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RELATIVE APPROXIMATE CONTROLLABILITY OF
FRACTIONAL STOCHASTIC DELAY EVOLUTION

EQUATIONS WITH NONLOCAL CONDITIONS

TOUFIK GUENDOUZI

In this paper, we study the relative approximate controllability of non-
linear fractional stochastic evolution equations with time delays and non-
local conditions, in Hilbert space, via new fixed point analysis approach.
An example is provided to show the application of our result.

1. Introduction

The notion of controllability has played a central role throughout the history of
modern control theory. Conceived by Kalman, controllability study was started
systematically at the beginning of the sixties. Since then various researches
have been carried out extensively in the context of finite-dimensional linear sys-
tems, nonlinear systems and infinite-dimensional systems using different kinds
of approaches (e.g., [3, 4, 18, 26]).

Fractional dynamical equations have recently proved to be valuable tools
in the modeling of anomalous relaxation and diffusion processes. The fact that
fractional derivatives introduce a convolution integral with a power-law memory
kernel makes the fractional differential equations an important one to describe
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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Le Matematiche (Dipartimento di Matematica e Informatica,...

https://core.ac.uk/display/236004145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


18 TOUFIK GUENDOUZI

memory effects in complex systems [10]. The increasing interest of fractional
equations is motivated by their applications in various fields of science such
as physics, fluid mechanics, viscoelasticity, heat conduction in materials with
memory, chemistry and engineering [5, 6, 9].

Stochastic differential equations (SDEs) are used to model diverse phenom-
ena such as fluctuating stock prices or physical systems subject to thermal fluc-
tuations. In the literature, there are different definitions of controllability for
SDEs, both for linear and nonlinear dynamical systems [4].

For linear systems, results were obtained about three types of stochastic
controllability: approximate, complete, and S-controllability in Banach spaces
and Hilbert spaces, respectively, in [15, 16]. With the help of backward SDEs
and dual technique, Goreac [8] characterized the approximate controllability of
linear SDEs. Sirbu and Tessitore [27] were concerned with the exact null con-
trollability of infinite dimensional linear SDEs in Hilbert space. In particular,
Klamka [12] generalized the results in [13] from the deterministic case to the
stochastic one, and investigated the controllability of linear SDEs with delay in
control.

In the setting of nonlinear SDEs, Arapostathis et al. [1] obtained sufficient
conditions that guarantee weak and strong controllability. Assuming the cor-
responding linear SDEs are controllable, Mahmudov and Zorlu [14] studied
the controllability of nonlinear SDEs. Later, Mahmudov [17] gave a charac-
terization of weaker concept-approximate controllability for nonlinear SDEs.
And recently, results in [11] were generalized by Balachandran et al. [3] about
controllability on nonlinear SDEs with distributed delays in control. Complete
controllability property of a nonlinear stochastic control system with jumps in a
separable Hilbert space has been investigated in [23].

In the theory of dynamical systems with delays in control, it is necessary to
distinguish between two fundamental concepts of controllability, namely rela-
tive controllability (relative approximate controllability) and controllability (ap-
proximate controllability), see [3, 11, 12, 25] for more details. Controllability
problems for fractional deterministic and stochastic dynamical systems have
drawn considerable attention recently [22, 28]. Sakthivel and Ren [19] studied
the approximate controllability for a class of nonlinear fractional differential
equations with state-dependent delays. Balachandran et al. [2] investigated the
global relative controllability of fractional dynamical systems with multiple de-
lays in control for finite dimensional spaces. Sakthivel et al. [20] discussed the
approximate controllability for a class of dynamic control systems described
by nonlinear fractional stochastic differential equations in Hilbert spaces. The
approximate controllability of neutral stochastic fractional integro-differential
equation with infinite delay in a Hilbert space has been studied in [21]. How-
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ever, to the best of our knowledge, there are no relevant reports on the relative
controllability of fractional stochastic delay dynamical systems. Inspired by the
above mentioned works [2, 20, 21, 25], in this paper we are interested in study-
ing the relative approximate controllability of nonlinear fractional stochastic
evolution equations with time delays and nonlocal conditions in Hilbert space,
via the fixed point theorem of Schaefer. The paper is organized as follows.
Some preliminary facts are recalled in Section 2. Section 3 is devoted to suf-
ficient condition on the relative approximate controllability of nonlinear frac-
tional stochastic differential equations in Hilbert spaces. In section 4, examples
is discussed to illustrate the effectiveness of our results.

