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FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN
SUBCLASSES OF MEROMORPHIC FUNCTIONS OF

COMPLEX ORDER

R. M. EL-ASHWAH - M. K. AOUF - H. M. ZAYED

In this paper, we obtain Fekete-Szegö inequalities for a certain class of
meromorphic functions f (z) for which 1+ 1

b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]

≺ ϕ(z) (b ∈ C∗ = C\{0}, 0 ≤ λ < 1). Sharp bounds for the Fekete-
Szegö functional

∣∣a1−µa2
0

∣∣ are obtained.

1. Introduction

Let Σ denote the class of meromorphic functions of the form:

f (z) = 1
z +

∞

∑
k=0

akzk, (1.1)

which are analytic in the open punctured unit disc U∗ = {z : z ∈C and 0 < |z|<
1}=U\{0}. Let g(z) ∈ Σ, be given by

g(z) = 1
z +

∞

∑
k=0

gkzk, (1.2)
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then the Hadamard product (or convolution) of f (z) and g(z) is given by

( f ∗g)(z) = 1
z +

∞

∑
k=0

akgkzk = (g∗ f )(z). (1.3)

A function f ∈ Σ is meromorphic starlike of order α, denoted by Σ∗(α), if

−ℜ

{
z f ′(z)
f (z)

}
> α (0≤ α < 1; z ∈U∗). (1.4)

The class Σ∗(α) was introduced and studied by Pommerenke [22], Miller [18],
Mogra et al. [19], Cho [8], Cho et al. [9] and Aouf ([4] and [5]).

Let ϕ(z) be an analytic function with positive real part on U satisfies ϕ(0) =
1 and ϕ ′(0) > 0 which maps U onto a region starlike with respect to 1 and
symmetric with respect to the real axis. Let Σ∗(ϕ) be the class of functions
f ∈ Σ for which

− z f ′(z)
f (z) ≺ ϕ(z) (z ∈U∗). (1.5)

The class Σ∗(ϕ) was introduced and studied by Silverman et al. [26]. The class

Σ∗(α) is the special case of Σ∗(ϕ) when ϕ(z) =
1+(1−2α)z

1− z
(0≤ α < 1).

For 0 ≤ λ < 1 and b ∈ C∗ = C\{0}, we let Σ∗
λ ,b(g,ϕ) be the subclass

of Σ consisting of functions f (z) of the form (1.1), the functions g(z) of the
form (1.2) with gk > 0 and satisfying the analytic criterion:

1+ 1
b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]
≺ ϕ(z). (1.6)

We note that for suitable choices of g(z),λ ,b and ϕ(z), we obtain the fol-
lowing subclasses:
(1) Σ∗0,1(g,ϕ) = Ms

g(ϕ) (see Shanmugam and Jeyaraman [25]);

(2) Σ∗0,1

(
1

z(1− z)
,ϕ(z)

)
= Σ∗(ϕ) (see Silverman et al. [26] and Ali and

Ravichandran [1, with α = 0]);

(3) Σ∗0,b

(
1

z(1− z)
,
1+ z
1− z

)
= F∗(b) (see Aouf [2]);

(4) Σ∗0,b

(
1

z(1− z)
,ϕ(z)

)
= M∗b(ϕ) (see Mohammed and Darus [20] and Reddy

and Sharma [24, with γ = 1]);

(5) Σ∗0,1

(
1

z(1− z)
,
1+(1−2α)z

1− z

)
= Σ∗(α) (0 ≤ α < 1) (see Pommerenke

[22]);
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(6) Σ∗0,1

(
1

z(1− z)
,
1+β (1−2αγ)z
1+β (1−2γ)z

)
= Σ(α,β ,γ) (0≤α < 1, 0< β ≤ 1,

1
2
≤

γ ≤ 1) (see Kulkarni and Joshi [15]);
(7) Σ∗0,1

(
1

z(1−z) ,
1+Az
1+Bz

)
= K1(A,B) (0≤ B < 1, −B < A < B) (see Karunakaran

[14]);
(8) Σ∗0,(1−ρ)e−iα cosα

(
1

z(1−z) ,
1+z
1−z

)
= Σα(ρ) (|α| < π

2
; 0 ≤ ρ < 1) (see Kacz-

marski [13], Aouf [3] and Ravichandran et al. [23]).

