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SOME DIFFERENTIAL SUBORDINATION AND
SUPERORDINATION PROPERTIES OF SYMMETRIC

ANALYTIC FUNCTIONS INVOLVING
NOOR INTEGRAL OPERATOR

ALI MUHAMMAD - AMJADULLAH KHATTAK

In this paper, we obtain some interesting properties of differential sub-
ordination and superordination for the classes of symmetric functions an-
alytic in the unit disc, by applying Noor integral operator. We investigate
several sandwich theorems on the basis of this theory.

1. Introduction

Let H(E) denote the class of analytic functions in the open unit disc E = {z |
z ∈ C, |z|< 1} and let H[a,1] denote the subclass of the functions f ∈ H(E) of
the form

f (z) = a+a1z+a2z2 + . . . a ∈ C.

Also, let A be the subclass of functions f ∈ H(E) of the form

f (z) = z+
∞

∑
k=2

ak zk. (1)
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If f and g are analytic in E, we say that f is subordinate to g, written f ≺ g or
f (z)≺ g(z), if there exists a Schwarz function w in E such that f (z) = g(w(z)).

Suppose that h and k are two analytic functions in E, let

ϕ(r,s, t;z) : C3×E −→ C.

If h and ϕ(h(z),zh′(z),z2h′′(z);z) are univalent functions in E and if h satisfies
the second order superordination

k(z)≺ ϕ(h(z),zh′(z),z2h′′(z);z), (2)

then k is said to be a solution of the differential superordination (2). A function
q ∈ H(E) is called a subordinant to (2) if q(z) ≺ h(z) for all the functions h
satisfying (2).

A univalent subordinant q̃ that satisfies q(z)≺ q̃(z) for all of the subordinants
q of (2), is said to be the best subordinant.

Recently, Miller and Mocanu [10] obtained sufficient conditions on the func-
tions k,q and ϕ for which the following implication holds:

k(z)≺ ϕ(h(z),zh′(z),z2h′′(z);z) =⇒ q(z)≺ h(z).

Using these results, the authors in [2] considered certain classes of first-order
differential superordinations, see also [5], as well as superordination-preserving
integral operators [4]. Aouf et al. [2,3], obtained sufficient conditions for certain
normalized analytic functions f to satisfy

q1(z)≺
z f ′(z)
f (z)

≺ q2(z),

where q1 and q2 are given univalent normalized functions in E. Very recently
Shanmugam et al. ([19,20]) obtained the so called sandwich results for certain
classes of analytic functions. For interested readers we refer to the work done
by the authors [1,2,13,14,18].

In [17], Sakaguchi defined the class of starlike functions with respect to
symmetrical points as follows:
Let f ∈ A. Then f is said to be starlike with respect to symmetrical points in E
if, and only if,

Re
z f ′(z)

f (z)− f (−z)
> 0, z ∈ E.

Obviously, it forms a subclass of close-to-convex functions and hence univalent.
Moreover, this class includes the class of convex functions and odd starlike
functions with respect to the origin, see [17].
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Let f ∈ A. Denote by Dα :A−→A the operator defined by

Dα f (z) =
z

(1− z)α+1 ∗ f (z) (α >−1)

or equivalently,

Dn f (z) =
z(zn−1 f (z))(n)

n!
, n ∈ N0 = {0,1,2, ...},

where the symbol (∗) stands for the Hadamard product (or Convolution). We
note that D0 f (z) = f (z) and D1 f (z) = z f ′(z). The operator Dn f is called the
Ruscheweyh derivative of nth order of f , see [16]. Analogous to Dn f , Noor [11]
and Noor and Noor [12] defined an integral operator In :A−→A as follows.

Let fn(z) = z
(1−z)n+1 , n ∈ N0, and let f (†)n be defined such that

fn(z)∗ f (†)n (z) =
z

(1− z)2 .

Then

In f (z) = fn(z)∗ f (†)n (z) =
[

z
(1− z)n+1

](†)
∗ f (z). (3)

From (3) it is easy to verify that

z(In+1 f (z))′ = (n+1)In f (z)−nIn+1 f (z). (4)

We note that I0 f (z) = z f ′(z) and I1 f (z) = f (z). The operator In f (z) defined by
(3) is called the Noor Integral operator of nth order of f , see [7]. Moreover,
Liu [7] introduced some new subclasses of strongly starlike functions defined
by using the Noor integral operator and studied their properties. Liu and Noor
[8] investigated some interesting properties of the Noor integral operator.

