LE MATEMATICHE Vol. LXIX (2014) – Fasc. I, pp. 249–257 doi: 10.4418/2014.69.1.19

CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH VARYING ARGUMENTS

MOHAMED K. AOUF - ADELA O. MOSTAFA - EMAN A. ADWAN

In this paper, we introduce new classes $VM(\beta)$ and $VN(\beta)$ of analytic functions with varying arguments in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. Some properties such as coefficient estimates, extreme points, distortion theorems for functions f(z) belonging to the classes are obtained.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in the open unit disc $U = \{z : |z| < 1\}$. Let $M(\beta)$ denote the subclass of A consisting of functions f(z) which satisfy the inequality:

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} < \beta, \tag{2}$$

or, equivalently,

$$\left|\frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} - (2\beta - 1)}\right| < 1,$$
(3)

Entrato in redazione: 22 aprile 2013

AMS 2010 Subject Classification: 30C45.

Keywords: Harmonic univalent functions, Dziok- Srivastava operator, Extreme points.

for some $\beta(\beta > 1)$. Also let $N(\beta)$ denote the subclass of *A* consisting of functions f(z) which satisfy the inequality:

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} < \beta,\tag{4}$$

or, equivalently,

$$\left| \frac{\frac{zf''(z)}{f'(z)}}{1 + \frac{zf''(z)}{f'(z)} - (2\beta - 1)} \right| < 1.$$
(5)

The classes $M(\beta)$ and $N(\beta)$ were introduced by Nishiwaki and Owa [3] (see also [1], [2], [4], [5] and [7]) and for $1 < \beta \leq \frac{4}{3}$ the classes $M(\beta)$ and $N(\beta)$ were introduced and studied by Uralegaddi et al. (see [8]). It follows from (2) and (4) we can see that (see [7])

$$f(z) \in N(\beta) \iff zf'(z) \in M(\beta).$$

Definition 1.1 ([6]). A function f(z) defined by (1) is said to be in the class $V(\theta_n)$ if $f(z) \in A$ and $\arg(a_n) = \theta_n$ for all $n \ge 2$. If furthermore, there exists a real number α such that

$$\theta_n + (n-1)\alpha \equiv \pi \mod 2\pi$$
,

then f(z) is said to be in the class $V(\theta_n; \alpha)$. The union of $V(\theta_n; \alpha)$ taken over all possible sequences $\{\theta_n\}$ and all possible real numbers α is denoted by V.

Denote by $VM(\beta)$ the subclass of V consisting of functions f(z) in $M(\beta)$ and denote by $VN(\beta)$ the subclass of V consisting of functions f(z) in $N(\beta)$.

2. Coefficient estimates

Unless otherwise mentioned, we shall assume in the reminder of this paper that $1 < \beta \le \frac{4}{3}$.

To prove our main results we shall need the following lemmas.

Lemma 2.1 ([8]). *If* $f(z) \in A$ *satisfies*

$$\sum_{n=2}^{\infty} \left(n-\beta\right) |a_n| \le \beta - 1,\tag{6}$$

then $f(z) \in M(\beta)$.

Lemma 2.2 ([8]). If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n\left(n-\beta\right) |a_n| \le \beta - 1,\tag{7}$$

then $f(z) \in N(\beta)$.

Theorem 2.3. Let the function f(z) be of the form (1), then f(z) is in the class $VM(\beta)$ if and only if

$$\sum_{n=2}^{\infty} (n-\beta) |a_n| \le \beta - 1.$$
(8)

Proof. In view of Lemma 2.1, we need only to show the function f(z) from the class $VM(\beta)$ satisfies the coefficient inequality (8). Let $f(z) \in VM(\beta)$. Then, from (1) and (3), we have

$$\left|\frac{\sum_{n=2}^{\infty} (n-1) a_n z^{n-1}}{2(\beta-1) + \sum_{n=2}^{\infty} (n-2\beta+1) a_n z^{n-1}}\right| < 1.$$

