LE MATEMATICHE Vol. LXV (2010) – Fasc. I, pp. 73–82 doi: 10.4418/2010.65.1.5

POLYNOMIALS EXPANSIONS FOR SOLUTION OF WAVE EQUATION IN QUANTUM CALCULUS

AKRAM NEMRI - AHMED FITOUHI

In this paper, using the q^2 -Laplace transform early introduced by Abdi [1], we study *q*-Wave polynomials related with the *q*-difference operator $\Delta_{q,x}$. We show in particular that they are linked to the *q*-little Jacobi polynomials $p_n(x; \alpha, \beta \mid q^2)$.

1. Introduction and preliminaries

In a recent paper [6], the authors have shown that the solutions of certain q-elliptic problem can be expressed in terms of solutions of a parabolic problem by means of the inverse q^2 -Laplace transform.

In this paper, our interest is to obtain series representations of solutions of a *q*-Wave problem. The initial data in these cases is taken to be analytic, and the representations sets of polynomials involve the *q*-Laguerre polynomials and *q*-little Jacobi polynomials. These polynomials are obtainable from the *q*-Heat polynomials studied by A. Fitouhi and F. Bouzeffour [3] by the use of the inverse q^2 -Laplace transform. We also study the series representations of solutions of the *q*-Wave problem concerning the *q*-difference operator $\Delta_{q,x}$.

Throughout this paper, we fix $q \in]0,1[$ and suppose that $\log(1-q^2)/\log q^2 \in \mathbb{N}$. We recall some usual notions and notations used in the *q*-theory.

Entrato in redazione: 9 novembre 2009

AMS 2000 Subject Classification: 33D60, 26D15, 33D05, 33D15, 33D90. Keywords: Quantum calculus, Wave polynomial, *q*-analysis, *q*-Integral Transform.

The q-shifted factorials are defined by

$$(a;q)_0 = 1, \quad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k)$$
(1)

and more generally:

$$(a_1, \cdots, a_r; q)_n = \prod_{k=1}^r (a_k; q)_n.$$
 (2)

A basic hypergeometric series is

$${}_{r}\varphi_{s}(a_{1},\cdots,a_{r};b_{1},\cdots,b_{s};q,x) = \sum_{n=0}^{\infty} \frac{(a_{1},\cdots,a_{r};q)_{n}}{(b_{1},\cdots,b_{s};q)_{n}(q;q)_{n}} [(-1)^{n}q^{\frac{n(n-1)}{2}}]^{1+s-r}x^{n}.$$

A function f is said to be q-regular at zero [2] if $\lim_{n\to\infty} f(xq^n) = f(0)$ exists and does not depend of x. The q-derivative $D_q f$ [9] of a function f is defined by:

$$D_{q,x}f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \quad x \neq 0.$$
(3)

The q-derivative at zero [2] is defined by

$$D_{q,x}f(0) = \lim_{n \to +\infty} \frac{f(xq^n) - f(0)}{xq^n},$$
(4)

where the limit exists and independent of *x*.

For $n \in \mathbb{N}$,

$$D_{q,x}^{n}f(x) = \frac{(-1)^{n}}{x^{n}(1-q)^{n}} \sum_{k=0}^{n} (-1)^{k} \frac{(q;q)_{n}}{(q;q)_{n-k}(q;q)_{k}} q^{-(n-k)(n-k-1)/2} f(q^{n-k}x)$$
(5)

The q-analogue of $(a+b)^n$ is a non commutative term $(a+b)^n_q$ given by

$$(a+b)_{q}^{n} = \begin{cases} a^{n}(-\frac{b}{a};q)_{n}, & a \neq 0\\ q^{n(n-1)/2}b^{n}, & a = 0. \end{cases}$$
(6)

It is clear that $(a+b)_q^n$ and $(b+a)_q^n$ are not always the same.

