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ON TWISTED ORDERED MONOID RINGS OVER
QUASI-BAER RINGS

A. AGEEB - A. M. HASSANEIN - R. M. SALEM

In this paper we show that if M is an Ordered monoid then the twisted
monoid ring R” M is (left principally) quasi-Baer if and only if R is (left
principally) quasi-Baer. Also if R is (left principally) quasi-Baer and G is
an ordered group acting on R we give a necessary and sufficient condition
for the crossed product R * G to be (left principally) quasi-Baer.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity. If S is a
subset of R, Ig(S) denotes the left annihilator of S in R. A ring R is called (left
principally) quasi-Baer if the left annihilator of every (principal) left ideal of R
is generated as a left ideal by an idempotent. A Baer ring is a ring in which the
left annihilator of every subset is generated as a left ideal by an idempotent. A
ring R is called left (right) P.P.-ring if the left (right) annihilator of an element
of R is generated by an idempotent. Also a ring R is called P.P.-ring if it is both
left and right P.P.-ring.

Baer rings were introduced by Kaplanasky [8] to abstract various properties
of rings of operators of Hilbert space. Clark [6] introduced the quasi-Baer rings
and characterized a finite dimensional quasi-Baer ring over an algebraically
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closed field as a twisted matrix units semigroup algebra. Further work in quasi-
Baer rings appeared in [2], [3], [4] and [10]. Recently, Birkenmeier, Kim and
Park [5] introduced principally quasi-Baer rings and used them to generalize
many results on reduced P.P.-rings. In [5], it was proved that a ring R is a (left
principally) quasi-Baer ring if and only if the polynomial ring R[x] is a (left
principally) quasi-Baer ring. In [11] Hirano generalized this result to ordered
monoid rings. This paper is devoted to extend this result to twisted monoid
rings.

Let R be a ring and M be a monoid then the twisted monoid ring RT M is
an R-algebra whose elements are finite sum of the form Y. rx, r, ER, xeM
with equality and addition defined component wise and multiplication defined
distributively according to the relation (rx)(ryy) = rery f(x,¥)(xy), where f :
M x M — U(R) is called a twisted function and U (R) denotes the set of all units
of R. Moreover, f must satisfy the following:

f2) f(x,yz2) = f(x,y)f(xy,z), f(1,x)=f(x,1)=1 forevery x € M.

Let G be a group acting on R as an automorphism group of R. We denote by
ré the image of » € Runder g € G.
By a crossed product Ry G we understand the set of finite sums,

R+;G= {ngg |rs €R, g € G}
with a twisted function (factor system) f : G x G — U (R) which satisfies
(i) f(h,k)f(g,hk) = f(g,h)f(gh,k) forevery g,h,k € G,
(i) f(1,¢)=f(g,1)=1 forallgeG.

Equality and addition are defined component wise and for g,h € G; r € R
we have

g-h=f(gh)gh; gr=rog.

For simplicity we write R * G to denote the crossed product. If the action of
G is trivial then R x G is called a twisted group ring.

Note that R may be considered as a left (R * G)-module as follows: for any
a€Randany Y reg € (R+xG) define (Y, r,g)a= Y r,a® € R. Now we can

geG geG geG

define the following

A ring R is called a G-quasi-Baer ring if for any (R % G)-submodule I of R
the left annihilator of 7 in R is generated as a left ideal by an idempotent.

A ring R is called a G-left principally quasi-Baer ring if for an element

a € R, the left annihilator of (R*G)a = Y. Ra?® is generated as a left ideal by
geiG
an idempotent.
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In [5] it was shown that if R is a left principally quasi-Baer ring, then the
left annihilator of any finitely generated left ideal is generated as a left ideal by
an idempotent.

Note also that if R is a G-left principally quasi-Baer ring, then for any finitely
many elements aj,ay,...,a, € R, the left annihilator of (R*G)a;+ (R*G)ay +
--++(R*G)ay, is also generated by an idempotent. We frequently use these facts
without mention.

