LE MATEMATICHE Vol. LXVI (2011) – Fasc. I, pp. 3–13 doi: 10.4418/2011.66.1.1

ON TWISTED ORDERED MONOID RINGS OVER QUASI-BAER RINGS

A. AGEEB - A. M. HASSANEIN - R. M. SALEM

In this paper we show that if M is an Ordered monoid then the twisted monoid ring $R^T M$ is (left principally) quasi-Baer if and only if R is (left principally) quasi-Baer. Also if R is (left principally) quasi-Baer and G is an ordered group acting on R we give a necessary and sufficient condition for the crossed product R * G to be (left principally) quasi-Baer.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity. If S is a subset of R, $l_R(S)$ denotes the left annihilator of S in R. A ring R is called (*left principally*) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated as a left ideal by an idempotent. A Baer ring is a ring in which the left annihilator of every subset is generated as a left ideal by an idempotent. A ring R is called *left (right) P.P.-ring* if the left (right) annihilator of an element of R is generated by an idempotent. Also a ring R is called *P.P.-ring* if it is both left and right P.P.-ring.

Baer rings were introduced by Kaplanasky [8] to abstract various properties of rings of operators of Hilbert space. Clark [6] introduced the quasi-Baer rings and characterized a finite dimensional quasi-Baer ring over an algebraically

AMS 2010 Subject Classification: 13F05, 16W60.

Keywords: quasi-Baer ring, Twisted monoid ring, Crossed product.

Entrato in redazione: 13 luglio 2009

closed field as a twisted matrix units semigroup algebra. Further work in quasi-Baer rings appeared in [2], [3], [4] and [10]. Recently, Birkenmeier, Kim and Park [5] introduced principally quasi-Baer rings and used them to generalize many results on reduced *P.P.*-rings. In [5], it was proved that a ring *R* is a (left principally) quasi-Baer ring if and only if the polynomial ring R[x] is a (left principally) quasi-Baer ring. In [11] Hirano generalized this result to ordered monoid rings. This paper is devoted to extend this result to twisted monoid rings.

Let *R* be a ring and *M* be a monoid then the *twisted monoid ring* $R^T M$ is an *R-algebra* whose elements are finite sum of the form $\sum r_x x$, $r_x \in R$, $x \in M$ with equality and addition defined component wise and multiplication defined distributively according to the relation $(r_x x)(r_y y) = r_x r_y f(x, y)(xy)$, where f : $M \times M \to U(R)$ is called *a twisted function* and U(R) denotes the set of all units of *R*. Moreover, *f* must satisfy the following:

$$f(y,z)f(x,yz) = f(x,y)f(xy,z), \quad f(1,x) = f(x,1) = 1$$
 for every $x \in M$.

Let *G* be a group acting on *R* as an automorphism group of *R*. We denote by r^g the image of $r \in R$ under $g \in G$.

By a crossed product $R *_f G$ we understand the set of finite sums,

$$R*_f G = \left\{\sum r_g g \mid r_g \in R, \ g \in G\right\}$$

with a *twisted function (factor system)* $f : G \times G \rightarrow U(R)$ which satisfies

- (i) $f^g(h,k)f(g,hk) = f(g,h)f(gh,k)$ for every $g,h,k \in G$,
- (ii) f(1,g) = f(g,1) = 1 for all $g \in G$.

Equality and addition are defined component wise and for $g,h \in G$; $r \in R$ we have

$$g.h = f(g,h)gh;$$
 $gr = r^g g.$

For simplicity we write R * G to denote the crossed product. If the action of *G* is trivial then R * G is called a *twisted group ring*.

Note that *R* may be considered as a left (R * G)-module as follows: for any $a \in R$ and any $\sum_{g \in G} r_g g \in (R * G)$ define $(\sum_{g \in G} r_g g)a = \sum_{g \in G} r_g a^g \in R$. Now we can define the following

A ring *R* is called a *G*-quasi-Baer ring if for any (R * G)-submodule *I* of *R* the left annihilator of *I* in *R* is generated as a left ideal by an idempotent.

