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AN ALTERNATIVE METHOD FOR SOLVING GENERALIZED
FRACTIONAL KINETIC EQUATIONS INVOLVING

THE GENERALIZED FUNCTIONS FOR
THE FRACTIONAL CALCULUS

ANJALI GUPTA - C. L. PARIHAR

The paper is devoted to present an alternative method for deriving the
solution of the generalized fractional kinetic equations in terms of K4-
function and generalized M-series. The applied method depends on the
fractional differintegral operator technique and the method is different
from Laplace transform. The obtained results believed to be new.

1. Introduction

Fractional kinetic equations have gained importance during the last decade due
to their occurrence in certain problems in science and engineering. A spherically
symmetric non-rotating, self-gravitating model of star like the Sun is assumed to
be in thermal equilibrium and hydrostatic equilibrium. The star is characterized
by its mass, luminosity, effective surface temperature, radius, central density and
central temperature. The stellar structures and their mathematical models are
investigated on the basis of above characters and some additional information
related to the equation of state, nuclear energy generation rate and the opacity.
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The generalizations of the fractional kinetic equation in terms of the Mittag-
Leffler functions is studied by Saxena, Mathai and Haubold [10], which ex-
tended the work of Haubold and Mathai [3]. In an another paper Saxena, Mathai
and Haubold [11] developed the solutions for fractional kinetic equations asso-
ciated with the generalized Mittag-Leffler function and R-function.

The fractional kinetic equations are also studied by many authors notably
Saichev and Zaslavsky [1], Sharma[5], Saxena et al.[10,11,12], Zaslavsky[2],
Saxena and Kalla[14], Chaurasia and Pandey[17,18], Chaurasia and Kumar[16]
etc. for their importance in the solution of certain physical problems. Recently,
Saxena et al. [15] investigated the solutions of the fractional reaction equation
and the fractional diffusion equation.

Generalized M-series is an extension of both Mittag-Leffler function and
generalized hypergeometric function pFq and K4-function is an extension of
generalized M-series and G-function. These functions have important role in
fractional calculus, physics, biology, engineering and applied sciences, theory
of differentiation of arbitrary order and in the solutions of fractional order dif-
ferential equations.

2. Mathematical Preliminaries

The K4-function introduced by Sharma [4], is defined by the power series

K(α,β ,γ),(a,c):(p;q)
4 (a1, . . . ,ap;b1, . . . ,bq;x) = K(α,β ,γ),(a,c):(p;q)

4 (x)

=
∞

∑
n=0

(a1)n . . .(ap)n(γ)nan(x− c)(n+γ)α−β−1

(b1)n . . .(bq)nn!Γ((n+ γ)α−β )
(1)

where α,β ,γ,x ∈ c and R(αγ − β ) > 0 and (ai)n (i = 1,2, . . . , p) and (b j)n

( j = 1,2, . . . ,q) are the Pochhammer symbols and none of the parameters b js is
a negative integer or zero.

The generalized M-series is introduced by Sharma and Jain [8], defined as

α,β

pMq =
α,β

pMq(a1, . . . ,ap;b1, . . . ,bq;x) =
∞

∑
n=0

(a1)n . . .(ap)n

(b1)n . . .(bq)n

xn

Γ(αn+β )
(2)

Here x,α,β ∈C, Re(α)> 0 and (a j)n , (b j)n are known Pochhammer sym-
bols. The series (2) is defined when non of the parameters (b j)S, j = 1, · · · ,q is
a negative integer or zero. If any numerator parameter a j is a negative or zero,
then the series terminates to a polynomial in it.
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3. Relationship between K4-function and generalized M-series

Setting β = α−β , γ = 1,a = 1 and c = 0 in (1), we obtain

K(α,α−β ,1),(1,0):(p;q)
4 (a1, . . . ,ap;b1, . . . ,bq;x) = xβ−1

α,β

pMq(a1, . . . ,ap;b1, . . . ,bq;x)
(3)