When G is a cyclic group generated by g, a G-(left principally) quasi-Baer
ring is simply called a g-(left principally) quasi-Baer ring.

Let M be a multiplicative monoid and < be an order relation defind on M.
The order relation < is said to be compatible if a < b in M implies am < bm for
all m € M. Recall that the order relation < strictly ordered monoid if a < b in
M implies am < bm for all m € M. Hence fourth, we assume that the relation is
a strictly totally order relation.

2. RESULTS

Lemma 2.1. Let R be a left principally quasi-Baer ring, M be an ordered
monoid and RT M be the twisted monoid ring. Suppose that

(apxo +ayx; +--- —i—amxm)RTM(boyo +biy1+...+bpyy,) =0

with a;,b; € R, and that x;,y; € M satisfies x; < xjand y; <y; if i < j.
Then a;Rb; =0 for all i, j.

Proof. Let c be an arbitrary element of R. Then we have the following equation:

(aoxo +aixi + -+ +amxm)(clu) (boyo +b1y1 + -+ +buyn) =0

aocf(xo, 1)bof (x0,¥0)%0y0 + - - -
A{amef (Xm, 1)bn3f (X, Yn—3)XmYn—3
Fam-1¢f (Xm—1, 1)bnaf (Xm—1,Yn—2)Xm—1Yn—2
Fam—o¢f (Xm—2, 1)bp_1 f (Xm—2,Yn—1)Xm—2Yn—1
Fam—3cf (Xm—3, D)buf (Xm—3,Yn)Xm—3Yn}
Hamef Xm, V)ba—2f (Xms Yn—2)XmYn—2 (1)
Fam-1¢f (Xm—1, 1)1 f (Xm—1,Yn-1)Xm—1Yn—1
Fam—2cf (Xm—2, D)bpf (Xm—2,Yn)Xm—2Yn}
Hamef (m, V)bp—1f (Xmy Yn—1)XmYn—1
Fam—1cf (Xm—1,1)bnf (Xm—1,Yn)Xm—1Yn}
Aamef (X, 1)buf (Xms Yn)XmYn = 0
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Since x,,y, is the element of highest order in x;y;’s, its coefficient equals
zero, that is amcf (X, 1)byf (Xm,yn) = 0 so amcf(xm,1)b, = 0. Hence a,, €
IR(Rf (X, 1)b,) = Ig(Rby). Since R is left principally quasi-Baer, then we have
Ig(Rb,) = Re, for some idempotent ¢,. Replacing c by ce, in the Equation (1)
we obtain

0 = agcen f(xo, 1)bo f (x0,Y0)x0y0 + - -
Hameenf (X, 1)bn—2f (Xims Yn—2)XmYn—2
Fam-1cenf (Xm—1,1)bp1f (Xm—1,Yn—1)Xm—1Yn—1}
Fameen f (Xm; 1)bn—1f (Xm; Yn—1)Xm¥Yn—1-

Since x,,y,—1 is the element of highest order in {x;y; |1 <i<m,1<j<
13\ {Xm—1Yn;Xmyn}, then ayce, f(xm, 1)by—1f(Xm,yn—1) = 0. Hence we have
amcen f(xXm, 1)b,—1 = 0. Since Re,, is an ideal of R, and ¢, € Re,,, we have e,c €
Rey. So e,c = ey,ce, for any element ¢ € R. Also since a,, € I[g(Rb,) = Rey, then
a, = a,e,. Hence

ame(Xm, l)bn—l = amencf(xm, 1)bn—l
= amencenf(xm, 1)bn—1 = amcenf(xma l)bn—l = 07

therefore a,, € Ig(Rf (X, 1)bp—1) = Ig(Rby—1). So ay, € Ig(Rb, + Rb,—1). Since
R is left principally quasi-Baer, Ig(Rb, + Rb,_1) = Re,—; for some idempotent
en—1 € R. Next, replacing c by ce,—; in the Equation (1), we obtain

amcenflf(xma l)banf(xmayth) =0

in the same way as above. Hence we have a,, € Ig(Rb, + Rb,_1 + Rb,_»). Con-
tinuing this process we obtain a,,Rb;y = 0 for all k =0,1,...,n. Thus we get
(apxo +aixi + ...+ am_1%m—1)RT M(boyo + b1y1 + ... + byy,) = 0. Using induc-
tion on m +n we obtain a;Rb; = 0 for all i, j. O

