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RESONANCE AND LANDESMAN-LAZER CONDITIONS FOR
FIRST ORDER SYSTEMS IN R2

MAURIZIO GARRIONE

The first part of the paper surveys the concept of resonance for T -
periodic nonlinear problems. In the second part, some new results about
existence conditions for nonlinear planar systems are presented. In par-
ticular, the Landesman-Lazer conditions are generalized to systems in R2

where the nonlinearity interacts with two resonant Hamiltonians. Such
results apply to second order equations, generalizing previous theorems
by Fabry [4] (for the undamped case), and Frederickson-Lazer [9] (for
the case with friction). The results have been obtained with A. Fonda,
and have been published in [8].

1. Introduction

Resonance is a physical phenomenon which has been widely studied by means
of mathematical tools. The meaning of linear resonance is well understood:
intuitively, we can think to a vibrating system, for instance a spring, whose
motion is forced by a time-dependent external force which, roughly speaking,
“constructively interacts” with the natural oscillation of the spring. More pre-
cisely, it is generally assumed that the ratio between the natural frequency of
the spring and the frequency of the forcing term is a rational number, so that,
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at each multiple of a suitable interval of time, the amplitude of the oscillations
increases (for an interesting and exhaustive survey about resonance, see [13]).
From a mathematical point of view, hence, resonance is “against” the existence
of periodic solutions (in some cases as in the linear one, it is indeed equivalent
to the unboundedness of all the solutions). It is well known that, for the forced
linear oscillator with T -periodic boundary conditions, i.e.,{

x′′+λx = e(t)
x(0) = x(T ), x′(0) = x′(T ),

resonance can occur only in correspondence of the eigenvalues of the considered
boundary value problem (namely, if λ = (2Nπ

T )2 for some nonnegative N ∈ N).
Indeed, if λ is not an eigenvalue, roughly speaking, the differential operator
x 7→ x′′+λx (acting from C2

T (0,T ) to C0
T (0,T )) becomes invertible.

Another problem of interest is the asymmetric oscillator, which intuitively can
be thought again as a spring, this time subject to a potential which varies accord-
ing to the position with respect to a point fixed in advance (usually, the origin).
This system can be described, for instance, by the equation

x′′+µx+−νx− = 0, (µ,ν ∈ R), (1)

where x+ := max{x,0} and x− := max{−x,0}. In this context, the set that
before was made up by the eigenvalues is replaced by the so called Dancer-
Fučik spectrum (see [3, 10]). This set, which we will denote by Σ, is composed
by the couples of nonnegative real numbers (µ,ν) such that equation (1) has
a nontrivial solution. In the plane (µ,ν), it can be seen that Σ is made up by
the axes {µ = 0}, {ν = 0} and by the union of disjoint curves ΓN (N positive
integer), each one described by the equation

1
√

µ
+

1√
ν
=

T
Nπ

.

Dealing with the second order nonlinear problem{
x′′+g(t,x) = 0
x(0) = x(T ), x′(0) = x′(T ),

(2)

it is then natural to compare the behavior of g(t,x) (with respect to the variable x)
with the lines λx having slopes λ equal to the eigenvalues of the linear problem
(or, according to the sign of x, to the coordinates of a point belonging to a
Fučik curve). Such an interaction turns out to be crucial in affecting (or not)
the existence of a solution to the considered problem. Indeed, if we are “near”
the eigenvalues, in general there is no hope of proving existence results without
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further hypotheses on the nonlinearity. For this reason, there have been many
contributions in literature seeking suitable conditions in order to prevent this
danger, avoiding thus the unboundedness of all the solutions.
We will focus on the so called Landesman-Lazer condition, introduced by Lazer
and Leach [12] in 1969 in the case

g(t,x) = λNx+h(x)− e(t),

with λN = (2Nπ

T )2 and h bounded, and generalized to elliptic PDEs by Landes-
man and Lazer [11] one year later. In the settings of [11, 12], this condition
ensures existence for problem (2). In the case when g(t,x) = λNx+ h(t,x), it
can be written as follows:∫

{v>0}
liminf
x→+∞

h(t,x)v(t)dt +
∫
{v<0}

limsup
x→−∞

h(t,x)v(t)dt > 0, (3)

for every v solving the homogeneous equation x′′+λNx = 0. Just as an intuitive
idea, one can qualitatively think that a suitable shape for h(t,x) to satisfy such a
condition requires that h is positive for x→+∞ and negative for x→−∞.
After the pioneering works [11, 12], there have been many generalizations of
(3), for several kinds of problems dealing with more general situations (we only
cite [1, 5, 6], for a quite rich bibliography about the subject see [8]). In particu-
lar, in [5, 6] Fabry and Fonda considered the situation when the nonlinearity can
asymptotically interact with two consecutive eigenvalues λN and λN+1, that is,

g(t,x) = γ(t,x)x+ r(t,x),

with λN ≤ γ(t,x)≤ λN+1 and r(t,x) a bounded function. This situation is usually
referred to as double resonance. This setting was further on extended by Fabry
[4] in the asymmetric framework, assuming that