Also, we note that:
(1) Σ∗0,b (g,ϕ) = Σ∗b(g,ϕ)

=
{

f (z) ∈ Σ : 1− 1
b

[
z( f∗g)′(z)
( f∗g)(z) +1

]
≺ ϕ(z) (z ∈U∗)

}
;

(2) Σ∗
λ ,b

(
1

z(1− z)
,ϕ(z)

)
= Σ∗

λ ,b(ϕ)

=
{

f (z) ∈ Σ : 1+ 1
b

[
z f ′(z)

(λ−1) f (z)+λ z f ′(z) −1
]
≺ ϕ(z) (z ∈U∗)

}
;

(3) Σ∗
λ ,(1−ρ)e−iα cosα

(
1

z(1− z)
,ϕ(z)

)
= Σ∗α

λ ,ρ(ϕ)

=

 f (z) ∈ Σ :
eiα

 z f ′(z)
(λ −1) f (z)+λ z f ′(z)

−ρ cosα−isinα

(1−ρ)cosα
≺ ϕ(z)

(|α|< π

2
; 0≤ ρ < 1; z ∈U∗)

}
;

(4) Σ∗0,(1−ρ)e−iα cosα

(
1

z(1− z)
,ϕ(z)

)
= Σ∗αρ (ϕ)

=

 f (z) ∈ Σ :
eiα
[
− z f ′(z)

f (z)

]
−ρ cosα−isinα

(1−ρ)cosα
≺ ϕ(z)

(|α|< π

2 ; 0≤ ρ < 1; z ∈U∗)
}

;

(5) Σ∗
λ ,b

(
1
z
+

∞

∑
k=0

[
`+γ(k+1)

`

]m
zk,ϕ(z)

)
= Σ∗m

λ ,b,γ,`(ϕ)

=
{

f (z) ∈ Σ : 1+ 1
b

[
z(Im(γ,`) f (z))′

(λ−1)(Im(γ,`) f (z))+λ z(Im(γ,`) f (z))′ −1
]
≺ ϕ(z)

(γ ≥ 0; ` > 0; m ∈ Z= {0,±1,±2, ...})} ;
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where the operator

Im(γ, `)(z) =
1
z
+

∞

∑
k=0

[
`+γ(k+1)

`

]m
zk, (1.7)

was introduced and studied by El-Ashwah [10, with p = 1] (see also Bulboaca
et al. [7, with m ∈ N0 = N∪{0}; N = {1,2, ...}], El-Ashwah [11, with p = 1
and m ∈ N0] and El-Ashwah et al. [12, with p = 1 and m ∈ N0]);

(6) Σ∗
λ ,b

(
1
z
+

∞

∑
k=0

Γk+1(α1)zk,ϕ(z)
)
= Σ

∗α1
α,b,q,s(ϕ)

=
{

f (z) ∈ Σ : 1+ 1
b

[
z(Hq,s(α1) f (z))′

(λ−1)(Hq,s(α1) f (z))+λ z(Hq,s(α1) f (z))′ −1
]
≺ ϕ(z)

(m ∈ N0; q≤ s+1; q,s ∈ N0)} ;

where the operator

Hq,s(α1)(z) =
1
z
+

∞

∑
k=0

Γk+1(α1)zk, (1.8)

Γk+1(α1) =
(α1)k+1...(αq)k+1
(β1)k+1...(βs)k+1

1
(k+1)! , (1.9)

for α1, ..., αq, β1, ..., βs are real parameters and β j /∈ Z−0 = {0,−1,−2, ...},
j = 1,2, ...,s was introduced and investigated by Liu and Srivastava [16, with
p = 1] and Aouf [6, with p = 1].