Lemma 2.2. Let M be an ordered monoid and consider the twisted monoid ring
RTM. Let I be a (principal) left ideal of R'M and let Iy denote the set of all
coefficients of elements of I, then

(i) Iy is a (finitely generated) ideal of R;
(ii) Ig(I) = Ir(D);
(iii) If J is a left ideal of R, then lgry;(J) = lgry (RTM)J).

Proof. (1) The proof is clear.
(i) Let a € Ig(Ip) then al =0 and a € Ig(I). Hence, Ig(Iy) C Ig(I). Conversely,
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leta € lg(I)thena Y, byx= Y abyx =0 and ab, = 0, for each x € M. There-
xeM xeM

fore a € Ig(ly). Hence Ix(I) C Ig(Ip).

(iii) Let J be a left ideal of R, since J C (RTM)J then lgry, ((RTM)J) C lgry (J).
Conversely, let x € Igry,(J) then x((RTM)J) = x((RJ)'M) = x(JTM) = 0. So
x € lgry ((RTM)J) and lgry,(J) C lgrp((RTM)J). Then we can conclude that
Lerps(J) = Ler s (RTM)J). O

Now we will use these lemmas to prove the following theorem.

Theorem 2.3. Let M be an ordered monoid. Then the twisted monoid ring
RT M is a (left principally) quasi-Baer ring if and only if R is a (left principally)
quasi-Baer ring.

Proof. Suppose R is a (left principally) quasi-Baer. Let I be a (principal) left
ideal of RT M and Iy denote the set of all coefficients of elements of /. Since R is
(left principally) quasi-Baer, there exist an idempotent e € R such that Iz(I) =
Ir(Ip) = Re. Now it is sufficient to show that lgry,(I) C (RTM)e. Let @ =

Y awx € lgry(I) then al = (Y, awx) =0, by Lemma 2.1 we get a,ly =0
xXeM xXeM
for all a,. Therefore a, € Ig(ly) which implies that a, = a,e. Consequently

a= Y aex= (Y awx)e € (RTM)e. Hence lgry(I) = (RTM)e and RTM is
xeM xeEM
(left principally) quasi-Baer.

Conversely assume that R” M is a (left principally) quasi-Baer ring. Let I be
a (principal) left ideal of R, then (R” M) is a left ideal of R M. By hypothesis
there exists an idempotent e € R M such that Igry,((RTM)I) = (RTM)e. We
may write e = agly +ajx; +--- +apx, € RTM where a; € R and 1,x1,...,x,
are distinct elements of M. We show that Ig(I) = Rap where ag is an idem-
potent of R. Since lgry (I) = (RTM)e, then (agly + arxi + ... + apx,) = 0
and a;x; € lgry(I) = (R"M)e for each i = 0,1,2,...,n, xo = 1. In particular
apl = (apl)e = (apl)(aplpy+arxi+...+anx,) :a(z)f(l, )1 4apa; f(1,x1)x1 +
e +apanf(1,x,)x,. Since f(1,1) =1 it follows that a(z) = qqp 1is an idem-
potent element of R. Obviously Rag C Ig(I). Now, let a € Ig(I), then al €
Igra(I) = (RTM)e and we get al = (al)e = (al)(aply +ayx; + ... +ayx,) =
aaof(1,1)1 +aay f(1,x1)x1 + ... + aa, f(1,x,)X,. a = aap € Rap. Consequently
Ray = Ig(I) and R is a (left principally) quasi-Baer ring. O

It is well-known that torsion-free groups and free groups are ordered groups
(see [9, Lemma 13.1.6 and 13.2.8], [7, Theorem 3.1 ]). Hence the following
corollary easily follows.