2. Preliminary Results

Definition 2.1 ([10]). Let Q be the set of all functions f that are analytic and
injective on E\U( f ), where

U( f ) =
{

ζ ∈ ∂E : lim
z→ζ

f (z) = ∞

}
,

and are such that f ′(ζ ) 6= 0 for ζ ∈ ∂E\U( f ).

To establish our main results we need the following Lemmas.
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Lemma 2.2 (Miller and Mocanu [9]). Let q be univalent in the unit disc E, and
let θ and ϕ be analytic in a domain D containing q(E), with ϕ(w) 6= 0 when
w ∈ q(E). Set Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)+Q(z) and suppose that

(i) Q is a starlike function in E,
(ii) Re zh′(z)

Q(z) > 0, z ∈ E.
If p is analytic in E with p(0) = q(0), p(E)⊆ D and

θ(p(z))+ zp′(z)ϕ(p(z)≺ θ(q(z))+ zq′(z)ϕ(q(z), (5)

then p(z)≺ q(z), and q is the best dominant of (5).

Lemma 2.3 (Shanmugam et al. [20]). Let µ,γ ∈ C with γ 6= 0, and let q be a
convex function in E with

Re
(

1+
zq′′(z)
q′(z)

)
> max

{
0;−Re

µ

γ

}
, z ∈ E.

If p is analytic in E and

µ p(z)+ γzp′(z)≺ µq(z)+ γzq′(z), (6)

then p(z)≺ q(z), and q is the best dominant of (6).

Lemma 2.4 (Bulboacă [6]). Let q be a univalent function in the unit disc E and
let θ and ϕ be analytic in a domain D containing q(E). Suppose that

(i) Re
θ ′(q(z))
ϕ(q(z)

> 0 for z ∈ E,

(ii) h(z) = zq′(z)ϕ(q(z)) is starlike in E.

If p ∈ H[q(0),1]∩Q with p(E)⊆ D, θ(p(z)+ zp′(z))ϕ(p(z)) is univalent in E
and

θ(q(z))+ zq′(z)ϕ(q(z))≺ θ(p(z))+ zp′(z)ϕ(p(z)), (7)

then q(z)≺ p(z) and q is the best subordinant of (7).

Lemma 2.5 (Miller and Mocanu [10]). Let q be convex in E and let γ ∈C, with
Reγ > 0. If p ∈ H[q(0),1]∩Q and p(z)+ γzp′(z) is univalent in E, then

q(z)+ γzq′(z)≺ p(z)+ γzp′(z), (8)

implies q(z)≺ p(z), and q is the best subordinant of (8).

Lemma 2.6 (Royster [11]). The function q(z) = 1
(1−z)2ab is univalent in E if and

only if |2ab−1| ≤ 1 or |2ab+1| ≤ 1.
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3. Main Results

Theorem 3.1. Let q be univalent in E, with q(0) = 1, and suppose that

Re
(

1+
zq′′(z)
q(z)

)
> max

{
0;−(n+1)Re

1
λ

}
, n ∈ N0, z ∈ E, (9)

where λ ∈ C∗ = C\{0}. If f ∈ A satisfies the subordination

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
≺ q(z)+

λ

(n+1)
zq′(z), (10)

then (
In+1 f (z)− In+1 f (−z)

2z

)
≺ q(z),

and q is the best dominant of (10).

Proof. Set (
In+1 f (z)− In+1 f (−z)

2z

)
= h(z),

where h(z) is analytic in E with h(0) = 1.
A simple computation along with (4) shows that

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
= h(z)+

λ

(n+1)
zh′(z),

hence the subordination (10) is equivalent to

h(z)+
λ

(n+1)
zh′(z)≺ q(z)+

λ

(n+1)
zq′(z).

Combining this last relation together with Lemma 2.3 for special case γ = λ

(n+1)
and µ = 1, we obtain our result.

Taking q(z) = 1+Az
1+Bz in Theorem 3.1, where −1 ≤ B < A ≤ 1, the condition

(9) reduces to

Re
1−Bz
1+Bz

> max
{

0; − (n+1)Re
1
λ

}
, n ∈ N0 z ∈ E. (11)
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It is easy to verify that the function ϕ(ζ ) = (1−ζ )
(1+ζ )

, |ζ |< B, is convex in E, and

since ϕ(ζ ) = ϕ(ζ ) for all |ζ | < |B|, it follows that ϕ(E) is a convex domain
symmetric with respect to the real axis, hence

inf
{

Re
1−Bz
1+Bz

: z ∈ E
}
=

1−|B|
1+ |B|

> 0. (12)

Then, the inequality (11) is equivalent to

(n+1)Re
1
λ
≥ |B|−1
|B|+1

,

hence we have the following result.