A ring *R* is called a *G*-left principally quasi-Baer ring if for an element $a \in R$, the left annihilator of $(R * G)a = \sum_{g \in G} Ra^g$ is generated as a left ideal by an idempotent.

In [5] it was shown that if R is a left principally quasi-Baer ring, then the left annihilator of any finitely generated left ideal is generated as a left ideal by an idempotent.

Note also that if *R* is a *G*-left principally quasi-Baer ring, then for any finitely many elements $a_1, a_2, ..., a_n \in R$, the left annihilator of $(R * G)a_1 + (R * G)a_2 + \cdots + (R * G)a_n$ is also generated by an idempotent. We frequently use these facts without mention.

When G is a cyclic group generated by g, a G-(left principally) quasi-Baer ring is simply called a g-(left principally) quasi-Baer ring.

Let *M* be a multiplicative monoid and \leq be an order relation defind on *M*. The order relation \leq is said to be compatible if $a \leq b$ in *M* implies $am \leq bm$ for all $m \in M$. Recall that the order relation \leq strictly ordered monoid if a < b in *M* implies am < bm for all $m \in M$. Hence fourth, we assume that the relation is a strictly totally order relation.

2. RESULTS

Lemma 2.1. Let R be a left principally quasi-Baer ring, M be an ordered monoid and $R^T M$ be the twisted monoid ring. Suppose that

$$(a_0x_0 + a_1x_1 + \dots + a_mx_m)R^T M(b_0y_0 + b_1y_1 + \dots + b_ny_n) = 0$$

with $a_i, b_j \in R$, and that $x_i, y_j \in M$ satisfies $x_i < x_j$ and $y_i < y_j$ if i < j. Then $a_i R b_j = 0$ for all i, j.

Proof. Let *c* be an arbitrary element of *R*. Then we have the following equation:

$$(a_0x_0 + a_1x_1 + \dots + a_mx_m)(c1_M)(b_0y_0 + b_1y_1 + \dots + b_ny_n) = 0$$

$$a_{0}cf(x_{0},1)b_{0}f(x_{0},y_{0})x_{0}y_{0} + \dots + \{a_{m}cf(x_{m},1)b_{n-3}f(x_{m},y_{n-3})x_{m}y_{n-3} + a_{m-1}cf(x_{m-1},1)b_{n-2}f(x_{m-1},y_{n-2})x_{m-1}y_{n-2} + a_{m-2}cf(x_{m-2},1)b_{n-1}f(x_{m-2},y_{n-1})x_{m-2}y_{n-1} + a_{m-3}cf(x_{m-3},1)b_{n}f(x_{m-3},y_{n})x_{m-3}y_{n}\} + \{a_{m}cf(x_{m},1)b_{n-2}f(x_{m},y_{n-2})x_{m}y_{n-2}$$
(1)
$$+a_{m-1}cf(x_{m-1},1)b_{n-1}f(x_{m-1},y_{n-1})x_{m-1}y_{n-1} + a_{m-2}cf(x_{m-2},1)b_{n}f(x_{m-2},y_{n})x_{m-2}y_{n}\} + \{a_{m}cf(x_{m},1)b_{n-1}f(x_{m},y_{n-1})x_{m}y_{n-1} + a_{m-1}cf(x_{m-1},1)b_{n}f(x_{m-1},y_{n})x_{m-1}y_{n}\} + a_{m}cf(x_{m},1)b_{n}f(x_{m},y_{n})x_{m}y_{n} = 0$$

Since $x_m y_n$ is the element of highest order in $x_i y_j$'s, its coefficient equals zero, that is $a_m cf(x_m, 1)b_n f(x_m, y_n) = 0$ so $a_m cf(x_m, 1)b_n = 0$. Hence $a_m \in l_R(Rf(x_m, 1)b_n) = l_R(Rb_n)$. Since *R* is left principally quasi-Baer, then we have $l_R(Rb_n) = Re_n$ for some idempotent e_n . Replacing *c* by ce_n in the Equation (1) we obtain

$$0 = a_0 ce_n f(x_0, 1) b_0 f(x_0, y_0) x_0 y_0 + \dots + \{a_m ce_n f(x_m, 1) b_{n-2} f(x_m, y_{n-2}) x_m y_{n-2} + a_{m-1} ce_n f(x_{m-1}, 1) b_{n-1} f(x_{m-1}, y_{n-1}) x_{m-1} y_{n-1} \} + a_m ce_n f(x_m, 1) b_{n-1} f(x_m, y_{n-1}) x_m y_{n-1}.$$