2. Preliminaries

In this section, we provide definitions, lemmas and notations necessary to es-
tablish our main results. Throughout this paper, we use the following notations.
Let (Ω,F ,P) be a complete probability space equipped with a normal filtra-
tion Ft , t ∈ J = [0,T ] satisfying the usual conditions (i.e., right continuous and
F0 containing all P-null sets). We consider three real separable spaces X , E
and U , and Q-Wiener process on (Ω,FT ,P) with the linear bounded covariance
operator Q such that trQ < ∞. We assume that there exists a complete orthonor-
mal system {en}n≥1 on E, a bounded sequence of non-negative real numbers
{λn} such that Qen = λnen, n = 1,2, . . . and a sequence {βn}n≥1 of independent
Brownian motions such that

〈w(t),e〉=
∞

∑
n=1

√
λn〈en,e〉βn(t), e ∈ E, t ∈ [0,T ],

and Ft = Fw
t , where Fw

t is the sigma algebra generated by {w(s) : 0 ≤ s ≤
t}. Let L0

2 = L2(Q1/2E;X) be the Banach space of all FT -measurable square
integrable random variables with values in the Hilbert space X . Let E(.) denotes
the expectation with respect to the measure P.

Let C([0,T ];L2(F ,X)) be the Banach space of continuous maps from [0,T ]
into L2(F ,X) satisfying supt∈J E‖x(t)‖2 < ∞. Let H2([0,T ];X) is a closed sub-
space of C([0,T ];L2(F ,X)) consisting of measurable and Ft-adapted X-valued
process x ∈ C([0,T ];L2(F ,X)) endowed with the norm

‖x‖H2 = (sup
t∈J

E‖x(t)‖2
X)

1/2.

The purpose of this paper is to investigate the relative (approximate) con-
trollability for a class of nonlinear fractional stochastic differential equation of
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the form

cDq
t x(t) = Ax(t)+Bu(t)+ f (t,x(t),x(σ(t)))

+g(t,x(t),x(σ(t)))
dw(t)

dt
, t ∈ (0,T ], x(0)+h(x) = x0, (1)

where 0 < q < 1; cDq
t denotes the Caputo fractional derivative operator of order

q; x(.) takes its values in the Hilbert space X ; A is the infinitesimal generator of
a compact semigroup of uniformly bounded linear operators {S(t), t ≥ 0}; the
control function u(.) is given in L2

F ([0,b],U) of admissible control functions, U
is a Hilbert space. B is a bounded linear operator from U into X ; f : J×X×X→
X and g : J×X ×X → L0

2 are appropriate functions; x0 is F0 measurable X-
valued random variables independent of w; σ : J → J is continuous function
such that σ(t)≤ t, ∀t ∈ J and h : C(J,X)→ X is a given function.

Let us recall the following known definitions. For more details see [9]

Definition 2.1. Riemann-Liouville derivative of order β with lower limit zero
for a function f : [0,∞)→ R can be written as

LDα f (t) =
1

Γ(n−α)

dn

dtn

∫ t

0

f (s)
(t− s)α+1−n ds, t > 0,n−1 < α < n. (2)

Definition 2.2. The Caputo derivative of order α for a function f : [0,∞)→ R
can be written as

cDα f (t) =L Dα

(
f (t)−

n−1

∑
k=0

tk

k!
f k(0)

)
, t > 0,n−1 < α < n. (3)

If f (t) ∈Cn[0,∞), then

cDα f (t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f n(s)ds = In−α f n(s), t > 0,n−1 < α < n.

Definition 2.3. The fractional integral of order β with the lower limit 0 for a
function f is defined as

Iβ f (t) =
1

Γ(β )

∫ t

0

f (s)
(t− s)1−β

ds, t > 0,β > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the
gamma function.

The following results will be used throughout this paper.
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Lemma 2.4 ([20]). Let g : [0,T ]×Ω→ L0
2 be a strongly measurable mapping

such that
∫ T

0
E‖g(t)‖p

L0
2
dt < ∞. Then

E
∥∥∥∥∫ t

0
g(s)dw(s)

∥∥∥∥p

≤ Lg

∫ t

0
E‖g(s)‖p

L0
2
ds

for all 0≤ t ≤ T and p≥ 2, where Lg is the constant involving p and T .

Now, we present the mild solution of the problem (1).

Definition 2.5 ([7]). A stochastic process x ∈ H2([0,b],X) is a mild solution of
(1) if for each u ∈ L2

F ([0,b],U), it satisfies the following integral equation,

x(t) = ψ(t)(x0−h(x))+
∫ t

0
(t− s)q−1

ϕ(t− s)[Bu(s)+ f (s,x(s),x(σ(s)))]ds

+
∫ t

0
(t− s)q−1

ϕ(t− s)g(s,x(s),x(σ(s))dw(s), (4)

where ψ(t) =
∫

∞

0
ξq(θ)S(tq

θ)dθ ; ϕ(t) = q
∫

∞

0
θξq(θ)S(tq

θ)dθ ; S(t) is a C0-

semigroup generated by a linear operator A on X ; ξq is a probability density

function defined on (0,∞), that is ξq(θ)≥ 0, θ ∈ (0,∞) and
∫

∞

0
ξq(θ)dθ = 1.

