1.

Finally, we observe that different explicit estimates are obtained via the in-
terpolative approach, namely the Marcinkiewicz interpolation theorem [16, pp.
228-230].

Theorem 6.3. Let T be a linear mapping from Lq(Ω)∩Lr(Ω) into itself, 1 ≤
q < r < ∞, and suppose there are constants T1 and T2 such that

µT f (t)≤
(

T1‖ f‖q,Ω

t

)q

, µT f (t)≤
(

T2‖ f‖r,Ω

t

)r

,

for all f ∈ Lq(Ω)∩ Lr(Ω), and t > 0. Then, T extends as a bounded linear
mapping from Lp(Ω) into itself for any p such that q < p < r, and

‖T f‖p,Ω ≤ 2
(

p
p−q

+
p

r− p

)1/p

T α
1 T 1−α

2 ‖ f‖p,Ω (51)

holds for all f ∈ Lq(Ω)∩Lr(Ω), where 1/p = α/q+(1−α)/r.
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7. Steady-state W 1,p regularity

The higher integrability of the gradient is an useful tool in order to obtain Hölder
continuity (by embedding if p > n). As one knows since long (see e.g. [26,
Ch. 3] or [16, Ch. 8]), Hölder continuity can be achieved directly. When the
domain is only Lipschitz, the coefficients are discontinuous, and the boundary
conditions are mixed, it is proved in [23], for the most interesting dimensions
n = 2,3,4. For all dimensions it is (unfortunately, rather implicitly) shown in
[17, 18] by use of Sobolev-Campanato spaces (which embed for suitable indices
in corresponding Hölder spaces).

An explicit estimate is established in [10]. However, in there the dependence
on the data has a wordy expression. In view of this, such estimate is traced back
to the celebrated paper by Gröger and Rehberg [20] in the context of elliptic
regularity theory for weak solutions in the case of mixed boundary conditions.
In this approach, it is assumed to be known the upper bound

Mq = sup{‖u‖1,q,Ω : u ∈W 1,q
Γ

(Ω), ‖(−∆+ I)u‖
[W 1,q′

Γ
(Ω)]′
≤ 1}, (52)

with W 1,q
Γ

(Ω) = {v ∈W 1,q(Ω) : v = 0 on Γ}.
Here, we consider the following mixed Neumann-power type problem to a

linear elliptic equation:
(NPP) Find u such that verifies, in the sense of distributions,

−∇ · (A∇u) = f −∇ · f in Ω; (53)

(A∇u− f) ·n = (h−b(u)u)χΓ on ∂Ω, (54)

where n is the unit outward normal to the boundary ∂Ω. Even more, instead of
(52) we set

Mp = ‖(−∆
R
Ω)
−1‖op,

where ∆R
Ω

is the isomorphism from W 1,p(Ω) onto [W 1,p′(Ω)]′ defined by

〈−∆
R
Ωw,v〉=

∫
Ω

∇w ·∇vdx+
∫

Γ

wvds.

We endow the Sobolev space W 1,p(Ω) with the norm

‖v‖1,p,Ω = ‖∇v‖p,Ω +‖v‖2,Γ.

Although its existence and uniqueness of solutions to (NPP) are classical in
appropriate subspace of H1(Ω), namely V2,`(Ω), the W 1,p-regularity (p > 2) of
the weak solution is a hardship. Even if the leading coefficient is assumed either
to be in VMO [34] or to verify a minimal condition [8] or if provided by the
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Laplacian operator, i.e. A = I [12, 35], the use of H2-regularity is not allowed
since our right hand side does not belong to a Lebesgue space.

For reader convenience, we exhibit the explicit constant involved in the
W 1,p(Ω) estimate established in [10].

Theorem 7.1. Let Ω be a C1 domain, the assumptions (1)-(3) be fulfilled, and

υU = (8n +1)26n

Pn

((
4a#

a#

)2

+
4+ν0

a#

)1/2

+1

2

,

where ν0 = ν0( f ) is a positive constant if f 6= 0, and ν0(0) = 0 otherwise. Here,
Pn is a function on the spatial variable n, and in particular P2 = 3/

√
π , and

P3 =
2√
π

(
2

Γ(3/2)

)1/3
(

3−7/6 +
4
π

31/3

51/6 sin(5π/6)

)
.

If f ∈ L2+ε(Ω), f ∈ L2+ε(Ω), and h ∈ L2+ε(Γ) for any ε ∈]0,4/((n+ 2)(υU−
1))[, then there exists a weak solution u ∈V2,`(Ω) to (53)-(54), in the sense∫

Ω

(A∇u) ·∇vdx+
∫

Γ

b(u)uvds =
∫

Ω

f ·∇vdx+

+
∫

Ω

f vdx+
∫

Γ

hvds, ∀v ∈V2,`(Ω), (55)

such that belongs to W 1,2+ε(Ω). In particular,

‖∇u‖2+ε

2+ε,Ω ≤
2n(1+ε/2)(2n +1)

4− (n+2)(υU−1)ε

[(
8

(r#)n

)ε/2

4‖∇u‖2+ε

2,Ω +

+
(

22+(n+1)ε/2 +υU(4+(n+2)ε)
)
‖F‖2+ε

2+ε,Ω +

+(4+υU(4+(n+2)ε))‖H‖2+ε

2+ε,Γ

]
, (56)

where

F = (a#)
−1/2

[(
2
a#

+2
)
|f|2 + 1

ν0
| f |2
]1/2

;

H = 2

√
2+2−1/na#

a#
K2n/(n+1)|h+b#

(
esssup

Ω

|u|
)`−1

|,

with r# > 0 being dependent on the space dimension.
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Let us extend the existence result for the mixed Dirichlet-Neumann prob-
lem [20, Theorem 1] to the following one for the mixed Neumann-power type
problem (NPP).