Corollary 2.4. Let M be a submonoid of a free group or a torsion-free group.
Then the twisted monoid ring RT M is a (left principally) quasi-Baer ring if and
only if R is a (left principally) quasi-Baer ring.
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A ring R is called reduced if it has no nonzero nilpotent elements. In a
reduced ring R left and right annihilators coincide for any subset S of R. Hence
if R is a reduced ring, then R is a P.P.-ring (a Baer ring) if and only if R is a left
principally quasi-Baer ring (a quasi-Baer ring). Hence we can deduce that the
following corollary,

Corollary 2.5. Let R be a reduced ring and M be an ordered monoid; then the
twisted monoid ring RTM is a P.P-(Baer) ring if and only if R is a P.P.-(Baer)
ring.

Proof. Let RT M be a reduced P.P.(Baer) ring which is equivalent to RTM is a
left principally quasi-Baer(quasi-Baer) ring. Hence by using Theorem 2.3 R
is a reduced left principally quasi-Baer (quasi-Baer) ring if and only if R is a
reduced P.P.-(Baer) ring. O

Theorem 2.6. Let R be a ring and G be an ordered group acting on R. If R+ G
is a (left principally) quasi-Baer ring then R is a G-(left principally) quasi-Baer
ring.

Proof. Suppose that R G is a (left principally) quasi-Baer ring, and that [ is a
(cyclic) (R * G)-submodule of R. First, we show that I = I¥, for all g € G. Since
I is a R* G-submodule of R, (1g)I C I for every g € G. Hence I8 C I for every
g € G. To prove the other inclusion, let a € I; then for every g € G we have a =r#
for some r € R. Hence r = as” € I, which implies that a € I8, and it follows that
I =18, for all g € G. Now we show that [g([) is generated by an idempotent.
By hypothesis there exists an idempotent e € R * G such that lg.c((R*G)I) =
(R+G)e. We may write e = aplg +aig1 + ... + angn € R* G, where a; € R and
1,g1,...,gn are distinct elements of G. Since e € Ig.g((R* G)I), then (aplg +
aig1+...+aygn)bl =0foreach b € I. Hence apbf(1,1)1g+a1b% f(g1,1)g1 +
.+ anb f(gn,1)gn = 0 for all b € I, which implies that a; € Ig(I) for each i =
1,2,...,n. Therefore a;1 € lg.g(I(R*G)) = lpic((R*G)I) = (R* G)e, for each
i. In particular, agl = (ag1)e = (apl)(aplg +aig1 + - +angn) = a3 f(1,1)1 +
aoar f(1,g1)g1+- - +aoanf(1,8,)gn- S0 a3 = ay is an idempotent element of R.
Obviously Rag C Ig(I). To prove the inverse inclusion, let a € Ig(I), then al €
Iri(I(R+xG)) = (RxG)e. So al = (al)e = (al)(aplg +aig1+ -+ angn) =
aaof(1,1)1 +aa; f(1,g1)g1 + ... +aa,f(1,8,)gn. This implies that a = aay €
Rap. Thus we obtain Rag = Ig(I), and R is a G- (left principally) quasi-Baer
ring. O

