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POLYNOMIALS EXPANSIONS FOR SOLUTION OF
WAVE EQUATION IN QUANTUM CALCULUS

AKRAM NEMRI - AHMED FITOUHI

In this paper, using the q2-Laplace transform early introduced by Abdi
[1], we study q-Wave polynomials related with the q-difference operator
∆q,x. We show in particular that they are linked to the q-little Jacobi poly-
nomials pn(x;α,β | q2).

1. Introduction and preliminaries

In a recent paper [6], the authors have shown that the solutions of certain q-
elliptic problem can be expressed in terms of solutions of a parabolic problem
by means of the inverse q2-Laplace transform.

In this paper, our interest is to obtain series representations of solutions of
a q-Wave problem. The initial data in these cases is taken to be analytic, and
the representations sets of polynomials involve the q-Laguerre polynomials and
q-little Jacobi polynomials. These polynomials are obtainable from the q-Heat
polynomials studied by A. Fitouhi and F. Bouzeffour [3] by the use of the inverse
q2-Laplace transform. We also study the series representations of solutions of
the q-Wave problem concerning the q-difference operator ∆q,x.

Throughout this paper, we fix q∈]0,1[ and suppose that log(1−q2)/logq2 ∈
N. We recall some usual notions and notations used in the q-theory.
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The q-shifted factorials are defined by

(a;q)0 = 1, (a;q)n =
n−1

∏
k=0

(1−aqk), (a;q)∞ =
∞

∏
k=0

(1−aqk) (1)

and more generally:

(a1, · · · ,ar;q)n =
r

∏
k=1

(ak;q)n. (2)

A basic hypergeometric series is

rϕs(a1, · · · ,ar;b1, · · · ,bs;q,x) =
∞

∑
n=0

(a1, · · · ,ar;q)n

(b1, · · · ,bs;q)n(q;q)n
[(−1)nq

n(n−1)
2 ]1+s−rxn.

A function f is said to be q-regular at zero [2] if lim
n→∞

f (xqn) = f (0) exists
and does not depend of x. The q-derivative Dq f [9] of a function f is defined
by:

Dq,x f (x) =
f (x)− f (qx)
(1−q)x

, x 6= 0. (3)

The q-derivative at zero [2] is defined by

Dq,x f (0) = lim
n→+∞

f (xqn)− f (0)
xqn , (4)

where the limit exists and independent of x.
For n ∈ N,

Dn
q,x f (x) =

(−1)n

xn(1−q)n

n

∑
k=0

(−1)k (q;q)n

(q;q)n−k(q;q)k
q−(n−k)(n−k−1)/2 f (qn−kx) (5)

The q-analogue of (a+b)n is a non commutative term (a+b)n
q given by

(a+b)n
q =

{
an(−b

a ;q)n, a 6= 0
qn(n−1)/2bn, a = 0.

(6)

It is clear that (a+b)n
q and (b+a)n

q are not always the same.
Some q-functional spaces will be used to establish our result. We begin by

putting

Rq = {±qk,k ∈ Z}∪{0}, Rq,+ = {+qk,k ∈ Z} (7)

and we define Eq,∗(Rq) the space of even functions infinitely q-differentiable at
zero.
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We also denote

[x]q =
1−qx

1−q
, [n]q! =

(q;q)n

(1−q)n . (8)

The q-shift operators are

(Λq,x f )(x) = f (qx), (Λ−1
q,x f )(x) = Λq−1,x f (x). (9)

We consider the q-difference operator

∆q,x = Λ
−1
q,xD2

q,x. (10)

Koornwinder and Swarttouw introduced q-trigonometric function denoted in
[10] by cos(x;q2) and sin(x;q2), we have in particular:

cos(x;q2) = 1ϕ1(0,q,q2;(1−q)2x2) =
∞

∑
n=0

(−1)nbn(x;q2) (11)

where we have put

bn(x;q2) = bn(1;q2)x2n = qn(n−1) (1−q)2n

(q;q)2n
x2n. (12)

More generally the normalized q-Bessel function [4] is given by

jα(x;q2) = Γq2(α +1)qn(n−1) qα(1+q)α

xα
Jα((1−q)x;q2) (13)

=
∞

∑
n=0

(−1)nbn,α(x,q2) (14)

where Jα(x;q2) is the Hahn Exton q-Bessel function [12] and

bn,α(x,q2) = bn,α(1,q2)x2n =
Γq2(α +1)qn(n−1)

(1+q)2nΓq2(n+1)Γq2(α +n+1)
x2n. (15)

The q- jα Bessel function jα(x;q2) is entire function and tends to the normalized
jα Bessel function as q−→ 1−.
One can see, after simple computation, that

j− 1
2
(x;q2) = cos(x;q2), (16)

j 1
2
(x;q2) =

sin(x;q2)

x
. (17)
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The q2-Jackson integral from 0 to a and from 0 to ∞ are respectively defined by

∫ a

0
f (x)dq2x = (1−q2)a

∞

∑
n=0

f (aq2n)q2n,
∫

∞

0
f (x)dq2x = (1−q2)

+∞

∑
−∞

f (q2n)q2n.