Proposition 7.2. Suppose `= 2. If A is symmetric, f∈Lp(Ω), f ∈ Lpn/(p+n)(Ω),
and h ∈ L2(Γ), with p > 2 such that

a#/Mp > κ := max{
√

(a#)2− (a#)2, |a#−a#b#/a#|}, (57)

then the weak solution u ∈V2,`(Ω) of (55) satisfies

‖∇u‖p,Ω +‖u‖2,Γ ≤
Mpa#

a#−κMp
(‖f‖p,Ω +Sp′‖ f‖pn/(p+n),Ω +‖h‖2,Γ), (58)

where Sp′ is according to Remark 3.2.

Proof. The monotone theory for elliptic equations (see for instance [33, Corol-
lary 2.2, p. 39]) ensures the existence of u ∈V2,`(Ω) solving∫

Ω

∇u ·∇vdx+
∫

Γ

b(u)uvds =
∫

Ω

F ·∇vdx+ t
∫

Ω

f vdx+

+
∫

Γ

Gvds, ∀v ∈V2,`(Ω), (59)

with

F = (I− tA)∇u+ tf;
G = (1− tb(u))u+ th,

for any t > 0.
We seek for a unique fixed point of the continuous linear mapping Q :

W 1,p(Ω)→W 1,p(Ω) defined by Qw = (−∆R
Ω
)−1(Ltw), with

〈Ltw,v〉=
∫

Ω

[(I− tA)∇w+ tf] ·∇vdx+ t
∫

Ω

f vdx+
∫

Γ

[(1− tb(u))w+ th]vds,

for all v ∈W 1,p′(Ω).
The existence of a unique fixed point is guaranteed if Q is strictly contrac-

tive. Let u1, u2 ∈W 1,p(Ω) be arbitrary, then

‖Qu1−Qu2‖1,p,Ω ≤Mp (‖(I− tA)∇(u1−u2)‖p,Ω +‖(1− tb(u))(u1−u2)‖2,Γ) .

For all y ∈ Lp(Ω), we have the relation [20]

‖(I− a#

(a#)2A)y‖p,Ω ≤
√

1− (a#/a#)2‖y‖p,Ω. (60)
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Letting t = a#(a#)−2, gathering the two above inequalities we obtain

‖Qu1−Qu2‖1,p,Ω ≤Mp

(√
1− (a#/a#)2‖∇(u1−u2)‖p,Ω+

+|1−a#b#/(a#)2|‖u1−u2‖2,Γ
)
.

By (57), Q is a strict contraction, and then there exists w ∈W 1,p(Ω) such that
w = (−∆R

Ω
)−1(Ltw). By uniqueness of solution in V2,`(Ω), then w≡ u verifies

‖u‖1,p,Ω ≤
Mp

a#

(
κ‖u‖1,p,Ω +

a#

a# (‖f‖p,Ω +Sp′‖ f‖pn/(p+n),Ω +‖h‖2,Γ)
)
,

since p′ < 2, which implies (58).

Remark 7.3. The choice of the involved constant in (57), which comes from
(60), is not optimal. In the work [29] the author shows that if there exists θ ∈
[0,1[ such that A verifies

n

∑
i, j=1

1
2
(Ai j−A ji)ξiη j ≤ a#θ

(
n

∑
i=1

ξ
2
i

)1/2( n

∑
j=1

η
2
j

)1/2

then

‖(I− 1
a#A)y‖p,Ω ≤ c(1− (1−θ)a#/a#)‖y‖p,Ω, ∀y ∈ Lp(Ω),

where c > 1 is dependent on p (p≥ 2) and the space dimension n as follows(
n

∑
i=1
|yi|2

)p/2

≤ cp
n

∑
i=1
|yi|p.

In particular, c= 21/2−1/p if n= 2. For a symmetric A, we emphasize that θ = 0,
and

c(1−a#/a#)≤
√

1− (a#/a#)2 if a#/a# ≥ c2−1
c2 +1

.

Moreover, if instead (57) we suppose

Mp max{c(1−a#/a#), |1−a#b#/(a#)2|} ≤ 1−a#/(2a#),

then (58) reads

‖∇u‖p,Ω +‖u‖2,Γ ≤
2Mp

a#
(‖f‖p,Ω +Sp′‖ f‖pn/(p+n),Ω +‖h‖2,Γ).

Remark 7.4. We emphasize that Proposition 7.2 does not contradicts the coun-
terexample of the existence of a function u ∈ H1(R2) solving the elliptic equa-
tion ∇ · (A∇u) = 0 in R2 such that does not belong to W 1,p(Ω) for some p > 2.
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