In this paper, we obtain the Fekete-Szegö inequalities for meromorphic
functions in the class Σ∗

λ ,b(g,ϕ).

2. Fekete-Szegö problem

To prove our results, we need the following lemmas.

Lemma 2.1 ([17]). If p(z) = 1+ c1z+ c2z2 + ... is a function with positive real
part in U and µ is a complex number, then∣∣c2−µc2

1
∣∣≤ 2max{1; |2µ−1|}.

The result is sharp for the functions given by

p(z) = 1+z2

1−z2 and p(z) = 1+z
1−z .
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Lemma 2.2 ([17]). If p1(z) = 1+c1z+c2z2+ ... is a function with positive real
part in U, then

∣∣c2−νc2
1
∣∣≤

−4ν +2 i f ν ≤ 0,
2 i f 0≤ ν ≤ 1,
4ν−2 i f ν ≥ 1.

When ν < 0 or ν > 1, the equality holds if and only if p1(z) =
1+ z
1− z

or one of its

rotations. If 0 < ν < 1, then the equality holds if and only if p1(z) =
1+ z2

1− z2 or

one of its rotations. If ν = 0, the equality holds if and only if

p1(z) =
(1

2 +
1
2 γ
) 1+ z

1− z
+
(1

2 −
1
2 γ
) 1− z

1+ z
(0≤ γ ≤ 1),

or one of its rotations. If ν = 1, the equality holds if and only if

1
p1(z)

=
(1

2 +
1
2 γ
) 1+ z

1− z
+
(1

2 −
1
2 γ
) 1− z

1+ z
(0≤ γ ≤ 1),

or one of its rotations. Also the above upper bound is sharp and it can be
improved as follows when 0 < ν < 1 :∣∣c2−νc2

1
∣∣+ν |c1|2 ≤ 2 (0 < ν ≤ 1

2),

and ∣∣c2−νc2
1
∣∣+(1−ν) |c1|2 ≤ 2 (1

2 < ν < 1).

Unless otherwise mentioned, we assume throughout this paper that

0≤ λ < 1, b ∈ C∗ and the function g(z) is given by (1.2) with gk > 0 (k ≥ 0).

Theorem 2.3. Let ϕ(z) = 1+B1z+B2z2 + .... If f (z) given by (1.1) belongs to
the class Σ∗

λ ,b(g,ϕ) and µ is a complex number. Then

(i)
∣∣a1−µa2

0
∣∣≤ |B1b|

2(1−λ )g1
max

{
1,
∣∣∣∣B2

B1
−
[

1−2µ
g1

(1−λ )g2
0

]
B1b
∣∣∣∣} , B1 6= 0,

(2.1)

(ii) |a1| ≤ |B2b|
2(1−λ )g1

, B1 = 0. (2.2)

The result is sharp.
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Proof. If f (z) ∈ Σ∗
λ ,b(g,ϕ), then there is a Schwarz function w(z) in U with

w(0) = 0 and |w(z)|< 1 in U and such that

1+ 1
b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]
= ϕ(w(z)). (2.3)

Define the function p1(z) by

p1(z) =
1+w(z)
1−w(z) = 1+ c1z+ c2z2 + .... (2.4)

Since w(z) is a Schwarz function, we see that Re p1(z)> 0 and p1(0)= 1. Define

p(z) = 1+ 1
b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]
= 1+b1z+b2z2 + .... (2.5)

In view of (2.3), (2.4) and (2.5), we have

p(z) = ϕ

(
p1(z)−1
p1(z)+1

)
. (2.6)

Since

p1(z)−1
p1(z)+1 = 1

2

[
c1z+

(
c2− c2

1
2

)
z2 +

(
c3 +

c3
1

4 − c1c2

)
z3 + ...

]
.