Note that for n ∈ Z and a ∈ Rq, we have

∫
∞

0
f (q2nx)dq2x =

1
q2n

∫
∞

0
f (x)dq2x,

∫ a

0
f (q2nx)dq2x =

1
q2n

∫ aq2n

0
f (x)dq2x.

(18)
The q2-integration by parts is given for suitable function f and g regular at zero
by: ∫ b

a
f (x)Dq2,xg(x)dq2x =

[
f (x)g(x)

]b

a
−
∫ b

a
f (q2x)Dq2,xg(x)dq2x. (19)

The improper integral is defined in the following way (see [10]; [11])

∫
∞/A

0
f (x)dq2x = (1−q2)

+∞

∑
−∞

f
(

q2n

A

)
q2n

A
, A 6= 0. (20)

We remark that, for n ∈ Z, we have

∫
∞/q2n

0
f (x)dq2x =

∫
∞

0
f (x)dq2x. (21)

The q2-analogue of the exponential function [7] are given by

Eq2(x) = 0ϕ0(−,−;q2,−(1−q2)x) =
∞

∑
n=0

qn(n−1) (1−q2)n

(q2;q2)n
xn (22)

= (−(1−q2)x;q2)∞, for x ∈ C

and

eq2(x) = 1ϕ0(0,−;q2,(1−q2)x) =
∞

∑
n=0

(1−q2)n

(q2;q2)n
xn (23)

=
1

((1−q2)x;q2)∞

, for |x|< 1
1−q2 .

They satisfy

eq2(x).Eq2(−x) = 1, Dq2,xeq2(x) = eq2(x), Dq2,xEq2(x) = Eq2(q2x). (24)
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The little q-Jacobi polynomials [7] is defined by

pn(x;α,β | q) =
q(n+α)n(q−n−α ;q)n

(qn+α+β+1;q)n
2ϕ1(q−n,qn+α+β+1;qα+1;q,qx) (25)

=
q(n+α)n(q−n−α ;q)n

(qn+α+β+1;q)n

n

∑
k=0

(q−n;q)k(qn+α+β+1;q)k

(qα+1;q)k

qkxk

(q;q)k
.

Jackson [8] defined a q2-analogue of the Gamma function by

Γq2(x) =
(q2;q2)∞

(q2x;q2)∞

(1−q2)1−x. (26)

Abdi in [1], introduced the q2-Laplace transform by

ϕ(s) = q2Ls{ f (t)}t→s (27)

=
∫ 1/(1−q2)s

0
Eq2(−q2st) f (t)dq2t (28)

=
∫

∞/(1−q2)s

0
Eq2(−q2st) f (t)dq2t. (29)

Moreover, since log(1−q2)/ log(q2)∈N and s∈Rq,+, we obtain from (21)
that the following q2-integral representations hold:

ϕ(s) = q2Ls{ f (t)}t→s =
∫

∞/s

0
Eq2(−q2st) f (t)dq2t =

∫
∞

0
Eq2(−q2st) f (t)dq2t

(30)
and (see [5] Theorem 1 )

Γq2(s) =
∫ +∞

0
ts−1Eq2(−q2t)dq2t. (31)

In [6], we have defined the q-Wave polynomials associated with the q-
difference operator ∆q,x by defining w1,2n and w2,2n given, for x, t in R, by:

w1,2n(x, t;q2) = [2n]q!
n

∑
k=0

qk2
bn−k(x;q2)

t2k

[2k]q!

w2,2n(x, t;q2) = [2n]q!
n

∑
k=0

qk2
bn−k(x;q2)

t2k+1

[2k+1]q!
.

(32)

wich can be expressed in term of q-little Jacobi polynomial pn(x;α,β | q2) [6]
as follows
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Proposition 1.1. For x, t in Rq we have:

w1,2n(x, t;q2) = (−1)nq−n(n−1)(q2;q2)nt2n pn(q2nx2/q2t2; -1/2, -2n | q2)

w2,2n(x, t;q2) = (−1)nq−n(n+1)(q2;q2)nt2n+1 pn(q2nx2/t2; -1/2, -2n-1 | q2).

Proposition 1.2. For x, t in R we have:

| w1,2n(x, t;q2) | ≤ q−n2 [2n]q!
2

[(x+qnt)2n
q +(x−qnt)2n

q ]

| w2,2n(x, t;q2) | ≤ q−n2 [2n]q!
2

t[(x+qnt)2n
q +(x−qnt)2n

q ]

where (a+b)n
q is given by (6).

Proof. Owing to the relation

(q−2n;q2)k = (−1)kqk(k−1)−2nk (q2;q2)n

(q2;q2)n−k
,

we deduce, from Proposition 1.1, that

w1,2n(x, t;q2) =

= (−1)nqn2
(q;q)2nt

n

∑
k=0

(−1)k qk(k−1)qk(q−2n;q2)k

(q;q2)k(q2;q2)k

(q2;q2)n−k

(q;q)2n−2k
x2kt2n−2k−1

= (−1)nqn2
(q;q)2nt2n

n

∑
k=0

qk(k−1)qk2−2nk(q2;q2)n

(q;q2)k(q2;q2)k(q2;q2)n−k(q;q2)n−k

x2k

t2k

= (−1)nqn2
(q;q)2nt2n

n

∑
k=0

[
n
k

]
q2

qk(k−1)qk2−2nk

(q;q2)k(q;q2)n−k

x2k

t2k .