For each 0 ≤ t < T , the operator α(αI +φ T
0 )
−1→ 0 in the strong operator

topology as α → 0+, where φ T
0 =

∫ T

0
(T − s)2(q−1)

ϕ(T − s)BB?
ϕ
?(T − s)ds is

the controllability Gramian, here B∗ denotes the adjoint of B and ϕ?(t) is the
adjoint of ϕ(t). Observe that linear fractional control system

cDq
t x(t) = Ax(t)+(Bu)(t)+g(t)

dw(t)
dt

, t ∈ [0,T ], (5)

corresponding to (1) is relatively approximately controllable on [0,T ] iff the
operator α(αI +φ b

0 )
−1→ 0 strongly as α → 0+.

Definition 2.6 ([25]). The controlled system (1) is said to be relatively control-
lable at T if for every initial function x0 ∈ L2(Ω,F0,X), there is some control
u ∈ Uad = L2

F ([0,T ],U) such thatR(T ;x0,u) = L2(Ω,FT ,X), where the reach-
able setR(T ;x0,u) is defined as

R(T ;x0,u) = {x(T ) = x(T ;x0,u) : u ∈ Uad ,x0 ∈ L2(Ω,F0,X)}.

Definition 2.7 ([25]). The control system (1) is said to be relatively approxi-
mately controllable if for every initial function x0 ∈ L2(Ω,F0,X) there is some
control u ∈ Uad such thatR(T ;x0,u) = L2(Ω,FT ,X).
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Here Uad = L2
F ([0,T ],U), is the closed subspace of L2

F ([0,T ]×Ω,U), con-
sisting of all Ft adapted, U-valued stochastic processes.

The following lemma is required to define the control function. The reader
can refer to [20] for the proof.

Lemma 2.8. For any x̃T ∈ L2(FT ,X), there exists g̃ ∈ L2
F (Ω;L2(0,T ;L0

2)) such

that x̃T = Ex̃T +
∫ T

0
g̃(s)dw(s).

Now for any α > 0 and x̃T ∈ L2(FT ,X), we define the control function in
the following form

uα(t,x) = B?(T − t)q−1
ϕ
?(T − t)

×
[
(αI +φ

T
0 )
−1[Ex̃T −ψ(T )(x0−h(x))]+

∫ t

0
(αI +φ

T
0 )
−1g̃(s)dw(s)

]
−B?(T − t)q−1

ϕ
?(T − t)

×
∫ t

0
(αI +φ

T
0 )
−1(T − s)q−1

ϕ(T − s) f (s,x(s),x(σ(s)))ds

−B?(T − t)q−1
ϕ
?(T − t)

×
∫ t

0
(αI +φ

T
0 )
−1(T − s)q−1

ϕ(T − s)g(s,x(s),x(σ(s)))dw(s).

3. Controllability results

Now, let us present the main result of this paper.
In this section, we formulate and prove conditions for relative approximate con-
trollability of the fractional stochastic dynamical control system (1) using the
fixed point theorem of Schaefer. In particular, we establish approximate con-
trollability of nonlinear fractional stochastic control system (1) under the as-
sumptions that the corresponding linear system is relatively approximately con-
trollable.
We first impose the following conditions on data of the problem:
(i) For any fixed t ≥ 0, ψ(t) and ϕ(t) are bounded linear operators, i.e., for any
x ∈ X ,

‖ψ(t)‖ ≤M, ‖ϕ(t)‖ ≤ Mq
Γ(q+1)

.

(ii) For each t ∈ J the functions f (t, ·, ·) : X ×X → X and g(t, ·, ·) : X ×X → L0
2

are continuous and for each (x,y) ∈ X ×X the functions f (·,x,y) : J→ X and
g(·,x,y) : J→ L0

2 are strongly Ft-measurable.
(iii) For every positive integer k there exists βk ∈ L2(J) such that for a.a. t ∈ J
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sup
|x|2,|y|2≤k

E‖ f (t,x,y)‖2 ≤ βk,

sup
|x|2,|y|2≤k

E‖g(t,x,y)‖2
L0

2
≤ βk.