Since x_my_{n-1} is the element of highest order in $\{x_iy_j \mid 1 \le i \le m, 1 \le j \le n\} \setminus \{x_{m-1}y_n, x_my_n\}$, then $a_mce_nf(x_m, 1)b_{n-1}f(x_m, y_{n-1}) = 0$. Hence we have $a_mce_nf(x_m, 1)b_{n-1} = 0$. Since Re_n is an ideal of R, and $e_n \in Re_n$, we have $e_nc \in Re_n$. So $e_nc = e_nce_n$ for any element $c \in R$. Also since $a_m \in l_R(Rb_n) = Re_n$, then $a_m = a_me_n$. Hence

$$a_m c f(x_m, 1) b_{n-1} = a_m e_n c f(x_m, 1) b_{n-1}$$

= $a_m e_n c e_n f(x_m, 1) b_{n-1} = a_m c e_n f(x_m, 1) b_{n-1} = 0,$

therefore $a_m \in l_R(Rf(x_m, 1)b_{n-1}) = l_R(Rb_{n-1})$. So $a_m \in l_R(Rb_n + Rb_{n-1})$. Since R is left principally quasi-Baer, $l_R(Rb_n + Rb_{n-1}) = Re_{n-1}$ for some idempotent $e_{n-1} \in R$. Next, replacing c by ce_{n-1} in the Equation (1), we obtain

$$a_m ce_{n-1} f(x_m, 1) b_{n-2} f(x_m, y_{n-2}) = 0$$

in the same way as above. Hence we have $a_m \in l_R(Rb_n + Rb_{n-1} + Rb_{n-2})$. Continuing this process we obtain $a_mRb_k = 0$ for all k = 0, 1, ..., n. Thus we get $(a_0x_0 + a_1x_1 + ... + a_{m-1}x_{m-1})R^TM(b_0y_0 + b_1y_1 + ... + b_ny_n) = 0$. Using induction on m + n we obtain $a_iRb_j = 0$ for all i, j.

Lemma 2.2. Let M be an ordered monoid and consider the twisted monoid ring $R^T M$. Let I be a (principal) left ideal of $R^T M$ and let I_0 denote the set of all coefficients of elements of I, then

- (i) I_0 is a (finitely generated) ideal of R;
- (*ii*) $l_R(I) = l_R(I_0);$
- (iii) If J is a left ideal of R, then $l_{R^TM}(J) = l_{R^TM}((R^TM)J)$.

Proof. (i) The proof is clear.

(ii) Let $a \in l_R(I_0)$ then aI = 0 and $a \in l_R(I)$. Hence, $l_R(I_0) \subset l_R(I)$. Conversely,

let $a \in l_R(I)$ then $a \sum_{x \in M} b_x x = \sum_{x \in M} ab_x x = 0$ and $ab_x = 0$, for each $x \in M$. Therefore $a \in l_R(I_0)$. Hence $l_R(I) \subset l_R(I_0)$. (iii) Let J be a left ideal of R, since $J \subset (R^T M)J$ then $l_{R^T M}((R^T M)J) \subset l_{R^T M}(J)$. Conversely, let $x \in l_{R^T M}(J)$ then $x((R^T M)J) = x((RJ)^T M) = x(J^T M) = 0$. So $x \in l_{R^T M}((R^T M)J)$ and $l_{R^T M}(J) \subset l_{R^T M}((R^T M)J)$. Then we can conclude that $l_{R^T M}(J) = l_{R^T M}((R^T M)J)$.

Now we will use these lemmas to prove the following theorem.