Some q-functional spaces will be used to establish our result. We begin by putting

$$\mathbb{R}_{q} = \{ \pm q^{k}, k \in \mathbb{Z} \} \cup \{ 0 \}, \quad \mathbb{R}_{q,+} = \{ +q^{k}, k \in \mathbb{Z} \}$$
(7)

and we define $\mathscr{E}_{q,*}(\mathbb{R}_q)$ the space of even functions infinitely *q*-differentiable at zero.

We also denote

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [n]_q! = \frac{(q;q)_n}{(1 - q)^n}.$$
(8)

The q-shift operators are

$$(\Lambda_{q,x}f)(x) = f(qx), \qquad (\Lambda_{q,x}^{-1}f)(x) = \Lambda_{q^{-1},x}f(x).$$
 (9)

We consider the q-difference operator

$$\Delta_{q,x} = \Lambda_{q,x}^{-1} D_{q,x}^2. \tag{10}$$

Koornwinder and Swarttouw introduced *q*-trigonometric function denoted in [10] by $\cos(x;q^2)$ and $\sin(x;q^2)$, we have in particular:

$$\cos(x;q^2) = {}_1\varphi_1(0,q,q^2;(1-q)^2x^2) = \sum_{n=0}^{\infty} (-1)^n b_n(x;q^2)$$
(11)

where we have put

$$b_n(x;q^2) = b_n(1;q^2)x^{2n} = q^{n(n-1)}\frac{(1-q)^{2n}}{(q;q)_{2n}}x^{2n}.$$
(12)

More generally the normalized q-Bessel function [4] is given by

$$j_{\alpha}(x;q^2) = \Gamma_{q^2}(\alpha+1)q^{n(n-1)}\frac{q^{\alpha}(1+q)^{\alpha}}{x^{\alpha}}J_{\alpha}((1-q)x;q^2)$$
(13)

$$= \sum_{n=0}^{\infty} (-1)^n b_{n,\alpha}(x,q^2)$$
(14)

where $J_{\alpha}(x;q^2)$ is the Hahn Exton *q*-Bessel function [12] and

$$b_{n,\alpha}(x,q^2) = b_{n,\alpha}(1,q^2)x^{2n} = \frac{\Gamma_{q^2}(\alpha+1)q^{n(n-1)}}{(1+q)^{2n}\Gamma_{q^2}(n+1)\Gamma_{q^2}(\alpha+n+1)}x^{2n}.$$
 (15)

The q- j_{α} Bessel function $j_{\alpha}(x;q^2)$ is entire function and tends to the normalized j_{α} Bessel function as $q \longrightarrow 1^-$.

One can see, after simple computation, that

$$j_{-\frac{1}{2}}(x;q^2) = \cos(x;q^2),$$
 (16)

$$j_{\frac{1}{2}}(x;q^2) = \frac{\sin(x;q^2)}{x}.$$
 (17)

The q^2 -Jackson integral from 0 to a and from 0 to ∞ are respectively defined by

$$\int_0^a f(x)d_{q^2}x = (1-q^2)a\sum_{n=0}^\infty f(aq^{2n})q^{2n}, \ \int_0^\infty f(x)d_{q^2}x = (1-q^2)\sum_{-\infty}^{+\infty} f(q^{2n})q^{2n}.$$

Note that for $n \in \mathbb{Z}$ and $a \in \mathbb{R}_q$, we have

$$\int_0^\infty f(q^{2n}x)d_{q^2}x = \frac{1}{q^{2n}}\int_0^\infty f(x)d_{q^2}x, \quad \int_0^a f(q^{2n}x)d_{q^2}x = \frac{1}{q^{2n}}\int_0^{aq^{2n}} f(x)d_{q^2}x.$$
(18)

The q^2 -integration by parts is given for suitable function f and g regular at zero by:

$$\int_{a}^{b} f(x) D_{q^{2}, x} g(x) d_{q^{2}} x = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f(q^{2}x) D_{q^{2}, x} g(x) d_{q^{2}} x.$$
(19)