Hence

| w1,2n(x, t;q2) | ≤ qn2 (q;q)2n

(1−q)n t2n
n

∑
k=0

[
n
k

]
q2

qk(k−1)
[

x2

q2nt2

]k

≤ qn2 (q;q)2n

(1−q)n t2n(1+
x2

q2nt2 )
n
q

≤ q−n2
[2n]q!(x2 +q2nt2)n

q.

The result is then deduced by the fact that:

(x2 +q2nt2)n
q =

1
2
[
(x+qnt)2n

q − (x−qnt)2n
q
]
. (33)
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Proposition 1.3. For x, t in R and n≥ 0, we have:

|Dq,tw1,2n(x, t;q2)| ≤ q4nC(q,n)t
[
(x+qnt)2n−2

q +(x−qnt)2n−2
q

]
|∆q,tw1,2n(x, t;q2)| ≤

C(q,n)
(
x2 + t2 +q(1+q)[n−1]q2t2)[(x+qnt)2n−4

q +(x−qnt)2n−4
q

]
.

Furthermore

|∆q,xw1,2n(x, t;q2)| ≤C(q,n)(x2 +q2(n−1)t2 +q(1+q)

×[n−1]q2x2)[(x+qn−1t)2n−4
q +(x−qn−1t)2n−4

q ]

where the constant C(q,n) is given by

C(q,n) = q−n2−2n 1+q
2

[2n]q! [n]q2 .

2. Convergence of series
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2) and

+∞

∑
n=0

αn

[2n]q!
w2,2n(x, t;q2)

In this section, we prove that the series
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2) and

+∞

∑
n=0

αn

[2n]q!
w2,2n(x, t;q2) converge in the strip

{
(x, t)/ | x |+ | t |< R

}
, R > 0.

Given R0 such that the previous series converge for | x |< R0. We consider
the q-difference problems (I) and (II) given by:

(I)


∆q,tw(x, t;q2) = ∆q,xw(x, t;q2)
w(x,0;q2) = φ(x)

Dq,tw(x, t,q2)|t=0 = 0

(II)


∆q,tw(x, t;q2) = ∆q,xw(x, t;q2)
w(x,0;q2) = 0

Dq,tw(x, t,q2)|t=0 = φ(x)

where ∆q,. is given by (10) and φ being an entire even function defined on C,
infinitely q-differentiable at zero, having the following expansion:

φ(x) =
+∞

∑
n=0

αnbn(x;q2) (34)

the convergence holds for | x |< R0.
In this section, We prove the solutions of (I) and (II) have respectively an ex-

pansion of the form
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2) and

+∞

∑
n=0

αn

[2n]q!
w2,2n(x, t;q2), which

converge respectively in the strip
{
(x, t)/ | x |+ | t |< R

}
, R > 0.



80 AKRAM NEMRI - AHMED FITOUHI

Theorem 2.1. Let (αn)n be a sequence of real or complex numbers such that
the series ∑αnbn(x;q2) converge for any sequence of real or complex numbers,
for all | x |< R0. Then:

i) the series
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2) (35)

is solution of the q-problem (I) in the strip
{
(x, t)/ | x | + | t |< R0

}
and

converges uniformly in any compact subset of this strip.

ii) the series
+∞

∑
n=0

αn

[2n]q!
w2,2n(x, t;q2) (36)

is the solution of the q-problem (II) in the strip
{
(x, t)/ | x | + | t |< R0

}
and converges uniformly in any compact subset of this strip.

Proof. Given R1 < R0 and K =
{
(x, t)/ | x | + | t |< R1

}
, then for all (x, t) in

K, | x+qnt |< R1 and | x−qnt |< R1. Furthermore, the fact that
+∞

∑
n=0

αnbn(x;q2)

converges for | x |< R0 implies that there exist M > 0 such that

| αn |≤
M

q−n2
[2n]q!R2n

1
. (37)

The Proposition 1.2, give

|
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2)| ≤ M

2

+∞

∑
n=0

1
R2n

1
[(x+qnt)2n

q +(x−qnt)2n
q ].

Hence, the convergence of the last series holds for all (x, t) in K then
+∞

∑
n=0

αn

[2n]q!
w1,2n(x, t;q2) converges uniformly in any compact subset of K to

w(x, t;q2) and we have
lim
t→0

w(x, t) = φ(x). (38)

Now using Proposition 1.3, we can deduce easily that
+∞

∑
n=0

αn
[2n]q! Dq,tw1,2n(x, t;q2)

converges uniformly in any compact subset of K with Dq,tw(x, t;q2) as sum and

lim
t→0

Dq,tw(x, t;q2) = 0. (39)

So i) is then proved.
To prove ii), we proceed with the same way.
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