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The aim of this paper is to study r—generalized gamma functions of

the form
. . e - t
,D< a,bic;p ) :Vfa/ - (a,b;c;—f) dr,
u,v v
0
where a, b, ¢ and p are complex numbers with ¢ # 0,—1,—2,..., Rep,

Reu > 0 and |argv| < 7, and the r—generalized beta functions of the form

~( a,b;c;v . —a i u—1 —u-u Lt
rB( uw“' ) -V /t (1+t) VF (a’b,c’ V) dt’
0

where Re (a+ 1), Re (b+p) > 0 and ,F (a,b;c;x) is the r-Gauss hy-
pergeometric function. Moreover, we define a new probability density
function (p.d.f) involving these new generalized functions. Some basic
functions associated with the p.d.f’s, such as moment generating func-
tions, mean residue functions and hazard rate functions are derived .
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1. Introduction

Due to the success of the gamma function, several generalizations and modifi-
cations have been considered by various authors [3, 4, 6, 12]. Al-Musallam and
Kalla [3, 4] have studied a generalization gamma function of the form

oo

- t
D< a,b;c;p > év—a/ e P LR, (a,b;c;f7> dt . (1)
u,v v

0

By putting p = 1 and b = ¢ in equation (1), we obtain the Kobayashi [6] gener-
alized gamma function defined recently as follows,

T Cou—1 —t
D("’b’b’l ):/t AT, (u,v) )
0

u,v (v+1)

i.e. their work is a generalization of Kobayashi’s function. Moreover, if we take
a = 0 in this equation, we get the well-known gamma function

oo

I'(u) = /t”fl e ' dt.

0

Recently, Ben Nakhi and Kalla [5] have treated a generalized beta function
in the form

B<abcv>
u,

a,b;c;v oy t
B{ 777 = _“/t”_l 14+16)7"7" LR ( ,b; ;—7) de. (4
( u il ) v (1+1) 21 (@,b;c; == “4)

0

7 (141) = (abies—L
2Ry (@056 = dt, (3)

0\8

and

In section 2, we recall some special functions and give some basic results
that will be used in latter sections. In section 3, we define our r— generalized
gamma function and its incomplete functions. Further, we study a probability
density function (p.d.f) involving this new function .D. Moreover, we intro-
duce and study a new probability density function (p.d.f) involving our second
new r—generalized beta function ,B in the fourth section. In each section of
the last two sections we derive some basic functions associated with our new
generalized density functions, namely, we compute the k-th Moment, moment
generating function, the hazard rate function and the mean residue life function.
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2. Definitions and Preliminaries

Throughout this sequel, we shall use the following definitions and the Fox-
Wright Psi function [9] is defined as follows

p
w 1T (ay+nby) 2
o

P\Pq[ (akabk)lp (O‘kaﬁk 1q,Z Z =1
=0 I (o +np)"

®)

S

q P
bi>0 (i=1,..,p):>0 (j=1,..,9): 1+Y B—Y b >0 (6)
k= —
for suitably bounded values of |z], its normalization is

p
. T (o)

pqu [ (akybk)]7p;(ak7ﬁk)]7q;z ] = ](7117 pqu [ (akvbk)]m;(ak?ﬁk)]#;z ] .

Inr
LT (@)

(N
In particular, we have the following relationship with generalized hypergeomet-
ric function pFy (see [8]): for p <g+1

*

qu[ ary..sdp; 0y ..., 045 2 ] = p\Pq[ (akvl)l’p;(ak7l)17q;z ] (8)
The generalized r—Gauss hypergeometric function defined in [11] as

F (a,b;c;7) =

T(e) [ (1—p)f bt s
= | e i)

r
—| dt, 9

o) O
where Rec >Reb >0,r > 0; r =0,
T—m < 1. For r = 0 our function reduces to Gauss hypergeometric function,
ie.

oF (a,b;c;2) = 2F (a,b;c;7). (10)

Other special cases of this function are given in [11]. The differential relation
for ,F (a,b;c;z) is (see [11])

<;Z) F(a,bye;z) = (a)(c)(b) HFlatnbtmetnz). (1D
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The functional relations for ,F (a,b;c;z) are (see [[11], Eqn.11-12 ])
b.F(a,b+1;¢;2)+(c—b—1) F(a,b;c;z) = (c—1) F(a,b;c—1;z) (12)

c . F(a,b;c;z) — (c—b) ,F(a,b;c+1;2) =b . F(a,b+1;c+1;z)  (13)

As a standard notation, F(a,b;c;x) stands for Gauss Hypergeometric function
2Fy (a,b;c;x), but if there are other number of parameters (other than 2 and 1),
like p and ¢ then only we write ,F,. So here we have used this convention of
not writing sub indices in our definition.

3. The r—Generalized Gamma Function ,5

We begin this section by introducing our r—generalized gamma function.