The improper integral is defined in the following way (see [10]; [11])

$$\int_{0}^{\infty/A} f(x) d_{q^2} x = (1 - q^2) \sum_{-\infty}^{+\infty} f\left(\frac{q^{2n}}{A}\right) \frac{q^{2n}}{A}, \quad A \neq 0.$$
(20)

We remark that, for $n \in \mathbb{Z}$, we have

$$\int_0^{\infty/q^{2n}} f(x)d_{q^2}x = \int_0^{\infty} f(x)d_{q^2}x.$$
 (21)

The q^2 -analogue of the exponential function [7] are given by

$$E_{q^2}(x) = {}_0\varphi_0(-,-;q^2,-(1-q^2)x) = \sum_{n=0}^{\infty} q^{n(n-1)} \frac{(1-q^2)^n}{(q^2;q^2)_n} x^n \quad (22)$$

= $(-(1-q^2)x;q^2)_{\infty}$, for $x \in \mathbb{C}$

and

$$e_{q^{2}}(x) = {}_{1}\phi_{0}(0, -; q^{2}, (1-q^{2})x) = \sum_{n=0}^{\infty} \frac{(1-q^{2})^{n}}{(q^{2}; q^{2})_{n}} x^{n}$$
(23)
= $\frac{1}{((1-q^{2})x; q^{2})_{\infty}}, \text{ for } |x| < \frac{1}{1-q^{2}}.$

They satisfy

$$e_{q^2}(x) \cdot E_{q^2}(-x) = 1, \quad D_{q^2, x} e_{q^2}(x) = e_{q^2}(x), \quad D_{q^2, x} E_{q^2}(x) = E_{q^2}(q^2 x).$$
 (24)

The little q-Jacobi polynomials [7] is defined by

$$p_{n}(x;\alpha,\beta \mid q) = \frac{q^{(n+\alpha)n}(q^{-n-\alpha};q)_{n}}{(q^{n+\alpha+\beta+1};q)_{n}} {}_{2}\varphi_{1}(q^{-n},q^{n+\alpha+\beta+1};q^{\alpha+1};q,qx) \quad (25)$$

$$= \frac{q^{(n+\alpha)n}(q^{-n-\alpha};q)_{n}}{(q^{n+\alpha+\beta+1};q)_{n}} \sum_{k=0}^{n} \frac{(q^{-n};q)_{k}(q^{n+\alpha+\beta+1};q)_{k}}{(q^{\alpha+1};q)_{k}} \frac{q^{k}x^{k}}{(q;q)_{k}}.$$

Jackson [8] defined a q^2 -analogue of the Gamma function by

$$\Gamma_{q^2}(x) = \frac{(q^2; q^2)_{\infty}}{(q^{2x}; q^2)_{\infty}} (1 - q^2)^{1 - x}.$$
(26)

Abdi in [1], introduced the q^2 -Laplace transform by

$$\varphi(s) = {}_{q^2} \mathscr{L}_s \{f(t)\}_{t \to s}$$
(27)

$$= \int_{0}^{1/(1-q^2)s} E_{q^2}(-q^2st)f(t)d_{q^2}t$$
(28)

$$= \int_0^{\infty/(1-q^2)s} E_{q^2}(-q^2st)f(t)d_{q^2}t.$$
⁽²⁹⁾

Moreover, since $\log(1-q^2)/\log(q^2) \in \mathbb{N}$ and $s \in \mathbb{R}_{q,+}$, we obtain from (21) that the following q^2 -integral representations hold:

$$\varphi(s) = {}_{q^2} \mathscr{L}_s \{ f(t) \}_{t \to s} = \int_0^{\infty/s} E_{q^2}(-q^2 st) f(t) d_{q^2} t = \int_0^\infty E_{q^2}(-q^2 st) f(t) d_{q^2} t$$
(30)

and (see [5] Theorem 1)

$$\Gamma_{q^2}(s) = \int_0^{+\infty} t^{s-1} E_{q^2}(-q^2 t) d_{q^2} t.$$
(31)