Since $f(z) \in V$, f(z) lies in the class $V(\theta_n, \alpha)$ for some sequence $\{\theta_n\}$ and a real number α such that $\theta_n + (n-1)\alpha \equiv \pi \mod 2\pi \ (n \ge 2)$, then setting $z = re^{i\alpha}$ in the above inequality, we get

$$\frac{-\sum\limits_{n=2}^{\infty} \left(n-1\right) \left|a_{n}\right| r^{n-1}}{2\left(\beta-1\right)-\sum\limits_{n=2}^{\infty} \left(n-2\beta+1\right) \left|a_{n}\right| r^{n-1}}\right| < 1.$$

Since $Re\{w(z)\} < |w(z)| < 1$, we have

$$\Re\left\{\frac{\sum_{n=2}^{\infty} (n-1) |a_n| r^{n-1}}{2 (\beta-1) - \sum_{n=2}^{\infty} (n-2\beta+1) |a_n| r^{n-1}}\right\} < 1.$$
(9)

Hence

$$\sum_{n=2}^{\infty} (n-\beta) |a_n| r^{n-1} \le (\beta-1),$$

which, upon letting $r \to 1^-$, readily yields the assertion (8). This completes the proof of Theorem 2.3.

Corollary 2.4. Let the function f(z) defined by (1) be in the class $VM(\beta)$, then

$$|a_n| \le \frac{(\beta - 1)}{(n - \beta)} \quad (n \ge 2). \tag{10}$$

The result is sharp for the function

$$f(z) = z + \frac{(\beta - 1)}{(n - \beta)} e^{i\theta_n} z^n \ (n \ge 2).$$

$$\tag{11}$$

Similarly, we can prove the following theorem for the class $VN(\beta)$.

Theorem 2.5. Let the function f(z) be of the form (1), then f(z) is in the class $VN(\beta)$ if and only if

$$\sum_{n=2}^{\infty} n\left(n-\beta\right) |a_n| \le (\beta-1). \tag{12}$$

Corollary 2.6. Let the function f(z) defined by (1) be in the class $VN(\beta)$, then

$$|a_n| \le \frac{(\beta - 1)}{n(n - \beta)} \ (n \ge 2). \tag{13}$$

The result is sharp for the function

$$f(z) = z + \frac{(\beta - 1)}{n(n - \beta)} e^{i\theta_n} z^n \ (n \ge 2).$$

$$(14)$$

3. Distortion theorem

Theorem 3.1. Let the function f(z) defined by (1) be in the class $VM(\beta)$. Then

$$|z| - \frac{(\beta - 1)}{(2 - \beta)} |z|^2 \le |f(z)| \le |z| + \frac{(\beta - 1)}{(2 - \beta)} |z|^2,$$
(15)

The result is sharp.

Proof. Since

$$\Psi(n) = (n - \beta), \qquad (16)$$

is an increasing function of $n (n \ge 2)$, from Theorem 2.3, we have

$$(2-\beta)\sum_{n=2}^{\infty}|a_n|\leq \sum_{n=2}^{\infty}(n-\beta)|a_n|\leq (\beta-1),$$

that is

$$\sum_{n=2}^{\infty} |a_n| \le \frac{(\beta-1)}{(2-\beta)},$$

Thus

$$|f(z)| = \left| z + \sum_{n=2}^{\infty} a_n z^n \right| \le |z| + |z|^2 \sum_{n=2}^{\infty} a_n$$
$$\le |z| + \frac{(\beta - 1)}{(2 - \beta)} |z|^2.$$

Similarly, we get

$$\begin{aligned} |f(z)| &\geq |z| - \sum_{n=2}^{\infty} |a_n| |z|^n \geq |z| - |z|^2 \sum_{n=2}^{\infty} |a_n| \\ &\geq |z| - \frac{(\beta - 1)}{(2 - \beta)} |z|^2. \end{aligned}$$

This completes the proof of Theorem 3.1. Finally the result is sharp for the function

$$f(z) = z + \frac{(\beta - 1)}{(2 - \beta)} e^{i\theta_2} z^2$$
(17)