Theorem 2.3. Let M be an ordered monoid. Then the twisted monoid ring $R^T M$ is a (left principally) quasi-Baer ring if and only if R is a (left principally) quasi-Baer ring.

Proof. Suppose *R* is a (left principally) quasi-Baer. Let *I* be a (principal) left ideal of $R^T M$ and I_0 denote the set of all coefficients of elements of *I*. Since *R* is (left principally) quasi-Baer, there exist an idempotent $e \in R$ such that $l_R(I) = l_R(I_0) = Re$. Now it is sufficient to show that $l_{R^T M}(I) \subseteq (R^T M)e$. Let $\alpha = \sum_{x \in M} a_x x \in l_{R^T M}(I)$ then $\alpha I = (\sum_{x \in M} a_x x)I = 0$, by Lemma 2.1 we get $a_x I_0 = 0$ for all a_x . Therefore $a_x \in l_R(I_0)$ which implies that $a_x = a_x e$. Consequently $\alpha = \sum_{x \in M} a_x ex = (\sum_{x \in M} a_x x)e \in (R^T M)e$. Hence $l_{R^T M}(I) = (R^T M)e$ and $R^T M$ is (left principally) quasi-Baer.

Conversely assume that $R^T M$ is a (left principally) quasi-Baer ring. Let I be a (principal) left ideal of R, then $(R^T M)I$ is a left ideal of $R^T M$. By hypothesis there exists an idempotent $e \in R^T M$ such that $l_{R^T M}((R^T M)I) = (R^T M)e$. We may write $e = a_0 1_M + a_1 x_1 + \dots + a_n x_n \in R^T M$ where $a_i \in R$ and $1, x_1, \dots, x_n$ are distinct elements of M. We show that $l_R(I) = Ra_0$ where a_0 is an idempotent of R. Since $l_{R^T M}(I) = (R^T M)e$, then $(a_0 1_M + a_1 x_1 + \dots + a_n x_n)I = 0$ and $a_i x_i \in l_{R^T M}(I) = (R^T M)e$ for each $i = 0, 1, 2, \dots, n, x_0 = 1$. In particular $a_0 1 = (a_0 1)e = (a_0 1)(a_0 1_M + a_1 x_1 + \dots + a_n x_n) = a_0^2 f(1, 1)1 + a_0 a_1 f(1, x_1) x_1 + \dots + a_0 a_n f(1, x_n) x_n$. Since f(1, 1) = 1 it follows that $a_0^2 = a_0$ is an idempotent element of R. Obviously $Ra_0 \subset l_R(I)$. Now, let $a \in l_R(I)$, then $a_1 \in l_{R^T M}(I) = (R^T M)e$ and we get $a_1 = (a_1)e = (a_1)(a_0 1_M + a_1 x_1 + \dots + a_n x_n) = a_0 f(1, 1)1 + aa_1 f(1, x_1) x_1 + \dots + aa_n f(1, x_n) x_n$. $a = aa_0 \in Ra_0$. Consequently $Ra_0 = l_R(I)$ and R is a (left principally) quasi-Baer ring. \Box

It is well-known that torsion-free groups and free groups are ordered groups (see [9, Lemma 13.1.6 and 13.2.8], [7, Theorem 3.1]). Hence the following corollary easily follows.

Corollary 2.4. Let M be a submonoid of a free group or a torsion-free group. Then the twisted monoid ring $R^T M$ is a (left principally) quasi-Baer ring if and only if R is a (left principally) quasi-Baer ring. A ring R is called *reduced* if it has no nonzero nilpotent elements. In a reduced ring R left and right annihilators coincide for any subset S of R. Hence if R is a reduced ring, then R is a P.P.-ring (a Baer ring) if and only if R is a left principally quasi-Baer ring (a quasi-Baer ring). Hence we can deduce that the following corollary,

Corollary 2.5. Let R be a reduced ring and M be an ordered monoid; then the twisted monoid ring $R^T M$ is a P.P.-(Baer) ring if and only if R is a P.P.-(Baer) ring.