Therefore, we have

ϕ

(
p1(z)−1
p1(z)+1

)
= 1+ 1

2 B1c1z+
[

1
2 B1

(
c2− c2

1
2

)
+ 1

4 B2c2
1

]
z2 + ...,

and from this equation and (2.6), we obtain

b1 =
1
2 B1c1,

and
b2 =

1
2 B1

(
c2− c2

1
2

)
+ 1

4 B2c2
1.

Then, from (2.5) and (1.1), we see that

bb1 =−(1−λ )a0g0, (2.7)

and
bb2 = (1−λ )2a2

0g2
0−2(1−λ )a1g1, (2.8)

or, equivalently, we have
a0 =

−B1bc1
2(1−λ )g0

,

and
a1 =

−B1bc2
4(1−λ )g1

+
bc2

1
8(1−λ )g1

[B1−B2 +B2
1b].
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Therefore
a1−µa2

0 =
−B1b

4(1−λ )g1

{
c2−νc2

1
}
, (2.9)

where
ν = 1

2

[
1− B2

B1
+B1b−2µ

B1bg1
(1−λ )g2

0

]
. (2.10)

Now, the result (2.1) follows by an application of Lemma 2.1. Also, if B1 =
0, then

a0 = 0 and a1 =
−B2bc2

1
8(1−λ )g1

.

Since p(z) has positive real part, |c1| ≤ 2 (see Nehari [21]), so that

|a1| ≤ |B2b|
2(1−λ )g1

,

this proving (2.2). The result is sharp for the functions

1+ 1
b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]
= ϕ(z2), (2.11)

and
1+ 1

b

[
z( f∗g)′(z)

(λ−1)( f∗g)(z)+λ z( f∗g)′(z) −1
]
= ϕ(z). (2.12)

This completes the proof of Theorem 2.3.

Remark 2.4. (1) Putting g(z) =
1
z
+

∞

∑
k=0

zk, λ = 0 and b = 1 in Theorem 2.3, we

obtain the result obtained by Silverman et al. [26, Theorem 2.1];

(2) Putting g(z) =
1
z
+

∞

∑
k=0

δ (n,k)zk, where δ (n,k) =
(

n+ k+1
k+1

)
(n >−1),

λ = 0 and b = 1 in Theorem 2.3, we obtain the result obtained by Silverman et
al. [26, Theorem 3.3];

(3) Putting g(z) =
1
z
+

∞

∑
k=0

zk and λ = 0 in Theorem 2.3, we obtain the result

obtained by Mohammed and Darus [20, Theorem 1.1];

(4) Putting g(z) =
1
z
+

∞

∑
k=0

zk and B1 ≥ 0 in Theorem 2.3, we obtain the result

obtained by Reddy and Sharma [24, Theorem 2.1 with γ = 1];

(5) Putting g(z) =
1
z
+

∞

∑
k=0

zk, b = (1−ρ)e−iα cosα (|α|< π

2
, 0≤ ρ < 1), λ =

0 and ϕ(z)=
1+ z
1− z

in Theorem 2.3, we obtain the result obtained by Mohammed

and Darus [20, Example 1.1].

Putting λ = 0 and b = 1 in Theorem 2.3, we obtain the following corollary.
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Corollary 2.5. If f (z) given by (1.1) belongs to the class Ms
g(ϕ) and µ is a

complex number, then

(i)
∣∣a1−µa2

0
∣∣≤ |B1|

2g1
max

{
1,
∣∣∣∣B2

B1
−
[

1− 2µg1

g2
0

]
B1

∣∣∣∣} , B1 6= 0,

(ii) |a1| ≤ |B2|
2g1

, B1 = 0.

Putting g(z) =
1
z
+

∞

∑
k=0

zk, λ = 0 and ϕ(z) =
1+ z
1− z

in Theorem 2.3, we obtain

the following corollary.