(iv) There exists a constant β̃ such that ‖h(x)‖2 ≤ β̃ , for x ∈ X .
(v) There exist continuous functions λ : J→ R and λ̃ : J→ R such that

E‖ f (t,x(t),x(σ(t)))‖2 ≤ λ (t)ϑ(E‖x‖2), ∀t ∈ J,x ∈ X ,
and

E‖g(t,x(t),x(σ(t)))‖2
L0

2
≤ λ̃ (t)ϑ(E‖x‖2), ∀t ∈ J,x ∈ X ,

where ϑ : [0,∞)→ (0,∞) is a continuous nondecreasing function with

∫ T

0
λ̂ (s)ds <

∫
∞

c

ds
s+ϑ(s)

where c = 8M2(‖x0‖2 + β̃ ) + β̂ and λ̂ (t) = max{z, N̂ezt [λ (t) + λ̃ (t)]} for all
z ∈ R, t ∈ J with N̂, β̂ are positive real constants.
(vi) ϕ(t), t > 0 is compact.
(vii) The set {w0− h(w),w ∈ Dk} where Dk = {w ∈ K : ‖w‖2 ≤ k} is precom-
pact in X , with K is a Banach space.
(viii) The linear fractional stochastic system (5) is relatively approximately con-
trollable on [0,T ].

The consideration of this paper are based on the following fixed point result
of Schaefer [24].

Lemma 3.1. Let K be a Banach space and P : K→K be completely continuous
map. If the set

I := {x ∈ K : εx = Px for som ε > 1}

is bounded, then P has a fixed point.

Lemma 3.2. There exists a positive real constant M̂ such that for all x ∈ X, we
have

E‖uα(t,x)‖2 ≤ M̂
α2

(
1+

∫ t

0
βk(s)ds

)
. (6)

Proof. Let x ∈ X . Then

E‖uα(t,x)‖2

≤ 3E
∥∥∥B?(T − t)q−1

ϕ
?(T − t)

[
(αI +φ

T
0 )
−1(Ex̃T −ψ(T )(x0−h(x))) +
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+
∫ t

0
(αI +φ

T
0 )
−1g̃dw(s)

]∥∥∥∥2

+3E
∥∥B?(T − t)q−1

ϕ
?(T − t)

×
∫ t

0
(αI +φ

T
0 )
−1(T − s)q−1

ϕ(T − s) f (s,x(s),x(σ(s)))ds
∥∥∥∥2

+3E
∥∥B?(T − t)q−1

ϕ
?(T − t)

×
∫ t

0
(αI +φ

T
0 )
−1(T − s)q−1

ϕ(T − s)g(s,x(s),x(σ(s)))dw(s)
∥∥∥∥2

.

From the Hölder inequality, Lemma 2.4 and the assumption on the data, we
obtain

E‖uα(t,x)‖2

≤ 3
α2 ‖B‖

2T 2q−2
(

Mq
Γ(q+1)

)2 [
E‖x̃T‖2−M(‖x0‖2− β̃ )

]
+

3
α2 ‖B‖

2T 2q−1
(

Mq
Γ(q+1)

)2

Lgl

+
6

α2 ‖B‖
2T 2q−2

(
Mq

Γ(q+1)

)4 T 2q−1

2q−1
(1+Lg)

∫ t

0
βk(s)ds

=
c1

α2 +
c2

α2

∫ t

0
βk(s)ds

≤ M̂
α2

(
1+

∫ t

0
βk(s)ds

)
,

where l =max{‖g̃(s)‖2 : s∈ [0,T ]}, M̂ =max{c1,c2}, c1 and c2 are two positive
constants.

Now, we state and prove the following theorem, which will be used in the
proof of the main result.

Theorem 3.3. Assume that the conditions (i)-(vii) are satisfied. Then the frac-
tional stochastic system (1) has at least one mild solution on [0,T ].

Proof. We transform the problem (1) into a fixed point problem. Consider the
map Pα : Y := H2([0,T ];X)→ Y defined by

(Pαx)(t) = ψ(t)(x0−h(x))

+
∫ t

0
(t− s)q−1

ϕ(t− s)
[

f (s,x(s),x(σ(s)))+Buα(s,x)
]
ds

+
∫ t

0
(t− s)q−1

ϕ(t− s)g(s,x(s),x(σ(s)))dw(s), t ∈ J.
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We shall prove that the operator Pα is a completely continuous operator.
Let Yk = {x ∈ Y : ‖x‖2 ≤ k} for some k ≥ 1. We first show that Pα maps Yk

into an equicontinuous family. Let x ∈ Yk and t1, t2 ∈ J. Then if 0 < ε < t1 <
t2 ≤ T

E‖(Pα)(t1)− (Pα)(t2)‖2 ≤ 8‖ψ(t1)−ψ(t2)‖2(E‖x0‖2 +E‖h(x)‖2)

+12E
∥∥∥∥∫ t1−ε

0
(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)] f (τ,x(τ),x(σ(τ)))dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t1

t1−ε

(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)] f (τ,x(τ),x(σ(τ)))dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t2

t1
(t2− τ)q−1

ϕ(t2− τ) f (τ,x(τ),x(σ(τ)))dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t1−ε