Corollary 3.2. Let λ ∈ C∗, n ∈ N0, −1≤ B < A≤ 1 with

max
{

0; −(n+1)Re
1
λ

}
≤ 1−|B|

1+ |B|
.

If f ∈ A, and

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
≺ 1+Az

1+Bz
+

λ

(n+1)
(A−B)z
(1+Bz)2 , (13)

then (
In+1 f (z)− In+1 f (−z)

2z

)
≺ 1+Az

1+Bz
,

and
1+Az
1+Bz

is the best dominant of (13).

Example 3.3. Let A= 1, B=−1, n∈N0, λ ∈C∗ with (n+1)Re 1
λ
≥ 0. If f ∈A

and

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
≺ 1+ z

1− z
+

λ

(n+1)
2z

(1− z)2 , (14)

then (
In+1 f (z)− In+1 f (−z)

2z

)
≺ 1+ z

1− z
,

and
1+ z
1− z

is the best dominant of (14).
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Theorem 3.4. Let q be univalent in E, with q(0) = 1 and q(z) 6= 0 for all z ∈ E.
Let γ,µ ∈C∗ and v,η ∈C, with v+η 6= 0. Let f ∈A and suppose that f and q
satisfy the following conditions:

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

6= 0, n ∈ N0, z ∈ E, (15)

and

Re
(

1+
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
> 0, z ∈ E. (16)

If

1+ γµ

[
vz(In f (z)− In f (−z)′+ηz(In+1 f (z)− In+1 f (−z))′

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
−1
]

≺ 1+ γ
zq′(z)
q(z)

, (17)

then [
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

≺ q(z),

and q is the best dominant of (17). The power is the principal one.

Proof. We begin by setting[
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

= h(z), z ∈ E, (18)

where h(z) is analytic in E with h(0) = 1. Differentiating Equation (18) loga-
rithmically with respect to z, we have

µ

[
vz(In f (z)− In f (−z)′+ηz(In+1 f (z)− In+1 f (−z))′

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
−1
]
=

zh′(z)
h(z)

.

To prove our result we use Lemma 2.2. Consider in this lemma

θ(w) = 1 and ϕ(w) =
γ

w
,

then θ is analytic in C and ϕ(w) 6= 0 is analytic in C∗. Also, if we let

Q(z) = zq′(z)ϕ(q(z)) = γ
zq′(z)
q(z)

,
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and

g(z) = θ(q(z))+Q(z) = 1+ γ
zq′(z)
q(z)

,

then, since Q(0) = 0 and Q′(0) 6= 0, the assumption (16) would yield that Q is
a starlike function in E. From (16), we have

Re
zg′(z)
Q(z)

= Re
(

1+
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
> 0, z ∈ E,

and by using Lemma 2.2 we deduce that the subordination (17) implies that
h(z)≺ q(z), and the function q is the best dominant of (17).

In particular, v = 0, η = γ = 1 and q(z) = 1+Az
1+Bz in the above Theorem 3.4, it

is easy to see that the assumption (16) holds whenever −1≤ A < B≤ 1, which
leads to the next result:

Corollary 3.5. Let−1≤A<B≤ 1, n∈N0, and µ ∈C∗. Let f ∈A and suppose
that In+1 f (z)−In+1 f (−z)

2z 6= 0, z ∈ E. If

1+µ

[
z(In+1 f (z)− In+1 f (−z))′

(In+1 f (z)− In+1 f (−z))
−1
]
≺ 1+

(A−B)z
(1+Az)(1+Bz)

, (19)

then (
In+1 f (z)− In+1 f (−z)

2z

)µ

≺ 1+Az
1+Bz

,

and 1+Az
1+Bz is the best dominant of (19). The power is the principal one.

Putting v = n = 0, η = 1, γ = 1
ab , a,b ∈ C∗, µ = a, and q(z) = 1

(1−z)2ab in
Theorem 3.4, then combining this together with Lemma 2.6, we have the next
result, see [1].