 $z = \pm |z| e^{-i\theta_2}.$

Corollary 3.2. Under the hypotheses of Theorem 3.1, f(z) is included in a disc with center at the origin and radius r_1 given by

$$r_1 = 1 + \frac{(\beta - 1)}{(2 - \beta)}.$$

Theorem 3.3. Let the function f(z) defined by (1) belong to the class $VM(\beta)$. Then

$$1 - \frac{2(\beta - 1)}{(2 - \beta)} |z| \le \left| f'(z) \right| \le 1 + \frac{2(\beta - 1)}{(2 - \beta)} |z|.$$
(18)

The result is sharp for the function f(z) given by (17) at $z = \pm |z|e^{-i\theta_2}$.

Proof. Since $\{n\Psi(n)\}$, where $\Psi(n)$ given by (16) is increasing function of $n(n \ge 2)$, then in view of Theorem 2.5, we have

$$\frac{(2-\beta)}{2}\sum_{n=2}^{\infty}n|a_n|\leq \sum_{n=2}^{\infty}(n-\beta)|a_n|\leq (\beta-1),$$

that is

$$\sum_{n=2}^{\infty} n |a_n| \leq \frac{2(\beta-1)}{(2-\beta)}.$$

Thus

$$\begin{aligned} \left| f'(z) \right| &= \left| 1 + \sum_{n=2}^{\infty} n a_n z^{n-1} \right| &\leq 1 + |z| \sum_{n=2}^{\infty} n |a_n| \\ &\leq 1 + \frac{2(\beta - 1)}{(2 - \beta)} |z|. \end{aligned}$$

Similarly, we get

$$\begin{aligned} \left| f'(z) \right| &\geq 1 - \sum_{n=2}^{\infty} n \left| a_n \right| \left| z^{n-1} \right| &\geq 1 - \left| z \right| \sum_{n=2}^{\infty} n \left| a_n \right| \\ &\geq 1 - \frac{2 \left(\beta - 1 \right)}{\left(2 - \beta \right)} \left| z \right|. \end{aligned}$$

Finally the result is sharp for the function f(z) given by (17). This completes the proof of Theorem 3.3.

Corollary 3.4. Let the function f(z) defined by (1) be in the class $VM(\beta)$. Then f'(z) is included in a disc with center at the origin and radius r_2 given by

$$r_2 = 1 + \frac{2(\beta - 1)}{(2 - \beta)}.$$

Using the same technique as used in Theorems 3.1 and 3.3, we have the following theorems for functions in the class $VN(\beta)$:

Theorem 3.5. Let the function f(z) defined by (1) be in the class $VN(\beta)$. Then

$$|z| - \frac{(\beta - 1)}{2(2 - \beta)} |z|^2 \le |f(z)| \le |z| + \frac{(\beta - 1)}{2(2 - \beta)} |z|^2,$$

The result is sharp for the function

$$f(z) = z + \frac{(\beta - 1)}{2(2 - \beta)}e^{i\theta_2}z^2$$
(19)

at $z = \pm |z| e^{-i\theta_2}$.

Corollary 3.6. Under the hypotheses of Theorem 3.5, f(z) is included in a disc with center at the origin and radius r_3 given by

$$r_3 = 1 + \frac{(\beta - 1)}{2(2 - \beta)}.$$

254

Theorem 3.7. Let the function f(z) defined by (1) belong to the class $VN(\beta)$. Then

$$1 - \frac{\left(\boldsymbol{\beta} - 1\right)}{\left(2 - \boldsymbol{\beta}\right)} \left| z \right| \le \left| f^{'}\left(z\right) \right| \le 1 + \frac{\left(\boldsymbol{\beta} - 1\right)}{\left(2 - \boldsymbol{\beta}\right)} \left| z \right|.$$

The result is sharp for the function f(z) given by (19) at $z = \pm |z| e^{-i\theta_2}$.