g(t,x) = γ1(t,x)x+− γ2(t,x)x−+ r(t,x),

with γ1 and γ2 such that a+ ≤ γ1(t,x) ≤ b+ and a− ≤ γ2(t,x) ≤ b−, and r(t,x)
bounded, being (a−,a+) ∈ ΓN (the N-th Fučik curve) and (b−,b+) ∈ ΓN+1, for
a positive integer N. Both in [4, 5], to prove the existence results, the authors
assumed a Landesman-Lazer condition for each side, i.e., with respect to each
eigenvalue, considered separately (see Theorem 2.4). Intuitively, this is due to
the fact that the nonlinearity has to be kept sufficiently far from resonance with
respect to both λN and λN+1.
In this paper, we present some of the results obtained in [8] for planar systems,
generalizing most of the previous quoted ones. In particular, it is considered the
problem {

Ju′ = F(t,u)
u(0) = u(T ),

(4)
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where J =
(

0 −1
1 0

)
is the standard symplectic matrix. This time, the double

resonance assumption can be formulated following the approach by Fonda [7],
in terms of interaction with gradients of positively homogeneous Hamiltonians,
as it will be better explained in Section 2. Assumption 3) in Theorem 2.1 is the
generalization of the Landesman-Lazer conditions (in particular, Theorem 2.1
contains [4, Theorem 1], as it is proved in [8, Corollary 3.3]). A few remarks
will follow, focusing on some related questions and on another result in [8].

2. Main result

As already mentioned in the Introduction, we will consider problem (4), where,
for the sake of simplicity, we will assume the function F : [0,T ]×R2→ R2 to
be continuous (the statement in [8] is proved in the more general Carathéodory
setting). We look for classical solutions of (4).
A possible definition of resonance for first order systems was introduced, in
a general framework, in [7]. The role of the term λNx (or a+x+− a−x−) in
second-order equations is now played by gradients of positively homogeneous
Hamiltonians, that is, gradients of C1-functions H : R2→ R satisfying

0 < H(λu) = λ
2H(u), λ > 0, u ∈ R2.

We will denote this class of functions by P . The remarkable point about such
a class is that if H ∈P , then every solution of the Hamiltonian system

Ju′ = ∇H(u)

is periodic with the same minimal period τ (in this situation, the origin is usually
said to be an isochronous center for the system). The fact that this minimal pe-
riod τ is a submultiple of T affects the existence of a solution when the problem
is forced. Precisely, in [7] it was proved that, for a T -periodic problem like{

Ju′ = ∇H(u)+ f (t)
u(0) = u(T ),

with H ∈P , if T
τ
/∈N, then there is existence for every forcing term f : [0,T ]→

R2. On the contrary, if T
τ
∈ N (in this case, we will say that the Hamiltonian H

is resonant), there exist forcing terms for which all the solutions are unbounded.
A natural generalization of resonance is thus represented by this second case,
which indeed extends the previously described resonant situations for scalar
problems. The nonlinear extension of this concept, both for simple and double
resonance, is based again on comparing the asymptotic behavior of the nonlin-
earity with the behavior of the gradient of a resonant Hamiltonian.
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With these preliminaries, we will then focus on the case when double resonance
can occur, so that F(t,u) interacts asymptotically with the gradients of two res-
onant Hamiltonians H1,H2 ∈P . We will assume

H1(u)≤ H2(u), for every u ∈ R2. (5)

The main result in [8] is the following.

Theorem 2.1. Assume (5) and the following hypotheses:

1) there exist a continuous functions γ : [0,T ]×R2 → R, such that 0 ≤
γ(t,u)≤ 1, and a bounded continuous function r : [0,T ]×R2→R2, such
that

F(t,u) = (1− γ(t,u))∇H1(u)+ γ(t,u)∇H2(u)+ r(t,u), (6)

for every t ∈ R and every u ∈ R2;

2) if ϕ and ψ satisfy Jϕ ′ = ∇H1(ϕ), and Jψ ′ = ∇H2(ψ), and τϕ , τψ are
their minimal periods, then there exists a positive N ∈ N such that

T
N +1

≤ τψ < τϕ ≤
T
N

; (7)

3) for every θ ∈ [0,T ], the following relations are satisfied:

Γ1(θ) :=
∫ T

0
liminf

λ→+∞

ω→θ

[〈F(t,λϕ(t +ω))|ϕ(t +ω)〉−2λH1(ϕ(t))]dt > 0,

(8)

Γ2(θ) :=
∫ T

0
liminf

λ→+∞

ω→θ

[2λH2(ψ(t))−〈F(t,λψ(t +ω))|ψ(t +ω)〉]dt > 0.

(9)

Then problem (4) has a solution.

The proof relies on accurate estimates of an angular-type coordinate, in or-
der to perform suitable a priori estimates on the solutions (to this aim, (8) and
(9) are essential). The conclusion follows from [2, Theorem 2], showing that
the coincidence degree associated to the problem is 1. We refer to [8] for the
details, now focusing instead on a few complementary comments.