Corollary 3.6. (see [1]) Let a, b ∈ C∗ such that |2ab−1| ≤ 1 or |2ab+1| ≤ 1.
Let f ∈ A and let ( f (z)− f (−z))

2z 6= 0 for all z ∈ E. If

1+
1
b

(
z( f ′(z)+ f ′(−z))
( f (z)− f (−z))

−1
)
≺ 1+ z

1− z
,

then (
( f (z)− f (−z))

2z

)a

≺ 1
(1− z)2ab , (20)

and 1
(1−z)2ab is the best dominant of (20). The power is the principal one.

Putting v = n = 0, η = γ = 1 and q(z) = (1+Bz)
µ(A−B)

B , −1 ≤ B < A ≤ 1,
B 6= 0 in Theorem 3.4, and using Lemma 2.6, we have the next result.
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Corollary 3.7. [1]. Let−1≤B<A≤ 1 with B 6= 0, and suppose that
∣∣∣ µ(A−B)

B−1

∣∣∣≤ 1

or
∣∣∣ µ(A−B)

B+1

∣∣∣≤ 1. Let f ∈A such that ( f (z)− f (−z))
2z 6= 0 for all z∈E, and let µ ∈C∗.

If

1+µ

(
z( f ′(z)+ f ′(−z))
( f (z)− f (−z))

−1
)
≺ 1+[B+µ(A−B)]z

1+Bz
, (21)

then (
( f (z)− f (−z))

2z

)µ

≺ (1+Bz)
µ(A−B)

B ,

and (1+Bz)
µ(A−B)

B is the best dominant of (21). Here the power is the principal
one.

By taking v = n = 0, η = 1, γ = eiλ

abcosλ
a,b ∈ C∗, |λ | < π

2 , µ = a and
q(z) = 1

(1−z)2abcosλe−iλ in Theorem 3.4, we obtain the following result.

Corollary 3.8 ([1]). Let a,b ∈ C∗, |λ | < π

2 , suppose
∣∣abcosλe−iλ −1

∣∣ ≤ 1 or∣∣abcosλe−iλ +1
∣∣≤ 1. Let f ∈ A such that ( f (z)− f (−z))

2z 6= 0 for all z ∈ E. If

1+
eiλ

bcosλ

(
z( f ′(z)+ f ′(−z))
( f (z)− f (−z))

−1
)
≺ 1+ z

1− z
, (22)

then (
( f (z)− f (−z))

2z

)a

≺ 1
(1− z)2abcosλe−iλ ,

and 1
(1−z)2abcosλe−iλ is the best dominant of (22). The power is the principal one.

Theorem 3.9. Let q be univalent in E with q(0) = 1, let µ , γ ∈ C∗, and let µ ,
γ ∈ C∗ and let δ , Ω, v, η ∈ C with v+η 6= 0. Let f ∈ A and suppose that f
and q satisfy the next two conditions:

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

6= 0, n ∈ N0, z ∈ E, (23)

and

Re
(

1+
zq′′(z)
q′(z)

)
> max

{
0;−Re

δ

γ

}
, z ∈ E. (24)

If

ψ(z)≡
[

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

]µ

[
δ + γµ

(
vz(In f (z)− In f (−z)′+ηz(In+1 f (z)− In+1 f (−z))′

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
−1
)]

+Ω,

(25)
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and
ψ(z)≺ δq(z)+ γzq′(z)+Ω, (26)

then [
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

≺ q(z),

and q is the best dominant of (26). All the powers are the principal ones.

Proof. We begin by setting[
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

= h(z). (27)

Then h(z) is analytic in E with h(0) = 1. Logarithmic differentiating of (27)
yields

µ

(
vz(In f (z)− In f (−z)′+ηz(In+1 f (z)− In+1 f (−z))′

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
−1
)
=

zh′(z)
h(z)

,

and hence

µh(z)
(

vz(In f (z)− In f (−z)′+ηz(In+1 f (z)− In+1 f (−z))′

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
−1
)
= zh′(z).

Let us consider the functions:

θ(w) = δw+Ω, ϕ(w) = γ, w ∈ C,
Q(z) = zq′(z)ϕ(q(z) = γzq′(z), z ∈ E,

and
g(z) = θ(q(z)+Q(z) = δq(z)+ γzq′(z)+Ω, z ∈ E.

From the assumption (24) we see that Q is starlike in E and, that

Re
zg′(z)
Q(z)

= Re
(

δ

γ
+1+

zq′′(z)
q′(z)

)
> 0, z ∈ E,

thus, by applying Lemma 2.2, this completes the proof.