Corollary 2.6. If f (z) given by (1.1) belongs to the class F∗(b) and µ is a
complex number, then∣∣a1−µa2

0
∣∣≤ |b|max{1, |1−2(1−2µ)b|} .

The result is sharp.

Putting g(z) =
1
z
+

∞

∑
k=0

zk, λ = 0, b = 1 and ϕ(z) =
1+(1−2α)z

1− z
(0≤ α < 1)

in Theorem 2.3, we obtain the following corollary.

Corollary 2.7. If f (z) given by (1.1) belongs to the class Σ∗(α) and µ is a
complex number, then∣∣a1−µa2

0
∣∣≤ (1−α)max{1, |1−2(1−α)(1−2µ)|} .

The result is sharp.

Putting λ = 0 in Theorem 2.3, we obtain the following corollary.

Corollary 2.8. Let ϕ(z) = 1+B1z+B2z2 + .... If f (z) given by (1.1) belongs to
the class Σ∗b(g,ϕ) and µ is a complex number, then

(i)
∣∣a1−µa2

0
∣∣≤ |B1b|

2g1
max

{
1,
∣∣∣∣B2

B1
−
[

1−2µ
g1

g2
0

]
B1b
∣∣∣∣} , B1 6= 0,

(ii) |a1| ≤ |B2b|
2g1

, B1 = 0.

The result is sharp.

Putting g(z) =
1
z
+

∞

∑
k=0

zk in Theorem 2.3, we obtain the following corollary.



FEKETE-SZEGÖ INEQUALITIES 291

Corollary 2.9. Let ϕ(z) = 1+B1z+B2z2 + .... If f (z) given by (1.1) belongs to
the class Σ∗

λ ,b(ϕ) and µ is a complex number, then

(i)
∣∣a1−µa2

0
∣∣≤ |B1b|

2(1−λ ) max
{

1,
∣∣∣∣B2

B1
−
[

1− 2µ

(1−λ )

]
B1b
∣∣∣∣} , B1 6= 0,

(ii) |a1| ≤ |B2b|
2(1−λ ) , B1 = 0.

The result is sharp.

Remark 2.10. (1) Putting λ = 0 and b = (1−ρ)e−iα cosα (|α|< π

2
, 0≤ ρ <

1) in Corollary 2.9, we obtain a new result for the class Σ∗αρ (ϕ);

(2) Putting b = (1− ρ)e−iα cosα (|α| < π

2
, 0 ≤ ρ < 1) in Corollary 2.9, we

obtain a new result for the class Σ∗α
λ ,ρ(ϕ).

By using Lemma 2.2, we can obtain the following theorem.

Theorem 2.11. Let ϕ(z) = 1 + B1z + B2z2 + . . . (Bi > 0, i ∈ N, b > 0). If
f (z) given by (1.1) belongs to the class Σ∗

λ ,b(g,ϕ) and µ is a real number, then

∣∣a1−µa2
0
∣∣≤


b
2(1−λ )g1

{
−B2 +

[
1−2µ

g1

(1−λ )g2
0

]
B2

1b
}

i f µ ≤ σ1,

B1b
2(1−λ )g1

i f σ1 ≤ µ ≤ σ2,

b
2(1−λ )g1

{
B2−

[
1−2µ

g1

(1−λ )g2
0

]
B2

1b
}

i f µ ≥ σ2,

(2.13)
where

σ1 =

{
−(B2 +B1)+B2

1b
}
(1−λ )g2

0

2g1B2
1b

.

and

σ2 =

{
−(B2−B1)+B2

1b
}
(1−λ )g2

0

2g1B2
1b

.

The result is sharp.

Proof. First, let µ ≤ σ1. Then∣∣a1−µa2
0
∣∣ ≤ B1b

2(1−λ )g1

{
−B2

B1
+

[
1−2µ

g1

(1−λ )g2
0

]
B1b
}

≤ b
2(1−λ )g1

{
−B2 +

[
1−2µ

g1

(1−λ )g2
0

]
B2

1b
}
.
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Let, now σ1 ≤ µ ≤ σ2. Then, using the above calculations, we obtain∣∣a1−µa2
0
∣∣≤ B1b

2(1−λ )g1
.