In [6], we have defined the *q*-Wave polynomials associated with the *q*-difference operator $\Delta_{q,x}$ by defining $w_{1,2n}$ and $w_{2,2n}$ given, for x, t in \mathbb{R} , by:

$$\begin{cases} w_{1,2n}(x,t;q^2) = [2n]_q! \sum_{k=0}^n q^{k^2} b_{n-k}(x;q^2) \frac{t^{2k}}{[2k]_q!} \\ w_{2,2n}(x,t;q^2) = [2n]_q! \sum_{k=0}^n q^{k^2} b_{n-k}(x;q^2) \frac{t^{2k+1}}{[2k+1]_q!}. \end{cases}$$
(32)

wich can be expressed in term of *q*-little Jacobi polynomial $p_n(x; \alpha, \beta \mid q^2)$ [6] as follows

Proposition 1.1. *For x, t in* \mathbb{R}_q *we have:*

$$w_{1,2n}(x,t;q^2) = (-1)^n q^{-n(n-1)}(q^2;q^2)_n t^{2n} p_n(q^{2n}x^2/q^2t^2;-1/2,-2n \mid q^2)$$

$$w_{2,2n}(x,t;q^2) = (-1)^n q^{-n(n+1)}(q^2;q^2)_n t^{2n+1} p_n(q^{2n}x^2/t^2;-1/2,-2n-1 \mid q^2).$$

Proposition 1.2. *For x, t in* \mathbb{R} *we have:*

$$|w_{1,2n}(x,t;q^{2})| \leq q^{-n^{2}} \frac{[2n]_{q}!}{2} [(x+q^{n}t)_{q}^{2n} + (x-q^{n}t)_{q}^{2n}]$$

$$|w_{2,2n}(x,t;q^{2})| \leq q^{-n^{2}} \frac{[2n]_{q}!}{2} t [(x+q^{n}t)_{q}^{2n} + (x-q^{n}t)_{q}^{2n}]$$

where $(a+b)_q^n$ is given by (6).

Proof. Owing to the relation

$$(q^{-2n};q^2)_k = (-1)^k q^{k(k-1)-2nk} \frac{(q^2;q^2)_n}{(q^2;q^2)_{n-k}},$$

we deduce, from Proposition 1.1, that

$$\begin{split} w_{1,2n}(x,t;q^2) &= \\ = (-1)^n q^{n^2}(q;q)_{2n} t \sum_{k=0}^n (-1)^k \frac{q^{k(k-1)} q^k (q^{-2n};q^2)_k}{(q;q^2)_k (q^2;q^2)_k} \frac{(q^2;q^2)_{n-k}}{(q;q)_{2n-2k}} x^{2k} t^{2n-2k-1} \\ &= (-1)^n q^{n^2}(q;q)_{2n} t^{2n} \sum_{k=0}^n \frac{q^{k(k-1)} q^{k^2-2nk} (q^2;q^2)_n}{(q;q^2)_k (q^2;q^2)_{n-k} (q;q^2)_{n-k}} \frac{x^{2k}}{t^{2k}} \\ &= (-1)^n q^{n^2}(q;q)_{2n} t^{2n} \sum_{k=0}^n \left[\begin{array}{c} n \\ k \end{array} \right]_{q^2} \frac{q^{k(k-1)} q^{k^2-2nk}}{(q;q^2)_k (q;q^2)_{n-k}} \frac{x^{2k}}{t^{2k}} \, . \end{split}$$