The following example shows that there exists a crossed product R * G which
is Quasi-Baer while R is not Quasi-Baer .
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Example 2.7. Consider the ring R = {(a,b) € Z&Z |a=b (mod 2)}. With
the usual operations of component wise addition and multiplication R is clearly
a commutative reduced ring and the only idempotents of R are (0,0), (1,1).
Let G = (g) be an infinite cyclic group and let the action of G be defined
by (a,b)® = (b,a). Now we claim that R * G is Quasi-Baer. To prove this
claim, let / be a non Zero ideal of R * G, hence there exist a non zero ele-
ment x € . Suppose x =Y (a;,b;) g’ and g' < g/ if i < j, letg’ be the smallest

j
element with non zero coefficient (a;,b;). Let y = (1,1) f~'(2k —i,i)g**~" and
Z=(1,1) f1(2k—i+1,i)g**=*1. Hence yx € I and zx € I, clearly the smallest
order with non zero coefficient in both of them is 2k and one of them has the co-
efficient (a;, b;) for the smallest term and the other has (b;,a;). Suppose that 0 #
q =Y (us,vs) g € Ig«c (I), with g/ be the smallest element with non zero coeffi-

N
cient (u;,v;), Hence ¢ (yx) = 0 and g (zx) = 0. The coefficients of the smallest
term in both of them are (u;,v;) (a;,b;) f (g’,8%*) and (u;,v;) (bi,a;) f (g, 8%).
Therefore, we get (uja;,vib;) = (0,0) and (u;b;,v;a;) = (0,0), since (a;,b;) #
(0,0) this means that a; or b; are non zero. Consequently, (#;,v;) = (0,0) which
is a contradiction. Therefore, lg. (I) = {(0,0)} and R* G is a Quasi-Baer.

Conversely, R is not Quasi-Baer ring. For (2,0) € R, we get I (((2,0))) =
{(0,2n)|n € Z}. Consequently, Iz ((2,0)) doesn’t contain any non zero idem-
potent. Hence R is not Quasi-Baer.

Lemma 2.8. Let G be an ordered group acting on R and consider the crossed
product (R G), then

(i) Y. Rb8 is an invariant under the action of elements of G where b € R;
geG

(ii) Iis aleft R+ G - submodule of R if and only if I is an invariant left ideal

of R.
Proof. (i) Let h be an arbitrary element in G; then, (Y, Rb¢)" = ¥ (Rb$)" =
geG geG
Y R = Y Rb®" = ( ¥ RbS)= (Y Rb%). Hence ¥ Rb is an in-
geG geG ¢ =gheG geG geG

variant under the action of elements of G.
(>i1) Let I be a left R x G-submodule of R, then it is clear that / is an abelian group
with addition. We will show that [ is closed under multiplication by elements
of R from the left; let » € R, i € I we have (rlg)i = ri' = ri, but I is a left
R x G-submodule of R then ri € I. Now we will prove that / is invariant. Since
(1gg)i = 1i® € I then I8 C I. Therefore I an invariant left ideal of R.

On the other hand, let I be an invariant left ideal of R, then it is sufficient to
show that [ is closed under multiplication by elements of R x G from the left, let



10 A. AGEEB - A. M. HASSANEIN - R. M. SALEM

Y asg € RxG, then (Y a,8)l = Y agl® C Y a,l CI. Therefore I is a left
geG geG g€G gcG
R * G-submodule of R. O

Remark 2.9. Using Lemma 2.8 (ii) we can deduce that a (left principally) quasi-
Baer ring is a G-(left principally) quasi-Baer ring.

Lemma 2.10. Let R be a G- left principally quasi-Baer ring, G be an ordered
group acting on R and (R * G) be the crossed product. If (apgo+aigi + ...+
am&m)(R* G)(boho + bihy + ...+ byhy,) =0 with a;,b; € R, gi, hj € G satisfying
gi<gjand h; < hjifi< j, then a;( ZGRbf) =0foralli,j.

g€

Proof. Let x be an arbitrary element of R * G and suppose that
(aOgO + aigi +...+ amgm)x(b()ho + blhl +...+ bnhn) =0. (2)

Let c be an arbitrary element of R and g be an arbitrary element of G. Substitute
x= cg,;1 g in (2) and consider the coefficient of the highest order g,,/, in the
gih;’s, i.e. the coefficient of the term

angm(C8m' 8)bultn = amc® f(gms &' 8) (8m&m' &) bultn
= ang’”f(gm8,218)b§f(87hn)ghn,

so we obtain ang’”f(g;mg;llg)bﬁf(g,hn) = 0 then ang”’f(gm,g;llg)bﬁ = 0.