Finally, if µ ≥ σ2, then∣∣a1−µa2
0
∣∣≤ B1b

2(1−λ )g1

{
B2
B1
−
[

1−2µ
g1

(1−λ )g2
0

]
B1b
}

≤ b
2(1−λ )g1

{
B2−

[
1−2µ

g1

(1−λ )g2
0

]
B2

1b
}
.

To show that the bounds are sharp, we define the functions Kϕn(n≥ 2) by

1+ 1
b

[
z(Kϕn∗g)′(z)

(λ−1)(Kϕn∗g)(z)+λ z(Kϕn∗g)′(z) −1
]
= ϕ(zn−1),Kϕn(0) = 0 = K′ϕn(0)−1,

and the functions Fγ and Gγ (0≤ γ ≤ 1) by

1+ 1
b

[
z(Fγ∗g)′(z)

(λ−1)(Fγ∗g)(z)+λ z(Fγ∗g)′(z) −1
]
= ϕ

(
z(z+γ)
1+γz

)
,Fγ(0) = 0 = F ′γ (0)−1,

and

1+ 1
b

[
z(Gγ∗g)′(z)

(λ−1)(Gγ∗g)(z)+λ z(Gγ∗g)′(z) −1
]
= ϕ

(
− z(z+γ)

1+γz

)
,Gγ(0) = 0 = G′γ(0)−1.

Clearly the functions Kϕn, Fγ and Gγ ∈ Σ∗
λ ,b(g,ϕ). Also we write Kϕ = Kϕ2.

If µ < σ1 or µ > σ2, then the equality holds if and only if f is Kϕ or one of its
rotations. When σ1 < µ < σ2, then the equality holds if f is Kϕ3 or one of its
rotations. If µ = σ1, then the equality holds if and only if f is Fγ or one of its
rotations. If µ = σ2, then the equality holds if and only if f is Gγ or one of its
rotations. This completes the proof of Theorem 2.11.

Remark 2.12. (1) Putting g(z) =
1
z
+

∞

∑
k=0

zk, λ = 0 and b = 1 in Theorem

2.11, we obtain the result obtained by Ali and Ravichandran [1, Theorem 5.1];
(2) For different choices of g(z), λ , b and ϕ(z) in Theorem 2.11, we will obtain
new results for different classes mentioned in the introduction.

Using arguments similar to those in the proof of Theorem 2.11, we obtain the
following theorem.
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Theorem 2.13. Let ϕ(z) = 1+B1z+B2z2 + . . . (Bi > 0, i ∈ N, b > 0) and

σ3 =

(
−B2 +B2

1b
)
(1−λ )g2

0

2g1B2
1b

. (2.14)

If f (z) given by (1.1) belongs to the class Σ∗
λ ,b(g,ϕ) and µ is a real number,

then we have
(i) If σ1 ≤ µ ≤ σ3, then∣∣a1−µa2

0
∣∣+ (1−λ )g2

0
2g1B2

1b

{
(B1 +B2)+

[
2µ

g1
(1−λ )g2

0
−1
]

B2
1b
}
|a0|2 ≤ B1b

2(1−λ )g1
.

(2.15)
(ii) If σ3 ≤ µ ≤ σ2, then∣∣a1−µa2

0
∣∣+ (1−λ )g2

0
2g1B2

1b

{
(B1−B2)+

[
1−2µ

g1
(1−λ )g2

0

]
B2

1b
}
|a0|2 ≤ B1b

2(1−λ )g1
,

(2.16)
where σ1 and σ2 are given in Theorem 2.11.

Remark 2.14. By specializing the function g(z) in Theorems 2.3, 2.11 and 2.13,
we will obtain new results for different classes mentioned in the introduction.
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