Hence

$$|w_{1,2n}(x,t;q^{2})| \leq q^{n^{2}} \frac{(q;q)_{2n}}{(1-q)^{n}} t^{2n} \sum_{k=0}^{n} {n \brack k}_{q^{2}} q^{k(k-1)} \left[\frac{x^{2}}{q^{2n}t^{2}}\right]^{k}$$

$$\leq q^{n^{2}} \frac{(q;q)_{2n}}{(1-q)^{n}} t^{2n} (1+\frac{x^{2}}{q^{2n}t^{2}})_{q}^{n}$$

$$\leq q^{-n^{2}} [2n]_{q}! (x^{2}+q^{2n}t^{2})_{q}^{n}.$$

The result is then deduced by the fact that:

$$(x^{2} + q^{2n}t^{2})_{q}^{n} = \frac{1}{2} \left[(x + q^{n}t)_{q}^{2n} - (x - q^{n}t)_{q}^{2n} \right].$$
(33)

78

Proposition 1.3. *For x, t in* \mathbb{R} *and n* \geq 0*, we have:*

$$|D_{q,t}w_{1,2n}(x,t;q^2)| \le q^{4n}C(q,n)t\left[(x+q^nt)_q^{2n-2} + (x-q^nt)_q^{2n-2}\right]$$

$$|\Delta_{q,t}w_{1,2n}(x,t;q^2)| \le C(q,n)\left(x^2+t^2+q(1+q)[n-1]_{q^2}t^2\right)\left[(x+q^nt)_q^{2n-4}+(x-q^nt)_q^{2n-4}\right].$$

Furthermore

$$\begin{aligned} |\Delta_{q,x}w_{1,2n}(x,t;q^2)| &\leq C(q,n)(x^2 + q^2(n-1)t^2 + q(1+q)) \\ &\times [n-1]_{q^2}x^2)[(x+q^{n-1}t)_q^{2n-4} + (x-q^{n-1}t)_q^{2n-4}] \end{aligned}$$

where the constant C(q,n) is given by

$$C(q,n) = q^{-n^2 - 2n} \frac{1+q}{2} [2n]_q! [n]_{q^2}.$$

2. Convergence of series
$$\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2) \text{ and } \sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{2,2n}(x,t;q^2)$$

In this section, we prove that the series $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2)$ and

 $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{2,2n}(x,t;q^2) \text{ converge in the strip } \{(x,t)/|x|+|t|< R\}, R > 0.$

Given R_0 such that the previous series converge for $|x| < R_0$. We consider the *q*-difference problems (*I*) and (*II*) given by:

$$(I) \begin{cases} \Delta_{q,t}w(x,t;q^2) = \Delta_{q,x}w(x,t;q^2) \\ w(x,0;q^2) = \phi(x) \\ D_{q,t}w(x,t,q^2)|_{t=0} = 0 \end{cases} (II) \begin{cases} \Delta_{q,t}w(x,t;q^2) = \Delta_{q,x}w(x,t;q^2) \\ w(x,0;q^2) = 0 \\ D_{q,t}w(x,t,q^2)|_{t=0} = \phi(x) \end{cases}$$

where $\Delta_{q,.}$ is given by (10) and ϕ being an entire even function defined on \mathbb{C} , infinitely *q*-differentiable at zero, having the following expansion:

$$\phi(x) = \sum_{n=0}^{+\infty} \alpha_n b_n(x;q^2) \tag{34}$$

the convergence holds for $|x| < R_0$.

In this section, We prove the solutions of (I) and (II) have respectively an expansion of the form $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2)$ and $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{2,2n}(x,t;q^2)$, which converge respectively in the strip $\{(x,t)/|x|+|t| < R\}, R > 0$.

Theorem 2.1. Let $(\alpha_n)_n$ be a sequence of real or complex numbers such that the series $\sum \alpha_n b_n(x;q^2)$ converge for any sequence of real or complex numbers, for all $|x| < R_0$. Then:

i) the series

$$\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2)$$
(35)

is solution of the q-problem (I) in the strip $\{(x,t)/|x|+|t| < R_0\}$ and converges uniformly in any compact subset of this strip.

ii) the series

$$\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{2,2n}(x,t;q^2)$$
(36)

is the solution of the q-problem (II) in the strip $\{(x,t)/|x|+|t| < R_0\}$ and converges uniformly in any compact subset of this strip.