0
(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)]Buα(τ,x)dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t1

t1−ε

(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)]Buα(τ,x)dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t2

t1
(t2− τ)q−1

ϕ(t2− τ)Buα(τ,x)dτ

∥∥∥∥2

+12E
∥∥∥∥∫ t1−ε

0
(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)]g(τ,x(τ),x(σ(τ)))dw(τ)

∥∥∥∥2

+12E
∥∥∥∥∫ t1

t1−ε

(t1− τ)q−1[ϕ(t1− τ)−ϕ(t2− τ)]g(τ,x(τ),x(σ(τ)))dw(τ)
∥∥∥∥2

+12E
∥∥∥∥∫ t2

t1
(t2− τ)q−1

ϕ(t2− τ)g(τ,x(τ),x(σ(τ)))dw(τ)
∥∥∥∥2

Therefore

‖(Pα)(t1)− (Pα)(t2)‖2
Yk
≤ 8‖ψ(t1)−ψ(t2)‖2(‖x0‖2 +‖h(x)‖2)

+12T
t2q−1
1

2q−1

∫ t1−ε

0
‖ϕ(t1− τ)−ϕ(t2− τ)‖2

βk(τ)dτ

+12T
t2q−1
1

2q−1

∫ t1

t1−ε

‖ϕ(t1− τ)−ϕ(t2− τ)‖2
βk(τ)dτ

+12T
(t2− t1)2q−1

1−2q

∫ t2

t1
‖ϕ(t2− τ)‖2

βk(τ)dτ

≤ 12
t2q−1
1

2q−1
Lg

∫ t1−ε

0
‖ϕ(t1− τ)−ϕ(t2− τ)‖2

βk(τ)dτ+
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+12
t2q−1
1

2q−1
Lg

∫ t1

t1−ε

‖ϕ(t1− τ)−ϕ(t2− τ)‖2
βk(τ)dτ

+12
(t2− t1)2q−1

1−2q
Lg

∫ t2

t1
‖ϕ(t2− τ)‖2

βk(τ)dτ

+
12
α2 M̃‖B‖2 t2q−1

1
2q−1

∫ t1−ε

0
‖ϕ(t1− τ)−ϕ(t2− τ)‖2(1+ τβk(τ))dτ

+
12
α2 M̃‖B‖2 t2q−1

1
2q−1

∫ t1

t1−ε

‖ϕ(t1− τ)−ϕ(t2− τ)‖2(1+ τβk(τ))dτ

+
12
α2 M̃‖B‖2 (t2− t1)2q−1

1−2q

∫ t2

t1
‖ϕ(t2− τ)‖2(1+ τβk(τ))dτ.

The right hand side is independent of x∈Yk and tend to zero as t2− t1→ 0 and ε

sufficiently small, sine the compactness of ϕ(t), t > 0, implies the continuity in
the uniform operator topology. Thus Pα maps Yk into an equicontinuous family
of functions. It is easy to see that the family Yk uniformly bounded.

Next, we show that PαYk is compact. Since we have shown that PαYk is an
equicontinuous collection, it suffices by Arzela-Ascoli theorem to show that Pα

maps Yk into a precompact set in X .
Let 0 < t ≤ T be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Yk

we define
(Pα,εx)(t) = ψ(t)(x0−h(x))

+
∫ t−ε

0
(t− τ)q−1

ϕ(t− τ)
[

f (τ,x(τ),x(σ(τ)))+Buα(τ,x)
]
dτ+

+
∫ t−ε

0
(t− τ)q−1

ϕ(t− τ)g(τ,x(τ),x(σ(τ)))dw(τ)

= ψ(t)(x0−h(x))

+ϕ(ε)
∫ t−ε

0
(t− τ)q−1

ϕ(t− τ− ε)
[

f (τ,x(τ),x(σ(τ)))+Buα(τ,x)
]
dτ

+ϕ(ε)
∫ t−ε

0
(t− τ)q−1

ϕ(t− τ− ε)g(τ,x(τ),x(σ(τ)))dw(τ).

Since ϕ(t) is a compact operator, the set Yε(t) = {(Pα,εx)(t) : x ∈ Yk} is pre-
compact in X , for every ε , 0 < ε < t. Moreover, for every x ∈ Yk we have

E‖(Pαx)(t)− (Pα,εx)(t)‖2

≤ 3E
∥∥∥∥∫ t

t−ε

(t− τ)q−1
ϕ(t− τ)

[
f (τ,x(τ),x(σ(τ)))+Buα(τ,x)

]
dτ

∥∥∥∥2

+3E
∥∥∥∥∫ t

t−ε

(t− τ)q−1
ϕ(t− τ)g(τ,x(τ),x(σ(τ)))dw(τ)

∥∥∥∥2

.
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Thus

‖(Pαx)(t)− (Pα,εx)(t)‖2
Yk

≤ 3
ε2q−1

1−2q

(
Mq

Γ(q+1)

)2

(T +Lg)
∫ t

t−ε

βk(τ)dτ

+
3

α2 M̃‖B‖2 ε2q−1

1−2q

(
Mq

Γ(q+1)

)2(
ε +

∫ t

t−ε

βk(τ)dτ

)
Therefore there are precompact sets arbitrary close to the set {(Pαx)(t) : x∈Yk}.
Hence the set {(Pαx)(t) : x ∈ Yk}, according to assumption (vii) is precompact
in X .