Proof. Let $R^T M$ be a reduced P.P.(Baer) ring which is equivalent to $R^T M$ is a left principally quasi-Baer(quasi-Baer) ring. Hence by using Theorem 2.3 *R* is a reduced left principally quasi-Baer (quasi-Baer) ring if and only if *R* is a reduced P.P.-(Baer) ring.

Theorem 2.6. Let R be a ring and G be an ordered group acting on R. If R * G is a (left principally) quasi-Baer ring then R is a G-(left principally) quasi-Baer ring.

Proof. Suppose that R * G is a (left principally) guasi-Baer ring, and that I is a (cyclic) (R * G)-submodule of R. First, we show that $I = I^g$, for all $g \in G$. Since *I* is a R * G-submodule of R, $(1g)I \subset I$ for every $g \in G$. Hence $I^g \subset I$ for every $g \in G$. To prove the other inclusion, let $a \in I$; then for every $g \in G$ we have $a = r^g$ for some $r \in R$. Hence $r = a^{g^{-1}} \in I$, which implies that $a \in I^g$, and it follows that $I = I^g$, for all $g \in G$. Now we show that $l_R(I)$ is generated by an idempotent. By hypothesis there exists an idempotent $e \in R * G$ such that $l_{R*G}((R*G)I) =$ (R * G)e. We may write $e = a_0 1_G + a_1 g_1 + \ldots + a_n g_n \in R * G$, where $a_i \in R$ and $1, g_1, \dots, g_n$ are distinct elements of G. Since $e \in l_{R*G}((R*G)I)$, then $(a_0 1_G + d_0 1_G)$ $a_1g_1 + \ldots + a_ng_n)b_1 = 0$ for each $b \in I$. Hence $a_0b_1f(1,1)_1 + a_1b_1f(g_1,1)g_1 + a_1b_1f(g_1,1)g_1f(g_1,1)g_1 + a_1b_1f(g_1,1)g_1f(g_1,1)g_1g_1 + a_1b_1f($ $\dots + a_n b^{g_n} f(g_n, 1) g_n = 0$ for all $b \in I$, which implies that $a_i \in l_R(I)$ for each i =1,2,...,*n*. Therefore $a_i 1 \in l_{R*G}(I(R*G)) = l_{R*G}((R*G)I) = (R*G)e$, for each *i*. In particular, $a_0 1 = (a_0 1)e = (a_0 1)(a_0 1_G + a_1 g_1 + \dots + a_n g_n) = a_0^2 f(1, 1)1 + a_0 g_1 + \dots + a_n g_n$ $a_0a_1f(1,g_1)g_1 + \cdots + a_0a_nf(1,g_n)g_n$. So $a_0^2 = a_0$ is an idempotent element of R. Obviously $Ra_0 \subset l_R(I)$. To prove the inverse inclusion, let $a \in l_R(I)$, then $a_1 \in I_R(I)$. $l_{R*G}(I(R*G)) = (R*G)e$. So $a1 = (a1)e = (a1)(a_01_G + a_1g_1 + \dots + a_ng_n) =$ $aa_0f(1,1)1 + aa_1f(1,g_1)g_1 + ... + aa_nf(1,g_n)g_n$. This implies that $a = aa_0 \in aa_0$ Ra_0 . Thus we obtain $Ra_0 = l_R(I)$, and R is a G- (left principally) quasi-Baer ring.

The following example shows that there exists a crossed product R * G which is Quasi-Baer while R is not Quasi-Baer.