The Riemann-Liouville operators of fractional calculus are defined as [6,7]

aD−v
t f (t) =

1
Γ(v)

∫ t

a
(t−u)v−1 f (u)du, R(v)> 0, t > a (4)

with aD0
t f (t) = f (t), and

aDµ

t f (t) =
dn

dtn (aDµ−n
t f (t)),Re(µ) > 0, n−µ > 0. (5)

If f (t) = (t−a)ρ , we have from [9]

aD−ν
t (t−a)ρ−1 =

γ(ρ)

Γ(ρ +ν)
(t−a)ρ+ν−1, (6)

where Re(ν) > 0, Re(ρ) > 0, t > a. Also from [9], we have

aDν
t (t−a)ρ−1 =

γ(ρ)

Γ(ρ−ν)
(t−a)ρ−ν−1, where Re(ν)> 0,Re(ρ)> 0; t > a.

(7)
when ρ = 1 (7) reduces to

aDν
t 1 =

1
Γ(1−ν)

(t−a)−ν , t > a;ν 6= 1,2 . . . (8)

Fractional derivative of 1 is not zero in the Riemann-Liouville sense.

4. Solution of standard kinetic equation in terms of generalized M-series
and Solution of generalized fractional kinetic equations

This section deals with the solution of standard fractional kinetic equation in
terms of generalized M-series and derive the solution of generalized fractional
kinetic equations in terms of generalized M-series and K4-function.
On integrating the standard kinetic equation

d
dt

Ni(t) =−ciNi(t), ci > 0, (9)

Haubold and Mathai [3] derived that
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Ni(t)−Ni(0) =−ci 0D−1
t Ni(t), (10)

where 0D−1
t is the standard Riemann integral operator, Ni = Ni(t) is the number

density of species i, which is a function of time t and Ni(0) = N0 is the number
density of that species at time t = 0. By dropping the index i and replacing the
Riemann integral 0D−1

t operator by the fractional Riemann-Liouville operator
0D−v

t the kinetic equation (10) reduces to

N(t)−N0 =−cν
0D−ν

t N(t) (11)

Multiplying both side of equation (11) by the operator (−cv)m
0D−mv

t and taking
the sum over m from 0 to ∞, yields

∞

∑
m=0

(−cν)m
0D−mν

t N(t)−
∞

∑
m=0

(−cν)m+1
0D−(m+1)ν

t N(t) = N0

∞

∑
m=0

(−cν)m
0D−mν

t 1

replacing m by (m−1) in the second sum of above equation and then cancelling
the equal terms on the left hand side and applying the relationship (8) on the
right hand side of above equation, we obtain

N(t) = N0

∞

∑
m=0

(−cν)m tmν

Γ(mν +1)

N(t) = N0

∞

∑
m=0

(−cνtν)m

Γ(mν +1)

N(t) = N0
ν ,1

0M0(−;−;−cνtν)

Theorem 4.1. If v > 0, µ > 0, then for the solution of generalized fractional
kinetic equation

N(t)−N0tµ−1 =−cν
0D−ν

t N(t) (12)

there holds the formula

N(t) = N0Γµtµ−1
ν ,µ

0M0(−;−;−cνtν) (13)

Theorem 4.2. If a > 0,α > 0,β > 0,v > 0, then the solution of the equation

N(t)−N0tβ−1
α,β

1M1(γ;1;−aαtα) =−cν
0D−ν

t N(t) (14)

is given by

N(t) = N0

∞

∑
m=0

(−cν)mK(α,αγ−β−mν ,γ),(−aα ,0):(0;0)
4 (t) (15)
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Proof. On solving as above, it is observed that