Proof. Given $R_1 < R_0$ and $K = \{(x,t)/|x| + |t| < R_1\}$, then for all (x,t) in K, $|x+q^nt| < R_1$ and $|x-q^nt| < R_1$. Furthermore, the fact that $\sum_{n=0}^{+\infty} \alpha_n b_n(x;q^2)$ converges for $|x| < R_0$ implies that there exist M > 0 such that

$$| \alpha_n | \le \frac{M}{q^{-n^2} [2n]_q! R_1^{2n}}.$$
 (37)

The Proposition 1.2, give

$$\left|\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2)\right| \le \frac{M}{2} \sum_{n=0}^{+\infty} \frac{1}{R_1^{2n}} \left[(x+q^n t)_q^{2n} + (x-q^n t)_q^{2n} \right].$$

Hence, the convergence of the last series holds for all (x,t) in K then $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_q!} w_{1,2n}(x,t;q^2)$ converges uniformly in any compact subset of K to $w(x,t;q^2)$ and we have

$$\lim_{t \to 0} w(x,t) = \phi(x). \tag{38}$$

Now using Proposition 1.3, we can deduce easily that $\sum_{n=0}^{+\infty} \frac{\alpha_n}{[2n]_{q!}} D_{q,t} w_{1,2n}(x,t;q^2)$ converges uniformly in any compact subset of *K* with $D_{q,t} w(x,t;q^2)$ as sum and

$$\lim_{t \to 0} D_{q,t} w(x,t;q^2) = 0.$$
(39)

So i) is then proved.

To prove ii), we proceed with the same way.

Acknowledgment. The authors would like to thank the Board of Editors for their helpful comments. They are thankful to the anonymous reviewer for the helpful remarks, valuable comments and suggestions.

REFERENCES

- W. H. Abdi, On q-Laplace transforms, Proc. Nat. Acad. Sc (India) 29 (1960), 389– 408.
- [2] M. H. Annaby Z. S. Mansour, *Basic Sturm-Liouville problems*, J. Phys. A 38 (17) (2005), 3775–3797.
- [3] F. Bouzeffour, *q-cosine Fourier Transform and q-Heat Equation*, These d'etat (2009).
- [4] A. Fitouhi M. Hamza F. Bouzeffour, *The q-J_α Bessel function*, J. Approx. Theory 115 (2002), 114–116.
- [5] A. Fitouhi N. Bettaibi K. Brahim, *The Mellin Transform in Quantum Caculus*, Constr. Approx 23 (2006), 305–323.
- [6] A. Fitouhi A. Nemri W. Binous, *On the connection between q-heat and q-wave problems*, to appear.
- [7] G. Gasper M. Rahman, *Basic Hypergeometric series*, Encyclopedia of mathematics and its applications 35, Cambridge University Press, 1990.
- [8] F. H. Jackson, On q-Definite integrals, Quart. J. Pure. Appl. Math 41 (1910), 193– 203.
- [9] F. H. Jackson, On q-Function and certain Difference Operator, Trans. Royal. Soc. London 46 (1908), 253–281.
- [10] T. H. Koornwinder R.F. Swarttouw, *On q-Analogues of the Fourier and Hankel transforms*, Trans. Amer. Math. Soc. 333 (1992), 445–461.
- [11] V. G. Kac P. Cheeung, *Quantum calculus*, Universitext, Springer-Verlag, New York, 2002.
- [12] R. F. Swarttouw, *The Hahn–Exton q-Bessel Function*, Ph. D. Thesis, Delft Technical University, 1992.

AKRAM NEMRI Département de Mathematiques Faculté des Sciences de Tunis 1060 Tunis, Tunisia. e-mail: Akram.Nemri@fst.rnu.tn

AHMED FITOUHI

Département de Mathematiques Faculté des Sciences de Tunis 1060 Tunis, Tunisia. e-mail: Ahmed.Fitouhi@fst.rnu.tn