Example 2.7. Consider the ring $R = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b \pmod{2}\}$. With the usual operations of component wise addition and multiplication R is clearly a commutative reduced ring and the only idempotents of R are (0,0), (1,1). Let $G = \langle g \rangle$ be an infinite cyclic group and let the action of G be defined by $(a,b)^g = (b,a)$. Now we claim that R * G is Quasi-Baer. To prove this claim, let I be a non Zero ideal of R * G, hence there exist a non zero element $x \in I$. Suppose $x = \sum_{i} (a_j, b_j) g^j$ and $g^i < g^j$ if i < j, let g^i be the smallest element with non zero coefficient (a_i, b_i) . Let $y = (1, 1) f^{-1} (2k - i, i) g^{2k-i}$ and $Z = (1,1) f^{-1}(2k-i+1,i)g^{2k-i+1}$. Hence $yx \in I$ and $zx \in I$, clearly the smallest order with non zero coefficient in both of them is 2k and one of them has the coefficient (a_i, b_i) for the smallest term and the other has (b_i, a_i) . Suppose that $0 \neq i$ $q = \sum (u_s, v_s) g^s \in l_{R*G}(I)$, with g^j be the smallest element with non zero coefficient (u_j, v_j) , Hence q(yx) = 0 and q(zx) = 0. The coefficients of the smallest term in both of them are $(u_i, v_i)(a_i, b_i) f(g^j, g^{2k})$ and $(u_i, v_i)(b_i, a_i) f(g^j, g^{2k})$. Therefore, we get $(u_i a_i, v_i b_i) = (0, 0)$ and $(u_i b_i, v_i a_i) = (0, 0)$, since $(a_i, b_i) \neq 0$ (0,0) this means that a_i or b_i are non zero. Consequently, $(u_i, v_i) = (0,0)$ which

is a contradiction. Therefore, $l_{R*G}(I) = \{(0,0)\}$ and R*G is a Quasi-Baer.

Conversely, *R* is not Quasi-Baer ring. For $(2,0) \in R$, we get $l_R(\langle (2,0) \rangle) = \{(0,2n) | n \in \mathbb{Z}\}$. Consequently, $l_R((2,0))$ doesn't contain any non zero idempotent. Hence *R* is not Quasi-Baer.

Lemma 2.8. Let G be an ordered group acting on R and consider the crossed product (R * G), then

- (i) $\sum_{g \in G} Rb^g$ is an invariant under the action of elements of G where $b \in R$;
- (ii) I is a left R * G submodule of R if and only if I is an invariant left ideal of R.

Proof. (i) Let *h* be an arbitrary element in *G*; then, $(\sum_{g \in G} Rb^g)^h = \sum_{g \in G} (Rb^g)^h = \sum_{g \in G} Rb^{gh} = (\sum_{g'=gh\in G} Rb^{g'}) = (\sum_{g \in G} Rb^g)$. Hence $\sum_{g \in G} Rb^g$ is an invariant under the action of elements of *G*.

(ii) Let *I* be a left R * G-submodule of *R*, then it is clear that *I* is an abelian group with addition. We will show that *I* is closed under multiplication by elements of *R* from the left; let $r \in R$, $i \in I$ we have $(r1_G)i = ri^1 = ri$, but *I* is a left R * G-submodule of *R* then $ri \in I$. Now we will prove that *I* is invariant. Since $(1_Rg)i = 1i^g \in I$ then $I^g \subseteq I$. Therefore *I* an invariant left ideal of *R*.

On the other hand, let *I* be an invariant left ideal of *R*, then it is sufficient to show that *I* is closed under multiplication by elements of R * G from the left, let

 $\sum_{g \in G} a_g g \in R * G$, then $(\sum_{g \in G} a_g g)I = \sum_{g \in G} a_g I^g \subset \sum_{g \in G} a_g I \subset I$. Therefore *I* is a left R * G-submodule of R.

Remark 2.9. Using Lemma 2.8 (ii) we can deduce that a (left principally) quasi-Baer ring is a G-(left principally) quasi-Baer ring.

Lemma 2.10. Let R be a G- left principally quasi-Baer ring, G be an ordered group acting on R and (R * G) be the crossed product. If $(a_0g_0 + a_1g_1 + ... +$ $a_m g_m)(R * G)(b_0 h_0 + b_1 h_1 + \dots + b_n h_n) = 0$ with $a_i, b_j \in R, g_i, h_j \in G$ satisfying $g_i < g_j$ and $h_i < h_j$ if i < j, then $a_i(\sum_{g \in G} Rb_j^g) = 0$ for all i, j.