Taking q(z) = (1+Az)
(1+Bz) in Corollary 3.7, where−1≤ B < A≤ 1 and according

to (12), the condition (24) becomes

max
{

0;−Re
δ

γ

}
≤ 1−|B|

1+ |B|
.

Hence, for the special case v = 1 = γ , η = 0, we have the following result:
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Corollary 3.10. Let −1≤ B < A≤ 1 and let δ ∈ C with

max{0;−Reδ} ≤ 1−|B|
1+ |B|

.

Let f ∈ A and suppose that

(In f (z)− In f (−z))
2z

6= 0, n ∈ N0, z ∈ E

and let µ ∈ C∗. If[
(In f (z)− In f (−z))

2z

]µ [
δ +µ

(
z(In+1 f (z)− In+1 f (−z))′

(In+1 f (z)− In+1 f (−z))
−1
)]

+Ω

≺ δ
1+Az
1+Bz

+Ω+
z(A−B)
(1+Bz)2 , (28)

then (
(In f (z)− In f (−z))

2z

)µ

≺ 1+Az
1+Bz

,

and 1+Az
1+Bz is the best dominant of (28). All the powers are the principal ones.

Taking γ = η = 1,v = n = 0 and q(z) = 1+z
1−z in Corollary 3.7, we obtain the

next result.

Corollary 3.11 ([1]). Let f ∈ A such that f (z)− f (−z)
2z 6= 0 for all z ∈ E, and let

µ ∈ C∗. If[
f (z)− f (−z)

2z

]µ [
δ +µ

(
z( f ′(z)+ f ′(−z))

f (z)− f (−z)
−1
)]

+Ω

≺ δ
1+ z
1− z

+Ω+
2z

(1− z)2 , (29)

then [
f (z)− f (−z)

2z

]µ

≺ 1+ z
1− z

,

and 1+z
1−z is the best dominant of (29). All the powers are the principal ones.

4. Superordination and Sandwich results

Theorem 4.1. Let q be convex in E with q(0) = 1, n ∈ N0, let λ ∈ C∗ with
(n+1)Reλ > 0. Let f ∈A and suppose that In+1 f (z)−In+1 f (−z)

2z ∈H [q(0),1]∩Q.
If the function

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
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is univalent in the unit disc E and

q(z)+
λ

(n+1)
zq′(z)

≺ (1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
, (30)

then

q(z)≺
(

In+1 f (z)− In+1 f (−z)
2z

)
,

and q is the best subordinant of (30).

Proof. Set (
In+1 f (z)− In+1 f (−z)

2z

)
= h(z), z ∈ E.

Then h(z) is analytic in E with h(0) = 1. Taking logarithmic differentiation with
respect z, we have

z
(
(In+1 f (z))′− (In+1 f (−z))′

In+1 f (z)− In+1 f (−z)

)
−1 =

zh′(z)
h(z)

. (31)

A simple computation along with identity (4) shows that

h(z)+
λ

(n+1)
zh′(z)

= (1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
,

and now, by using Lemma 2.5, we obtain the desired result.

Taking q(z) = 1+Az
1+Bz in Theorem 4.1, where −1≤ B < A≤ 1, we obtain the

next result.

Corollary 4.2. Let q be convex in E with q(0) = 1, n ∈ N0, let λ ∈ C∗ with
(n+1)Reλ > 0. Let f ∈ A and suppose that In+1 f (z)−In+1 f (−z)

2z ∈ H [q(0),1]∩Q.
If the function

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
is univalent in the unit disc E, and

1+Az
1+Bz

+
λ (A−B)z
(1+Bz)2

≺ (1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
, (32)
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then
1+Az
1+Bz

≺
(

In+1 f (z)− In+1 f (−z)
2z

)
,

and 1+Az
1+Bz is the best subordinant of (32), where −1≤ B < A≤ 1.

Using the same techniques as we used in Theorem 3.9, and then applying
Lemma 2.4, we have the following theorem.

Theorem 4.3. Let q be convex in E with q(0) = 1, let µ, γ ∈ C∗, and let
δ , Ω, v, η ∈ C with v+η 6= 0 and Re δ

γ
> 0. Let f ∈ A and suppose that f

satisfies the following conditions:

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

6= 0, n ∈ N0, z ∈ E,

and [
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

∈ H[q(0),1]∩Q.

