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CLASSES OF SPIRALLIKE FUNCTIONS DEFINED BY
THE DZIOK-SRIVASTAVA OPERATOR

TAMER M. SEOUDY

Making use of the Dziok-Srivastava operator, in this paper we intro-
duce two classes of analytic functions and investigate convolution prop-
erties, the necessary and sufficient condition, coefficient estimates and
inclusion properties for these classes.

1. Introduction

Let A denote the class of analytic functions of the form:

f (z) = z+
∞

∑
k=2

akzk (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S∗ (α)
and K (α) (0≤ α < 1) denote the subclasses of A that consists, respectively,
of starlike of order α and convex of order α in U. It is well-known that Let
S∗ (α)⊂ S∗ (0) = S∗ and K (α) =K (0)⊂K.

If f (z) and g(z) are analytic in U, we say that f (z) is subordinate to g(z),
written f (z)≺ g(z) if there exists a Schwarz function ω , which (by definition)
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is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U, such that f (z) =
g(ω(z)), z∈U. Furthermore, if the function g(z) is univalent in U, then we have
the following equivalence, (cf., e.g.,[5], [17] and [18]):

f (z)≺ g(z)⇔ f (0) = g(0) and f (U)⊂ g(U).

For functions f given by (1) and g given by

g(z) = z+
∞

∑
k=2

bkzk (2)

the Hadamard product or convolution of f (z) and g(z) is defined by

( f ∗g)(z) = z+
∞

∑
k=2

akbkzk = (g∗ f )(z). (3)

Making use of the principal of subordination between analytic functions, we
introduce the subclasses Sα [A,B] and Kα [A,B] of the class A for |α| < π

2 and
−1≤ B < A≤ 1 which are defined by (see [3], [4] and [19])

Sα [A,B] =

{
f ∈ A : eiα z f

′
(z)

f (z)
≺ cosα

(
1+Az
1+Bz

)
+ isinα (z ∈ U)

}
, (4)

and

Kα [A,B] =

 f ∈ A : eiα

(
z f
′
(z)
)′

f ′ (z)
≺ cosα

(
1+Az
1+Bz

)
+ isinα (z ∈ U)

 .

(5)
We note that

S0 [A,B] = S [A,B] , K0 [A;B] =K [A;B] (−1≤ B < A≤ 1) ,

where the classes S [A,B] and K [A;B] are introduced and studied by many au-
thors (see [1], [11], [13], [14], and [22]).

For complex parameters a1, . . . ,aq;b1, . . . ,bs (b j /∈ Z−0 = {0,−1,−2, . . .};
j = 1, . . . ,s ), we define the generalized hypergeometric function

qFs (a1, . . . ,ai, . . . ,aq;b1, . . . ,bs;z)

by the following infinite series (see [23]):

qFs (a1, . . . ,ai, . . . ,aq;b1, . . . ,bs;z) =
∞

∑
k=0

(a1)k . . .(aq)k
(b1)k . . .(bs)k

zk

k!
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(q≤ s+1;q,s ∈ N0 = N∪{0} ,N= {1,2, . . .} ;z ∈U) ,

where (x)k is the Pochhammer symbol defined, in terms of the Gamma function
Γ, by

(x)k =
Γ(x+ k)

Γ(x)
=

{
1 (k = 0),
x(x+1) . . .(x+ k−1) (k ∈ N).

Dziok and Srivastava [9] considered a linear operator H(a1, . . . ,aq;b1, . . . ,bs) :
A→A defined by the following Hadamard product:

H(a1, . . . ,aq;b1, . . . ,bs) f (z) = h(a1, . . . ,ai, . . . ,aq;b1, . . . ,bs;z)∗ f (z) , (6)

where

h(a1, . . . ,ai, . . . ,aq;b1, . . . ,bs;z) = z qFs (a1, . . . ,ai, . . . ,aq;b1, . . . ,bs;z) (7)

(q≤ s+1;q,s ∈ N0;z ∈ U) .