This implies a,Rf (gm,g,, g)bs = auRby = 0, so a,, € Ix( ¥, Rb}). Since I =
geG

( ¥ Rb}) is aleft R * G-submodule of R. By hypothesis we have lz( ¥ Rbj) =
8eG 2cG

Re, for some idempotent e, € R. We show that Re, = Reﬁ, letx € Reﬁ, therefore

*(Y RbS) = aen( Y RbS) = [(aeh (Y RbE)" )"

geG geG geG
=" e, Y (RE) =" e, Y (REE))" = 0" = 0.
geG geG

Hence x € Ig( Y Rbﬁ), and Rez C Re, for each h € G. Now let x € Re,, so,
geG

x = cey = c(e! )" = c(re,)" for some ¢ € R. Hence x = crie = /el € Rel,

then Re, C Reﬁ and we get Re,, = Reﬁ for any h € G. Note that Re, is an ideal

of R. Hence substituting x = ce,,g;,1 g in (2) we have
(a0go+aig1+ -+ + amgm)(cengy' 8) (boho + bihy + -+ + buhy)

g - ! — _
=apc®ey’ (80,8 b8 £ (808 8:10)808 &ho+ - .-
—l—amcgmeﬁmf(gm,g;llg)bf;_lf(g,hn_l)ghn_l =0.
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Thus amcg’”eﬁ'"f(gm,g;g)bﬁfl = 0. But a, = ane, and e,c87e;" = e,cd",

therefore amcs™ f(gm. g 8)b5_| = amc®™es" f(gm. &' g)bS_| = 0. Hence

ame(gm,g;llg)bifl = amRb§71 =0,

so that a,, € Ig('Y, Rb3)NIg( ¥ RbS_,). Continuing this process, we obtain
geG geG

n
am € N [r( L RbY). Therefore (aogo+ aigi + ... + am—18m—1)(R* G)(boho +
i=1 geiG
byhy + ...+ byh,) = 0. Using induction on m + n, we can complete the proof of
this lemma. O

Now we will use the proceding lemmas to prove the following without men-
tion.

Theorem 2.11. Let R be a ring and G be an ordered group acting on R. If R is a
G-(left principally) quasi-Baer ring, then Rx G is a (left principally) quasi-Baer
ring.

Proof. Suppose that R is a G-(left principally) quasi-Baer ring, and that / is a
(principal) left ideal of R* G. Let Iy denote the set of all coefficients of elements
of I then, I is a left ideal of R, hence I is a left (R * G)-submodule of R. But
R is G-(left principally) quasi-Baer then, there exists an idempotent e € R such
that [g(I) = Ig(Ip) = Re then by Lemma 2.10 we deduce that Ig.g(I) = (R*G)e.
Therefore R * G is (left principally) quasi-Baer. O

Corollary 2.12. Let R be a ring such that every ideal of R is a G-invariant
ideal and G be an ordered group acting on R, then R * G is a (left principally)
quasi-Baer ring if and only if R is a G-(left principally) quasi-Baer ring.

Corollary 2.13. (Similar to Corollary 2.5) Let R be a ring and G be an ordered
group acting on R. Then the crossed product R G is a reduced P.P.-( Baer) ring
if and only if R is a reduced G-left principally quasi-Baer (G- quasi-Baer) ring.

Proof. Since R+ G is a reduced P.P.- ( Baer) ring if and only if R* G is left prin-
cipally quasi-Baer (a quasi-Baer) ring which using Corollary 2.12 is equivalent
to say that R is a reduced G-left principally quasi-Baer ( G-quasi-Baer) ring <=
R is a reduced P.P.-( Baer) ring. [l
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