If the function ψ given by equation (25) is univalent in E, and

δq(z)+ γzq′(z)+Ω≺ ψ(z), (33)

then

q(z)≺
[

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

]µ

,

and q is the best subordinate of (33) (all powers are the principal ones).

Note that by combining Theorem 3.1 with Theorem 4.1 and Corollary 3.10
with Theorem 4.3, we have, respectively, the following two sandwich theorems:

Theorem 4.4. Let q1 and q2 be two convex functions in E with q1(0) = q2(0) =
1, n ∈ N0, let λ ∈ C∗ with (n + 1)Reλ > 0. Let f ∈ A and suppose that
In+1 f (z)−In+1 f (−z)

2z ∈ H[q(0),1]∩Q. If the function

(1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
is univalent in the unit disc E, and

q1(z)+
λ

(n+1)
zq′1(z)≺ (1−λ )

(
In+1 f (z)− In+1 f (−z)

2z

)
+λ

(
In f (z)− In f (−z)

2z

)
≺ q2(z)+

λ

(n+1)
zq′2(z), (34)
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then

q1(z)≺
(

In+1 f (z)− In+1 f (−z)
2z

)
≺ q2(z),

and q1 and q2 are, respectively, the best subordinate and the best dominant of
(34).

Theorem 4.5. Let q1 and q2 be two convex functions in E with q1(0) = q2(0) =
1, n ∈ N0, let µ, γ ∈ C∗, and let δ , Ω, v, η ∈ C with v+η 6= 0 and Re δ

γ
> 0.

Let f ∈ A satisfy the following conditions:[
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]
6= 0, z ∈ E,

and [
v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))

(v+η)z

]µ

∈ H[q(0),1]∩Q.

If the function ψ given by (25) is univalent in E and

δq1(z)+ γzq′1(z)+Ω≺ ψ(z)≺ δq2(z)+ γzq′2(z)+Ω, (35)

then

q1(z)≺
[

v(In f (z)− In f (−z))+η (In+1 f (z)− In+1 f (−z))
(v+η)z

]µ

≺ q2(z),

and q1 and q2 are, respectively, the best subordinate and the best dominant of
(35) (all the powers are the principal ones).
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[6] T. Bulboacă, Differential subordination and superordinations. Recent Results,
House of Scientific Book Publ, Cluj-Napoca, 2005.

[7] J. L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl.
261 (2001), 441–447.

[8] J. L. Liu - K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom. 21
(2002), 81–90.

[9] S. S. Miller - P. T. Mocanu, Differential subordination Theory and Applications,
Series on Monographs and Textbooks in Pure and Applied Mathematics vol. 225,
Marcel Dekker Inc., New York, Basel, 2000.

[10] S. S. Miller - P. T. Mocanu, Subordinations of differential superordinations, Com-
plex Variables 48 (10) (2003), 815–826.

[11] K. I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999), 71–
80.

[12] K. I. Noor - M. A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999),
341–352.

[13] M. Obradovic - M. K. Aouf - S. Owa, On some results for starlike functions of
complex order, Pub. Inst. Math. Belgrade 46 (60) (1989), 79–85.

[14] M. Obradovic - S. Owa, On certain properties for some classes of starlike func-
tions, J. Math. Anal. Appl. 145 (2) (1990), 357–364.

[15] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12
(1965), 385–387.

[16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49
(1975), 109–115.

[17] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959),
72–75.

[18] S. Shams - S. R. Kulkarni - J. M. Jahangiri, Subordination properties of P-valent
functions defined by integral operators, Int. J. Math. Math. Sci. (2006), Article ID
94572, 1–3.

[19] T. N. Shanmugam - C. Ramachandran - M. Darus - S. Sivasubbramanian, Differ-
ential sandwich theorems for some subclasses of analytic functions involving a
linear operator, Acta Math. Univ. Comenianae 74 (2) (2007), 287–294.

[20] T. N. Shanmugam - S. Sivasubbramanian - H. M. Srivastava, On sandwich theo-
rems for some classes of analytic functions, Int. J. Math. Math. Sci. (2006), Article
ID 29684 1–13.



92 ALI MUHAMMAD - AMJADULLAH KHATTAK

ALI MUHAMMAD
Department of Basic Sciences

University of Engineering and Technology
Peshawar, Pakistan

e-mail: ali7887@gmail.com

AMJADULLAH KHATTAK
Department of Electrical and Electronic Engineering

University of Engineering and Technology
Peshawar, Pakistan

e-mail: amjad67@gmail.com