If f (z) ∈ A is given by (1), then we have

H(a1, . . . ,aq;b1, . . . ,bs) f (z) = z+
∞

∑
k=2

Γk [a1;b1]akzk, (8)

where

Γk [a1;b1] =
(a1)k−1 . . .(aq)k−1

(b1)k−1 . . .(bs)k−1 k!
. (9)

If, for convenience, we write

Hq,s [a1;b1] = H(a1, . . . ,aq;b1, . . . ,bs),

then one can easily verify from the definition (6) or (8) that (see [9]):

z(Hq,s [a1;b1] f (z))
′
= a1Hq,s [a1 +1;b1] f (z)− (a1−1)Hq,s [a1;b1] f (z), (10)

and

z(Hq,s [a1;b1 +1] f (z))
′
= b1Hq,s [a1;b1] f (z)− (b1−1)Hq,s [a1;b1 +1] f (z).

(11)
It should be remarked that the linear operator Hq,s [a1;b1] is a generalization

of many other linear operators considered earlier. In particular, for f ∈ A, we
have

(i) H2,1(a,b;c) f (z) =
(

Ia,b
c f

)
(z)
(
a,b ∈ C;c /∈ Z−0

)
, where the linear opera-

tor Ia,b
c was investigated by Hohlov [12];
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(ii) H2,1(δ + 1,1;1) f (z) = Dδ f (z)(δ > −1), where Dδ is the Ruscheweyh
derivative of f (z) (see [21]);

(iii) H2,1(µ + 1,1; µ + 2) f (z) = Fµ( f )(z) =
µ +1
z µ

∫ z
0 t µ−1 f (t)dt with µ >

−1, where Fµ is the Libera integral operator (see [2], [15] and [16]);

(iv) H2,1(a,1;c) f (z) = L(a,c) f (z)(a ∈ R;c ∈ R\Z−0 ), where L(a,c) is the
Carlson-Shaffer operator (see [6]);

(v) H2,1(λ +1,c;a) f (z) = Iλ (a,c) f (z)(a,c∈R\Z−0 ;λ >−1), where Iλ (a,c)
is the Cho–Kwon–Srivastava operator (see [7]);

(vi) H2,1(µ,1;λ +1) f (z) = Iλ ,µ f (z)(λ >−1; µ > 0), where the operator Iλ ,µ

is the Choi–Saigo–Srivastava operator (see [8]) which is closely related
to the Carlson–Shaffer [6] operator L(µ,λ +1);

(vii) H2,1(1,1;n+1) f (z) = In f (z)(n>−1), where In is Noor operator of n−th
order (see [20]).

Next, by using Dziok-Srivastava operator Hq,s [a1;b1], we introduce the fol-
lowing classes of analytic functions for s,q ∈N0, |α|< π

2 and−1≤ B < A≤ 1 :

Sα
q,s [a1;A,B] =

{
f ∈ A : Hq,s [a1;b1] f (z) ∈ Sα [A,B]

}
, (12)

and
Kα

q,s [a1;A,B] =
{

f ∈ A : Hq,s [a1;b1] f (z) ∈ K [A,B]
}
. (13)

We also note that

f (z) ∈ Kα
q,s [a1;A,B]⇔ z f

′
(z) ∈ Sα

q,s [a1;A,B] . (14)

In this paper, we investigate convolution properties of Sα
q,s [a1;A,B] and

Kα
q,s [a1;A,B] associated with the operator Hq,s [a1;b1]. Using convolution prop-

erties, we find the necessary and sufficient condition, coefficient estimates and
inclusion properties for these classes.

2. Convolution Properties

Unless otherwise mentioned, we assume throughout this paper that −1 ≤ B <
A ≤ 1, |α| < π

2 , |ζ | = 1 and Γk [a1;b1] is defined by (9). To prove our convolu-
tion properties, we shall need the following lemmas due to Bhoosnurnath and
Devadas [3, 4].
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Lemma 2.1 ([3]). The function f (z) defined by (1) is in the class Sα [A,B] if
and only if

1
z

[
f (z)∗ (1−Mz)

z

(1− z)2

]
6= 0 (z ∈ U) , (15)

where

M =
eiα +(Acosα + iBsinα)ζ

(A−B)ζ cosα
. (16)

Lemma 2.2 ([4] Lemma 3 with n = 1). The function f (z) defined by (1) is in
the class Kα [A,B] if and only if