It remain to show that Pα : Y →Y is continuous. Let {vn}∞
0 ⊆Y with vn→ v

in Y . Then there is an integer p such that ‖vn(t)‖2 ≤ p for all n and t ∈ J, so
vn ∈ Yp and v ∈ Yp. By (ii) we have for each t ∈ J

f (t,vn(t),vn(σ(t)))→ f (t,v(t),v(σ(t)))

and

g(t,vn(t),vn(σ(t)))→ g(t,v(t),v(σ(t))).

Since

‖ f (t,vn(t),vn(σ(t)))− f (t,v(t),v(σ(t)))‖2 ≤ 2 fp(t)

and

‖g(t,vn(t),vn(σ(t)))−g(t,v(t),v(σ(t)))‖2
L0

2
≤ 2gp(t),

we have by dominated convergence

‖(Pαvn)(t)− (Pαv)(t)‖2 ≤ 3
T 2q

2q−1

(
Mq

Γ(q+1)

)2

×
∫ T

0
‖ f (τ,vn(τ),vn(σ(τ)))− f (τ,v(τ),v(σ(τ)))‖2dτ

+3
T 2q−1

2q−1

(
Mq

Γ(q+1)

)2

Lg

×
∫ T

0
‖g(τ,vn(τ),vn(σ(τ)))−g(τ,v(τ),v(σ(τ)))‖2dτ

+
6

α2 ‖B‖
4T 2q−2

(
Mq

Γ(q+1)

)4 T 2q

2q−1
×
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×
∫ T

0
‖ f (τ,vn(τ),vn(σ(τ)))− f (τ,v(τ),v(σ(τ)))‖2dτ

+
6

α2 ‖B‖
4T 2q−2

(
Mq

Γ(q+1)

)4 T 2q

2q−1
Lg

×
∫ T

0
‖g(τ,vn(τ),vn(σ(τ)))−g(τ,v(τ),v(σ(τ)))‖2dτ → 0.

Thus Pα is continuous. This completes the proof that Pα is completely contin-
uous.

Now, we shall prove that the set

I := {x ∈ Y : θx = Pαx for some θ > 1}

is bounded.
Let x ∈ I. Then θx = Pαx for some θ > 1. Then

x(t) = θ
−1

ψ(t)(x0−h(x))

+θ
−1
∫ t

0
(t− s)q−1

ϕ(t− s)
[

f (s,x(s),x(σ(s)))+Buα(s,x)
]
ds (7)

+θ
−1
∫ t

0
(t− s)q−1

ϕ(t− s)g(s,x(s),x(σ(s)))dw(s), t ∈ J.

We have

E‖x(t)‖2 ≤ 8‖ψ(t)‖2[E‖x0‖2 +E‖h(x)‖2]

+4E
∥∥∥∥∫ t

0
(t− τ)q−1

ϕ(t− τ) f (τ,x(τ),x(σ(τ)))dτ

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
(t− τ)q−1

ϕ(t− τ)Buα(τ,x)dτ

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
(t− τ)q−1

ϕ(t− τ)g(τ,x(τ),x(σ(τ)))dw(τ)
∥∥∥∥2

≤ 8M2[E‖x0‖2 +E‖h(x)‖2]

+4
T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
E‖ f (τ,x(τ),x(σ(τ)))‖2dτ

+4
T 2q

2q−1

(
Mq

Γ(q+1)

)2

Lg

∫ t

0
E‖g(τ,x(τ),x(σ(τ)))‖2

L0
2
dτ

+4‖B‖2 T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
E‖uα(τ,x)‖2dτ.
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Using the same procedure as the proof of Lemma 3.2, we get

E‖x(t)‖2 ≤ 8M2[E‖x0‖2 +E‖h(x)‖2]

+4
T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
E‖ f (τ,x(τ),x(σ(τ)))‖2dτ

+4
T 2q

2q−1

(
Mq

Γ(q+1)

)2

Lg

∫ t

0
E‖g(τ,x(τ),x(σ(τ)))‖2

L0
2
dτ

+4
c1

α2 ‖B‖
2 T 2q

2q−1

(
Mq

Γ(q+1)

)2

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
E‖ f (τ,x(τ),x(σ(τ)))‖2dτ

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
E‖g(τ,x(τ),x(σ(τ)))‖2

L0
2
dτ

or

E‖x(t)‖2 ≤ 8M2[E‖x0‖2 +E‖h(x)‖2]

+4
T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
λ (τ)ϑ(E‖x(τ)‖2)dτ

+4Lg
T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
λ̃ (τ)ϑ(E‖x(τ)‖2)dτ

+4
c1

α2 ‖B‖
2 T 2q

2q−1

(
Mq

Γ(q+1)

)2

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
λ (τ)ϑ(E‖x(τ)‖2)dτ

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
λ̃ (τ)ϑ(E‖x(τ)‖2)dτ.