Proof. Let x be an arbitrary element of R * G and suppose that

$$(a_0g_0 + a_1g_1 + \dots + a_mg_m)x(b_0h_0 + b_1h_1 + \dots + b_nh_n) = 0.$$
 (2)

Let c be an arbitrary element of R and g be an arbitrary element of G. Substitute $x = cg_m^{-1}g$ in (2) and consider the coefficient of the highest order $g_m h_n$ in the $g_i h_i$'s, i.e. the coefficient of the term

$$a_m g_m (cg_m^{-1}g) b_n h_n = a_m c^{g_m} f(g_m, g_m^{-1}g) (g_m g_m^{-1}g) b_n h_n$$

= $a_m c^{g_m} f(g_m, g_m^{-1}g) b_n^g f(g, h_n) gh_n,$

so we obtain $a_m c^{g_m} f(g_m, g_m^{-1}g) b_n^g f(g, h_n) = 0$ then $a_m c^{g_m} f(g_m, g_m^{-1}g) b_n^g = 0$. This implies $a_m R f(g_m, g_m^{-1}g) b_n^g = a_m R b_n^g = 0$, so $a_m \in l_R(\sum_{g \in G} R b_n^g)$. Since $I = (\sum_{g \in G} R b_n^g)$ is a left R * G-submodule of R. By hypothesis we have $l_R(\sum_{g \in G} R b_n^g) = 0$.

 Re_n for some idempotent $e_n \in R$. We show that $Re_n = Re_n^h$, let $x \in Re_n^h$, therefore

$$x(\sum_{g \in G} Rb_n^g) = ae_n^h(\sum_{g \in G} Rb_n^g) = [(ae_n^h(\sum_{g \in G} Rb_n^g))^{h^{-1}}]^h$$
$$= [a^{h^{-1}}e_n \sum_{g \in G} (Rb_n^g)^{h^{-1}}]^h = [a^{h^{-1}}e_n \sum_{g \in G} (Rb_n^g)]^h = 0^h = 0.$$

Hence $x \in l_R(\sum_{g \in G} Rb_n^g)$, and $Re_n^h \subset Re_n$ for each $h \in G$. Now let $x \in Re_n$ so, $x = ce_n = c(e_n^{h^{-1}})^h = c(re_n)^h$ for some $c \in R$. Hence $x = cr^h e_n^h = c'e_n^h \in Re_n^h$, then $Re_n \subset Re_n^h$ and we get $Re_n = Re_n^h$ for any $h \in G$. Note that Re_n is an ideal of *R*. Hence substituting $x = ce_n g_m^{-1} g$ in (2) we have

$$(a_0g_0 + a_1g_1 + \dots + a_mg_m)(ce_ng_m^{-1}g)(b_0h_0 + b_1h_1 + \dots + b_nh_n)$$

= $a_0c^{g_0}e_n^{g_0}f(g_0, g_m^{-1}g)b_0^{g_0g_m^{-1}g}f(g_0g_m^{-1}g, h_0)g_0g_m^{-1}gh_0 + \dots$
+ $a_mc^{g_m}e_n^{g_m}f(g_m, g_m^{-1}g)b_{n-1}^gf(g, h_{n-1})gh_{n-1} = 0.$

Thus $a_m c^{gm} e_n^{g_m} f(g_m, g_m^{-1}g) b_{n-1}^g = 0$. But $a_m = a_m e_n$ and $e_n c^{g_m} e_n^{g_m} = e_n c^{g_m}$, therefore $a_m c^{gm} f(g_m, g_m^{-1}g) b_{n-1}^g = a_m c^{gm} e_n^{g_m} f(g_m, g_m^{-1}g) b_{n-1}^g = 0$. Hence

$$a_m R f(g_m, g_m^{-1}g) b_{n-1}^g = a_m R b_{n-1}^g = 0,$$

so that $a_m \in l_R(\sum_{g \in G} Rb_n^g) \cap l_R(\sum_{g \in G} Rb_{n-1}^g)$. Continuing this process, we obtain $a_m \in \bigcap_{i=1}^n l_R(\sum_{g \in G} Rb_i^g)$. Therefore $(a_0g_0 + a_1g_1 + \ldots + a_{m-1}g_{m-1})(R * G)(b_0h_0 + b_1h_1 + \ldots + b_nh_n) = 0$. Using induction on m + n, we can complete the proof of this lemma.