1
z

[
f (z)∗ (1−Nz)

z

(1− z)3

]
6= 0 (z ∈ U) , (17)

where

N =
2eiα +[(A+B)cosα + i2Bsinα]ζ

(A−B)ζ cosα
. (18)

Theorem 2.3. A necessary and sufficient condition for the function f defined by
(1) to be in the class Sα

q,s [a1;A,B] is that

1−
∞

∑
k=2

(k−1+ kBζ )eiα − (Acosα + iBsinα)ζ

(A−B)ζ cosα
Γk [a1;b1]akzk−1 6= 0 (z ∈ U) .

(19)

Proof. From Lemma 2.1, we find that f (z) ∈ Sα
q,s [a1;A,B] if and only if

1
z

[
Hq,s [a1;b1] f (z)∗ (1−Mz)

z

(1− z)2

]
6= 0 (z ∈ U) , (20)

where M is given by (16). From (8), the left hand side of (20) may be written as

1
z

[
Hq,s [a1;b1] f (z)∗

(
z

(1− z)2 −
Mz2

(1− z)2

)]

=
1
z

[
z(Hq,s [a1;b1] f (z))

′
−M

{
z(Hq,s [a1;b1] f (z))

′
−Hq,s [a1;b1] f (z)

}]
= 1−

∞

∑
k=2

(k−1+ kBζ )eiα − (Acosα + iBsinα)ζ

(A−B)ζ cosα
Γk [a1;b1]akzk−1.

Thus, the proof of The Theorem 2.3 is completed.
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Theorem 2.4. A necessary and sufficient condition for the function f defined by
(1) to be in the class Kα

q,s [a1;A,B] is that

1−
∞

∑
k=2

k (k−1)eiα−[(A−kB)cosα−i(k−1)Bsinα]ζ
(A−B)ζ cosα

Γk [a1;b1]akzk−1 6= 0 (z ∈ U) . (21)

Proof. From Theorem 2.3, we find that f (z) ∈ Kα
q,s [a1;A,B] if and only if

1
z

[
Hq,s [a1;b1] f (z)∗ (1−Nz)

z

(1− z)3

]
6= 0 (z ∈ U) , (22)

where N is given by (18). From (8), the left hand side of (22) becomes

1
z

[
Hq,s [a1;b1] f (z)∗

(
z

(1− z)3 −
z2

(1− z)3

)]

=
1
z

[
1
2

z(zHq,s [a1;b1] f (z))
′′
−

N
{

1
2

z(zHq,s [a1;b1] f (z))
′′
− z(Hq,s [a1;b1] f (z))

′
}]

= 1−
∞

∑
k=2

k (k−1)eiα−[(A−kB)cosα−i(k−1)Bsinα]ζ
(A−B)ζ cosα

Γk [a1;b1]akzk−1,

this proves Theorem 2.4.

3. Coefficient Estimates and Inclusion Properties

Unless otherwise mentioned, we assume throughout this section that ai > 0 (i =
1, . . . ,q) and b j > 0 ( j = 1, . . . ,s ).

As an applications of Theorems 2.3 and 2.4, we next determine coefficient
estimates and inclusion properties for a function of the form (1) to be in the
classes Sα

q,s [a1;A,B] and Kα
q,s [a1;A,B].

Theorem 3.1. If the function f (z) defined by (1) belongs to Sα
q,s [a1;A,B] , then

∞

∑
k=2

(
k−1+

∣∣A+ iBsinα− kBeiα
∣∣)Γk [a1;b1] |ak| ≤ (A−B)cosα. (23)

Proof. Since∣∣∣∣∣1− ∞

∑
k=2

(k−1+ kBζ )eiα − (Acosα + iBsinα)ζ

(A−B)ζ cosα
Γk [a1;b1]akzk−1

∣∣∣∣∣
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≥ 1−
∞

∑
k=2

∣∣∣∣(k−1+ kBζ )eiα − (Acosα + iBsinα)ζ

(A−B)ζ cosα

∣∣∣∣Γk [a1;b1] |ak| ,

and ∣∣∣∣(k−1+ kBζ )eiα − (Acosα + iBsinα)ζ

(A−B)ζ cosα

∣∣∣∣
=

∣∣(k−1)eiα −
(
Acosα + iBsinα− kBeiα

)∣∣
(A−B)cosα

≤
(k−1)+

∣∣Acosα + iBsinα− kBeiα
∣∣

(A−B)cosα
,

the result follows from Theorem 2.3.