That is

‖x(t)‖2
Yk
≤ 8M2

[
‖x0‖2 + β̃

]
+4

T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
λ (τ)ϑ(‖x(τ)‖2)dτ

+4Lg
T 2q

2q−1

(
Mq

Γ(q+1)

)2 ∫ t

0
λ̃ (τ)ϑ(‖x(τ)‖2)dτ
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+4
c1

α2 ‖B‖
2 T 2q

2q−1

(
Mq

Γ(q+1)

)2

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
λ (τ)ϑ(E‖x(τ)‖2)dτ

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8 ∫ t

0
λ̃ (τ)ϑ(‖x(τ)‖2)dτ.

Denoting by ν(t) the right-hand side of the above inequality we have
ν(0) = 8M2(‖x0‖2 + β̃ )+ β̂ = c, and ‖x(t)‖2 ≤ ν(t), t ∈ J with

β̂ = 4 c1
α2 ‖B‖2 T 2q

2q−1

(
Mq

Γ(q+1)

)2
, and

ν
′(t) = 4

T 2q

2q−1

(
Mq

Γ(q+1)

)2

λ (t)ϑ(‖x(t)‖2)

+4Lg
T 2q

2q−1

(
Mq

Γ(q+1)

)2

λ̃ (t)ϑ(‖x(t)‖2)

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8

λ (t)ϑ(‖x(t)‖2)

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8

λ̃ (t)ϑ(‖x(t)‖2)

≤ 4
T 2q

2q−1

(
Mq

Γ(q+1)

)2

λ (t)ϑ(ν(t))

+4Lg
T 2q

2q−1

(
Mq

Γ(q+1)

)2

λ̃ (t)ϑ(ν(t))

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8

λ (t)ϑ(ν(t))

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8

λ̃ (t)ϑ(ν(t)).

We remark that for all z ∈ R

[
ezt

ν(t)
]′
= ezt

ν
′(t)+ zezt

ν(t)

≤ ezt
[
Nλ (t)ϑ(ν(t))+ Ñλ̃ϑ(ν(t))

]
+ zezt

ν(t)

≤ N̂ezt [λ (t)+ λ̃ (t)]ϑ(ν(t))+ zezt
ν(t)

≤ λ̂ (t)[ϑ(ν(t))+ν(t)]; z ∈ R, t ∈ J,
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where N̂ = max{N, Ñ}, λ̂ (t) = max{zezt , N̂ezt [λ (t)+ λ̃ (t)]}
and N, Ñ are given by

N =

[
4

T 2q

2q−1

(
Mq

Γ(q+1)

)2

+
12
α2 T 2q−1‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8
]

Ñ =

[
4Lg

T 2q

2q−1

(
Mq

Γ(q+1)

)2

+
12
α2 T 2q−1Lg‖B‖4 T 2q−1

2q−1

(
Mq

Γ(q+1)

)8
]
.

This implies ∫
ν(t)

ν(0)

ds
s+ϑ(s)

≤
∫ T

0
λ̂ (s)ds <

∫
∞

c

ds
s+ϑ(s)

, t ∈ J.

This inequality implies that there is a constant ρ such that ν(t) ≤ ρ , t ∈ J and
hence ‖x‖2 ≤ ρ where ρ depends only on T and the functions λ̂ ,ϑ .

As a consequence of Lemma 3.1, we deduce thatPα has a fixed point, which
is a mild solution of (1).

Theorem 3.4. Assume that the assumptions (i)-(viii) hold. Then the system (1)
is relatively approximately controllable on [0,T ].

Proof. Let xα be a fixed point of Pα . By using the stochastic Fubini theorem, it
can be easily seen that

xα(T ) = x̃T −α(αI +φ
T
0 )
−1[Ex̃T −ψ(T )(x0−h(x))]

+α

∫ T

0
(αI +φ

T
s )
−1(T − s)q−1

ϕ(T − s) f (s,xα(s),xα(σ(s)))ds

+α

∫ T

0
(αI +φ

T
s )
−1[(T − s)q−1

ϕ(T − s)g(s,xα(s),xα(σ(s)))− g̃(s)]dw(s).