Now we will use the proceeding lemmas to prove the following without mention.

Theorem 2.11. Let R be a ring and G be an ordered group acting on R. If R is a G-(left principally) quasi-Baer ring, then R * G is a (left principally) quasi-Baer ring.

Proof. Suppose that *R* is a *G*-(left principally) quasi-Baer ring, and that *I* is a (principal) left ideal of R * G. Let I_0 denote the set of all coefficients of elements of *I* then, I_0 is a left ideal of *R*, hence I_0 is a left (R * G)-submodule of *R*. But *R* is *G*-(left principally) quasi-Baer then, there exists an idempotent $e \in R$ such that $l_R(I) = l_R(I_0) = Re$ then by Lemma 2.10 we deduce that $l_{R*G}(I) = (R*G)e$. Therefore R * G is (left principally) quasi-Baer.

Corollary 2.12. Let R be a ring such that every ideal of R is a G-invariant ideal and G be an ordered group acting on R, then R * G is a (left principally) quasi-Baer ring if and only if R is a G-(left principally) quasi-Baer ring.

Corollary 2.13. (Similar to Corollary 2.5) Let R be a ring and G be an ordered group acting on R. Then the crossed product R * G is a reduced P.P.-(Baer) ring if and only if R is a reduced G-left principally quasi-Baer (G- quasi-Baer) ring.

Proof. Since R * G is a reduced P.P.- (Baer) ring if and only if R * G is left principally quasi-Baer (a quasi-Baer) ring which using Corollary 2.12 is equivalent to say that R is a reduced G-left principally quasi-Baer (G-quasi-Baer) ring \iff R is a reduced P.P.-(Baer) ring.

3. Acknowledgements

We would like to express our deepest gratitude to Professor M. H. Fahmy for his sincere help and valuable remarks during the preparation of this paper.

REFERENCES

- [1] E. P. Armendariz, A note on extension of Baer and P.P.-rings, Australian Math. soc. 18 (1974), 470–473.
- [2] G.F. Birkenmeier, *Baer rings and quasi continuous rings have a MDSL*, Pacific J. Math 97 (1981), 283–292.
- [3] G.F. Birkenmeier, *Decompositions of Baer-like rings*, Acta Math. Hung. 59 (1992), 319–326.
- [4] A. M. Hassanein R. M. Salem M. Farahat, *Quasi Baer and Quasi Baer * of Hurwitz series rings*, Proc. of Math. & Phys. of Egypt (2006).
- [5] G. F. Birkenmeier J. Y. Kim J. K. Park, *Principally quasi-Baer rings*, Comm. in Alg. 29 (2) (2001), 639–660.
- [6] W. E. Clark, *Twisted matrix units semi group algebras*, Duke Math. J. 34 (1967), 417–424.
- [7] R. Gilmer, *Commutative Semigroup Rings*, The University of Chicago Press, 1984.
- [8] I. Kaplansky, *Rings of Operators*, Math Lecture Notes Series, Benjamin, New York, 1965.
- [9] D. S. Passman, *The Algebraic Structure of Group Rings*, John Wiley & Sons Ltd., 1977.
- [10] P. Pollingher A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127–138.
- [11] Y. Hirano, On ordered monoid rings over a quasi-Baer ring, Comm. in Alg. 29 (5) (2001), 2089–2095.

A. AGEEB Math. Dept. Fac. of Sci. Al-Azhar University Nasr city (11884), Cairo, Egypt. e-mail: Ahmadageb@yahoo.com

A. M. HASSANEIN Math. Dept. Fac. of Sci. Al-Azhar University Nasr city (11884), Cairo, Egypt. e-mail: mhassanein_05@yahoo.com

R. M. SALEM Math. Dept. Fac. of Sci. Al-Azhar University Nasr city (11884), Cairo, Egypt. e-mail: rsalem_02@hotmail.com