Similarly, we can prove the following theorem.

Theorem 3.2. If the function f (z) defined by (1) belongs Kα
q,s [a1;A,B] , then

∞

∑
k=2

k{(k−1)+ |(A− kB)cosα− i(k−1)Bsinα|}Γk [a1;b1] |ak|

≤ (A−B)cosα. (24)

We will discuss two inclusion relations for the classes Sα
q,s [a1;A,B] and

Kα
q,s [a1;A,B]. To prove these results we shall require the following lemma:

Lemma 3.3 ([10]). Let h be convex (univalent) in U, with ℜ{γh(z)+η} > 0
for all z ∈ U. If p is analytic in U, with p(0) = h(0), then

p(z)+
zp
′
(z)

γ p(z)+η
≺ h(z)⇒ p(z)≺ h(z) .

Theorem 3.4. Suppose that

ℜ

{
e−iα z

1+Bz

}
>− a1

(A−B)cosα
(z ∈ U) . (25)

If f ∈Sα
q,s [a1 +1;A,B], with Hq,s [a1;b1] f (z) 6= 0 (z∈U), then f ∈Sα

q,s [a1;A,B].

Proof. Suppose that f ∈ Sα
q,s [a1 +1;A,B], and define the function

p(z) = eiα z(Hq,s [a1;b1] f (z))
′

Hq,s [a1;b1] f (z)
(z ∈ U) . (26)
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Then p is analytic in U with p(0) = eiα , and using the relation (10), from (26)
we obtain

e−iα p(z)+a1−1 = a1
Hq,s [a1 +1;b1] f (z)

Hq,s [a1;b1] f (z)
. (27)

Differentiating logarithmically (27) with respect to z and then using (26), we
deduce that

p(z)+
zp
′
(z)

e−iα p(z)+a1−1
≺ cosα

(
1+Az
1+Bz

)
+ isinα = h(z) . (28)

From (25), we see that ℜ
{

e−iαh(z)+a1−1
}
> 0,z ∈ U. Since the function

h(z) is convex (univalent) in U with h(0) = eiα , according to Lemma 3.3 the
subordination (28) implies p(z)≺ h(z), which proves that f ∈Sα

q,s [a1;A,B].

From the duality formula (14), the above theorem yields the following in-
clusion:

Theorem 3.5. Suppose that (25) holds and Hq,s [a1;b1] f (z) 6= 0 for all z ∈U. If
f ∈ Kα

q,s [a1 +1;A,B], then f ∈ Kα
q,s [a1;A,B].

Proof. Applying (14) and Theorem 3.4, we observe that

f ∈ Kα
q,s [a1 +1;A,B]⇐⇒ z f

′ ∈ Sα
q,s [a1 +1;A,B] ( from (14) )

=⇒ z f
′ ∈ Sα

q,s [a1;A,B] ( by Theorem 3.4 )

⇐⇒ f ∈ Kα
q,s [a1;A,B] ,

which evidently proves Theorem 3.5.

Remark 3.6. (i) Taking q= 2,s= 1,a1 = n+1(n>−1) and a2 = b1 = 1 in The-
orems 2.3, 3.1 and 3.4, respectively, we obtain the results obtained by Bhoos-
nurmath and Devadas [4, Theorems 1,3 and 4, respectively];
(ii) Taking q = 2,s = 1,a1 = n+1(n >−1), a2 = b1 = 1,α = 0 and ζ̄ =−ζ in
Theorems 2.3, 3.1 and 3.4, respectively, we obtain the results obtained by Ahuja
[1, Theorems 1, 3 and 5, respectively];
(iii) For special choices for ai(i = 1, . . . ,q) and b j( j = 1, . . . ,s), where q,s∈N0,
we can obtain corresponding results for different linear operators which are de-
fined in the introduction.
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