N(t) = N0

∞

∑
m=0

(−cν)m
0D−νm

t {tβ−1
α,β

1M1(γ;1;−aαtα)}

Now,

0D−νm
t {tβ−1

α,β

1M1(γ;1;−aαtα)}= 0D−νm
t {tβ−1

∞

∑
n=0

(γ)n(−aαtα)n

(1)nΓ(αn+β )
}

=
∞

∑
n=0

(γ)n(−aα)n

(1)nΓ(αn+β )
0D−νm

t tαn+β−1

= tβ+mν−1
∞

∑
n=0

(γ)n(−aα)n

n!Γ(αn+β +mν)
tαn

= tαγ−(αγ−β−mν)−1
∞

∑
n=0

(γ)n(−aα)n

n!Γ(α(n+ γ)− (αγ−β −mν)
tαn

0D−νm
t {tβ−1

α,β

1M1(γ;1;−aαtα)}= K(α,αγ−β−mν ,γ),(−aα ,0):(0;0)
4 (t)

N(t) = N0

∞

∑
m=0

(−cν)m K(α,αγ−β−mν ,γ),(−aα ,0):(0;0)
4 (t)

Theorem 4.3. If a > 0, α > 0, β > 0, v > 0, then the solution of the equation

N(t)−N0tβ−1
α,β

0M0(−;−;−aαtα) =−cν
0D−ν

t N(t) (16)

is given by

N(t) = N0

∞

∑
m=0

(−cν)m tβ+mν−1
α,β+mν

0M0 (−;−;−aαtα) (17)

Theorem 4.4. If a > 0, b≥ 0, γ > 0, α > 0, β > 0, v > 0 and R(γα−β )> 0,
then the solution of the generalized fractional kinetic equation

N(t)−N0K(α,β ,γ),(−aα ,b):(p;q)
4 (t) =−cν

0D−ν
t N(t) (18)

is given by

N(t) = N0

∞

∑
m=0

(−cν)mK(α,β−νm,γ),(−aα ,b):(p,q)
4 (t) (19)
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Proof. Multiplying both side of equation (18) by the operator (−cv)m
0D−mv

t
and taking the sum over m from 0 to ∞, yields

∞

∑
m=0

(−cν)m
0D−mν

t N(t)−
∞

∑
m=0

(−cν)m+1
0D−(m+1)ν

t N(t)

= N0

∞

∑
m=0

∞

∑
n=0

(−cν)m
0D−mν

t
(a1)n...(ap)n(γ)nan(t−b)(n+γ)α−β−1

(b1)n...(bq)nn!Γ((n+ γ)α−β )

= N0

∞

∑
m=0

∞

∑
n=0

(−cν)m (a1)n...(ap)n(γ)nan

(b1)n...(bq)nn!Γ((n+ γ)α−β )
0D−mν

t (t−b)(n+γ)α−β−1

By virtue of the relationship (8) on the right hand side of above equation and
replacing m by (m−1) in the second sum of above equation and then cancelling
the equal terms on the left hand side, we obtain

N(t) = N0

∞

∑
m=0

∞

∑
n=0

(−cν)m (a1)n . . .(ap)n(γ)nan(t−b)(n+γ)α−β+νm−1

(b1)n . . .(bq)nn!Γ((n+ γ)α−β +νm)

or

N(t) = N0

∞

∑
m=0

(−cν)mK(α,β−νm,γ),(−aα ,b):(p,q)
4 (t)

Corollary 4.5. If v > 0,µ = v, then the solution of integral equation

N(t)−N0tν−1 =−cν
0D−ν

t N(t) (20)

is given by

N(t) = N0Γνtν−1
ν ,ν

0M0(−;−;−cνtν) (21)

Corollary 4.6. If a > 0,b = 0,γ > 0,α > 0,β > 0,v > 0 and R(γα −β ) > 0,
then the solution of the generalized fractional kinetic equation

N(t)−N0K(α,β ,γ),(−aα ,0):(p;q)
4 (t) =−cν

0D−ν
t N(t) (22)

is given by

N(t) = N0

∞

∑
m=0

(−cν)mK(α,β−νm,γ),(−aα ,0):(p,q)
4 (t) (23)
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