By the assumption (ii) one can see that for each t ∈ J

f (t,xα(t),xα(σ(t)))→ f (t,x(t),x(σ(t))),

and
g(t,xα(t),xα(σ(t)))→ g(t,x(t),x(σ(t))).

From the above equation, we have

E‖xα(T )− x̃T‖2 ≤ 6‖α(αI +φ
T
0 )
−1[Ex̃T −ψ(T )(x0−h(x))]‖2

+6E
(∫ T

0
(T − s)q−1‖α(αI +φ

T
s )
−1‖

×‖ϕ(T − s)( f (s,xα(s),xα(σ(s)))− f (t,x(t),x(σ(t))))‖ds)2
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+6E
(∫ T

0
(T − s)q−1‖α(αI +φ

T
s )
−1

ϕ(T − s) f (t,x(t),x(σ(t))))‖ds
)2

+6E
(∫ T

0
(T − s)q−1‖α(αI +φ

T
s )
−1‖

×‖ϕ(T − s)(g(s,xα(s),xα(σ(s)))−g(t,x(t),x(σ(t))))‖2
L0

2
ds
)

+6E
(∫ T

0
(T − s)q−1‖α(αI +φ

T
s )
−1

ϕ(T − s)g(t,x(t),x(σ(t))))‖2
L0

2
ds
)
.

On the other hand, by assumption (viii), for all 0 ≤ s < T the operator α(αI +
φ T

s )
−1 → 0 strongly as α → 0+ and moreover ‖α(αI + φ T

s )
−1‖ ≤ 1. by the

Lebesgue dominated convergence theorem and asuumption (vi) implies that
E‖xα(T )− x̃T‖2 → 0 as α0+. This gives the relative approximate controlla-
bility of (1).

4. Example

Consider the following fractional stochastic control system of the form

cDq
t x(t,z) =

∂ 2

∂ z2 x(t,z)+µ(t,z)+ ν̃x(t− τ,z)+ ν̂x(t− τ,z)
dŵ(t)

dt
,

x(t,0) = x(t,π) = 0, t > 0 (8)

x(0,z) = x0−h(z), z ∈ [0,π],

where 0 < q < 1; ŵ(t) is a two sided and standard one dimensional Brownian
motion defined on the filtered probability space (Ω,F ,P). To write the above
system into the abstract form of (1), let X = E = U = L2[0,π]. Define the
operator A : L2[0,π]→ L2[0,π] by Aω = ω ′′ with domain

D(A) = {ω ∈ X ;ω,ω ′ are absolutely continuous, ω
′′ ∈ X

and ω(0) = ω(π) = 0}.

Aω =
∞

∑
n=1

n2(ω,ωn)ωn, ω ∈ D(A),

where ωn(s) =
√

2sin(ns), n = 1,2, . . . is the orthogonal set of eigenvectors in
A. It is well known that A generates a compact, analytic semigroup {S(t), t ≥ 0}
in X and

S(t)ω =
∞

∑
n=1

e−n2(t)(ω,ωn)ωn, ‖S(t)‖ ≤ e−t for all t ≥ 0.
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Especially, the operator A1/2 is given by A1/2ω =
∞

∑
n=1

n(ω,ωn)ωn, with domain

D(A1/2) = {ω ∈ X :
∞

∑
n=1

n(ω,ωn)ωn}.

Define the bounded linear operator B : U→ X by Bu = µ , 0≤ z≤ π and setting
f (x) = νx, g(x) = ν̃x and σ(t) = t− τ . Then, one can see that the problem (8)
can be reformulated as follows

cDq
t x(t) = Ax(t)+Bu(t)+ f (x(σ(t)))+g(x(σ(t)))

dw(t)
dt

,

x(0) = x0−h(x).

On the other hand, it can be easily seen that the deterministic linear fractional
control system corresponding to (8) is approximately controllable on [0,π] (see,
[16]). Therefore, with the above choices, the system (8) can be written to the
abstract form (1) and all the conditions of Theorem 3.4 are satisfied. Thus by
Theorem 3.4 fractional stochastic control system (8) is approximately control-
lable on [0,π].

5. Conclusions

This paper has investigated the relative approximate controllability of nonlinear
fractional stochastic evolution equations with time delays and nonlocal condi-
tions in Hilbert space by using the assumption that the corresponding linear sys-
tem is relatively approximately controllable. With the use of the fractional cal-
culus and stochastic analysis technique, control function has been constructed.
Moreover, the control function, together with operator semigroup, has helped
us to obtain sufficient conditions for the relative approximate controllability of
the control system via the fixed point theorem of Schaefer. An application is
provided to illustrate the applicability of the new result. Our future work will
try to make some the above results and study the relative approximate control-
lability for impulsive fractional neutral stochastic functional integro-differential
inclusions with state-dependent delay.
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