Corollary 3.8. Let the function f(z) defined by (1) be in the class $VN(\beta)$. Then f'(z) is included in a disc with center at the origin and radius r_4 given by

$$r_4 = l + \frac{(\beta - 1)}{(2 - \beta)}.$$

4. Extreme points

Theorem 4.1. Let the function f(z) defined by (1) be in the class $VM(\beta)$, with $\arg(a_n) = \theta_n$ where $[\theta_n + (n-1)\alpha] \equiv \pi \mod 2\pi$. Define $f_1(z) = z$ and

$$f_n(z) = z + \frac{(\beta - 1)}{(n - \beta)} e^{i\theta_n} z^n.$$
(20)

Then f(z) is in the class $VM(\beta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z), \qquad (21)$$

where $\mu_n \ge 0$ $(n \ge 1)$ and $\sum_{n=1}^{\infty} \mu_n = 1$.

Proof. If $f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z)$ with $\sum_{n=1}^{\infty} \mu_n = 1$ and $\mu_n \ge 0$, then $\sum_{n=2}^{\infty} (n-\beta) \frac{(\beta-1)}{(n-\beta)} \mu_n$ $= \sum_{n=2}^{\infty} (\beta-1) \mu_n = (\beta-1) (1-\mu_1) \le (\beta-1).$

Hence $f(z) \in VM(\beta)$.

Conversely, let the function f(z) defined by (1) belongs to the class $VM(\beta)$, define

$$\mu_n = \frac{(n-\beta)}{(\beta-1)} |a_n|, \qquad (22)$$

and

$$\mu_1=1-\sum_{n=2}^{\infty}\mu_n.$$

From Theorem 2.3, $\sum_{n=1}^{\infty} \mu_n \leq 1$ and so $\mu_n \geq 0$. Since $\mu_n f_n(z) = \mu_n z + a_n z^n$, then

$$\sum_{n=1}^{\infty} \mu_n f_n(z) = z + \sum_{n=2}^{\infty} a_n z^n = f(z).$$

This completes the proof of Theorem 4.1.

Similarly, we can prove the following theorem for the class $VN(\beta)$.

Theorem 4.2. Let the function f(z) defined by (1) be in the class $VN(\beta)$, with $\arg(a_n) = \theta_n$ where $[\theta_n + (n-1)\alpha] \equiv \pi \mod 2\pi$. Define $f_1(z) = z$ and

$$f_n(z) = z + \frac{(\beta - 1)}{n(n - \beta)} e^{i\theta_n} z^n.$$
(23)

Then f(z) is in the class $VN(\beta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z), \qquad (24)$$

where $\mu_n \ge 0$ $(n \ge 1)$ and $\sum_{n=1}^{\infty} \mu_n = 1$.

REFERENCES

- M. K. Aouf A. Shamandy A. O. Mostafa E. A. Adwan, Subordination results for certain class of analytic functions defined by convolution, Rend. del Circolo Mat. di Palermo 60 (2011), 255–262.
- [2] M. K. Aouf A. Shamandy A. O. Mostafa E. A. Adwan, Subordination theorem of analytic functions defined by convolution, Complex Anal. and Oper. Theory (To appear).
- [3] J. Nishiwaki S. Owa, Coefficient inequalities for certain analytic functions, Internat. J. Math. Math. Sci. 29 (5) (2002), 285–290.
- [4] S. Owa J. Nishiwaki, Coefficient estimates for certain classes of analytic functions, J. Inequal. Pure Appl. Math. 3 (5) (2002), Art. 72, 1–12.
- [5] S. Owa H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 3 (3) (2002), Art.42, 1–27.
- [6] H. Silverman, Univalent functions with varying arguments, Houston J. Math. 7 (1981), 283–287.

- [7] H. M. Srivastava A. A. Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 5 (4) (2004), Art.82, 1–14.
- [8] B. A. Uralegaddi M. D. Ganigi S. M. Sarangi, *Univalent functions with positive coefficients*, Tamkang J. Math. 25 (3) (1994), 225–230.

MOHAMED K. AOUF Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt e-mail: mkaouf127@yahoo.com

ADELA O. MOSTAFA Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt e-mail: adelaeg254@yahoo.com

EMAN A. ADWAN Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt e-mail: eman.a2009@yahoo.com