Remark 2.2. Notice that, in the statement, N is assumed to be positive. With
particular attention to the scalar case, this means that the situation when reso-
nance occurs with the first eigenvalue (or with the axes of the Fučik spectrum)
is not included in the framework of the theorem. The generalization of this sit-
uation to first order systems, from the point of view of positively homogeneous
Hamiltonians, seems indeed more delicate.
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Remark 2.3. Let us recall the main result by Fabry [4] for the scalar second
order problem {

x′′+g(t,x) = 0
x(0) = x(T ), x′(0) = x′(T ),

(10)

in order to carefully analyze its relationships with Theorem 2.1.

Theorem 2.4 (Fabry 1995). Let a−,a+,b−,b+ be positive numbers such that

1
√

a+
+

1
√

a−
=

T
Nπ

,
1√
b+

+
1√
b−

=
T

(N +1)π
, (11)

for some positive integer N. Let g : [0,T ]×R→ R be a continuous function
such that

g(t,x) = γ1(t,x)x+− γ2(t,x)x−+ r(t,x),

with a+ ≤ γ1(t,x) ≤ b+ and a− ≤ γ2(t,x) ≤ b−, and r bounded. Moreover,
assume that for every φ , ξ satisfying

φ
′′+a+φ

+−a−φ
− = 0, ξ

′′+b+ξ
+−b−ξ

− = 0,

respectively, the following conditions are satisfied:∫
{φ>0}

liminf
x→+∞

(g(t,x)−a+x)φ(t)dt +
∫
{φ<0}

limsup
x→−∞

(g(t,x)−a−x)φ(t)dt > 0,

(12)
and∫
{ξ>0}

limsup
x→+∞

(g(t,x)−b+x)ξ (t)dt +
∫
{ξ<0}

liminf
x→−∞

(g(t,x)−b−x)ξ (t)dt < 0.

(13)
Then problem (10) has a solution.

In this setting, as it is proved in [8, Corollary 3.3], conditions (8), (9) for
problem (10) are more general than (12), (13), respectively. Nevertheless, we
now show that the converse implication - which is not proved in [8] - holds, as
well. For θ ∈ [0,T ] fixed, consider the explicit expression of Γ1(θ) in (8), that
is, ∫

{φ(t+θ)>0}
w1(t,θ)dt +

∫
{φ(t+θ)<0}

w2(t,θ)dt, (14)

where we set w1(t,θ) := liminf λ→+∞

ω→θ

(g(t,λφ(t+ω))−λa+φ(t+ω))φ(t+ω),
and w2(t,θ) := − limsup λ→+∞

ω→θ

(g(t,λφ(t + ω))− λa−φ(t + ω))(−φ(t + ω)).
For the sake of brevity, we will focus only on the first term in (14), the reasoning
for the other summand being the same. Since the second factor has limit,

w1(t,θ) = liminf
λ→+∞

ω→θ

(g(t,λφ(t +ω))−λa+φ(t +ω))φ(t +θ). (15)
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However, by writing the explicit expression of the right-hand side in (15), a
standard argument implies now

w1(t,θ)≤ liminf
λ→∞

(g(t,λφ(t +θ))−λa+φ(t +θ))φ(t +θ) =: W1(t,θ),

since, for every δ ,γ > 0,

inf
λ≥γ

|θ−ω|≤δ

g(t,λ (φ(t+ω)))−λa+φ(t+ω)≤ inf
λ≥γ

g(t,λ (φ(t+θ)))−λa+φ(t+θ).

It follows

Γ1(θ)≤
∫
{φ(t+θ)>0}

W1(t,θ)dt +
∫
{φ(θ)<0}

W2(t,θ)dt,

where W2(t,θ) := limsupλ→+∞ (g(t,λφ(t +θ))−λa−φ(t +θ))φ(t +θ). It is
now sufficient to notice that, at θ ∈ [0,T ] fixed, if t ∈ {φ(t +θ)> 0},

W1(t,θ) = liminf
x→+∞

(g(t,x)−a+x)φ(t +θ),

while, if t ∈ {φ(t +θ)< 0},

W2(t,θ) = limsup
x→−∞

(g(t,x)−a−x)φ(t +θ).

Consequently, (8) implies (12). Similarly, (9) implies (13).

Remark 2.5. We only mention that another result in [8], imposing little further
restrictions on the form of F(t,u), improves the Landesman-Lazer conditions
(8), (9). Precisely, in [8, Theorem 6.1], it is assumed

F(t,u) = γ̂(t,u)∇H(u)+ r(t,u),

with 0 < α ≤ γ̂(t,u) ≤ β , being αH and βH ∈P two “consecutive” resonant
Hamiltonians (like H1 and H2 in Theorem 2.1). In this case, it is possible to
take into account also the radial component of solutions, yielding more accurate
existence conditions which give rise to a “multiple choice” situation for every
θ ∈ [0,T ]. This result generalizes an interesting theorem proved by Frederick-
son and Lazer in [9].
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