Definition 3.1. Let a, b, ¢, u and p be complex numbers with Re p, Reu > 0,
¢ # 0 and |argv| < 7. Then we define the r—generalized gamma function,

" e - t
rD< a,b,C,P > :v—a/ tu—l e—lﬂ F (a,b;c;—*) dt. (14)
1%
0

u,v

For r =0, we get the Al-Musallam and Kalla [3, 4] generalized gamma
function (1). Observing that equation (14) can be rewritten as

rl~)( a,b;c;p ) :vu*a/ i1 pmpvt rF‘ (a7b;c; —t) dt. (15)
0

u,v

The following recurrence relations for +D can be easily derived from its defini-
tion besides the recurrence relations of ./ given in (12) and (13).

Theorem 3.2. The following relations hold:

(c—b—1) ,5( a»b;c;l’) _

u,v

—(c—1) rﬁ( a,b;ce—1;p > _ br5< a,b+1;c;p ) :

u,v u,v

u,v

—(c—b) 5( a,byc+1;p >+ b 5( a,b+1l;c+1;p )
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Moreover, using (11) and integration by parts to the integral representation

of D we obtain the following result.

Lemma 3.3. The following relation holds

- . b ~ e _ .
E,D a,b;c;p :irD a+1,b;c;p + D a,b;c;p .16
p u,v pc u+1,v u+1,v
We end this section by giving the partial derivatives of the r—generalized
gamma function.

Lemma 3.4. The partial derivatives of .D ( a,[;; ‘c};p ) are

oo

an . - e - t
— D( @.bcp ) :v*“/ e [Int]" F (a,b;c;—f> de, (A7)
v

ou " u,v
0
" ~/( abc;p n ~( a+n,b;c;p
W,D( oy =(-1)" (a), D v . (18)
Proof. The first formula is obtained by observing that
an
du"

The second formula is obtained by using the integral representation of ,F, that
is

= Ind]" .

1
_ T R (S M )
_F(b)F(c—b)O/ ) (CURCA B I
to write
rﬁzv_a/lul e M
L
0
/lsb1 =9 G [(/1 01 (r,m)s —— ] ds | di =
() A T -
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/t“’1 e P (v+st) “dr|ds
0
where

D = ,ﬁ( a.bieip ) and L=B(b,c—D)

u,v
besides noting that

n

Ev (v+st)* =(=1)" (a), (v+st)"“".

3.1. The Generalized Incomplete Gamma Functions

Generalizing ,5 ( a,l:t; i;p ), we define, for x > 0, Re p, Reu > 0, |argv| < 7,
b X
— . e - l»
rD’(§< a,u,f},p > :v_“/ e F (a,b;c;—;) dt, (19)

0

and call it as a generalized incomplete gamma function, and its companion func-

tion N
— .« e - t
rD:’( wbic;p ) =y ¢ / e Pt | F (a,b;c;—7> dt , (20)
. v
X

u,v

and call it as a generalized complementary incomplete gamma function. In other
words we have

r5< abie;p ) _ rﬁg( a.bieip >+ J)jj( @.bcp > Q1)

u,v

Remark 3.5. Substituting equations (19) and (20), with p =1, r =0, b = c,
a =0, we obtain the well-known incomplete gamma functions respectively, that
is

x o
Y (u,x) = /t“*l edt, T(ux)= /t“fl e ' drt. (22)
0 X
The next theorem lists some differential properties and recurrence relations
of these incomplete functions. The proof is straightforward. For simplicity, we
let
Dy Dy PP ) wa Bre Dp (0T

u,v
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Theorem 3.6. Continue with the preceding notations, we have

~ u ~. aly ~ ( a+1,b;c;p
a
o xe P LK, (a,b;c;—f), (23)
p v
~ U ~, aly ~.( a+1,b;c;p
rD 1 - 7rD - r
X (u+ ) p X p X ( u+17v )
—da
+E xer R, (a,b;c;—i:), 24)
d ~ a
g {)f” DY = — ux ! DY + Y e P F (a,b,c, 7>,
X
d ~_ ~ -
o [epx DY = per DY —v“ xR (a,b;c;—{>,
X ] v
d P ~ v ~ X
- B er = - —u-l er - - rF( 7b; ;_7>7
= {x 0 ux 5 e a,bie;i——
d ~ ~ _
T [epx Dyl = pe’ Dy + v e x (a,b;c;—%). (25)

3.2. The Probability Density Function f; (x)

The probability density function (p.d.f) of a random variable X; associated with
equation (14) is defined by

~ B
Bv 4o ! X" B 16 8xP rF (a,b;c;——“f )

filx) = 5 x>0]. (26)
B a,b;c; g

It is obvious that [ fj (t) df = 1. We observe that the behavior of f; (x) at zero
0

depends on m+ 3, that is :

0 , m+p>1

-1

~ a,b;c;é

rD< lv"’)] , m+p=1
[}7

Moreover, we have lim fj (x) =c for m+f <1 and limfj(x) =0 for
x—=07 X—yo0

f1(0) =

1
Bakvx

B > 1. Using the differentiation formulas for .F (a,b;c;x) (11). It is easy to
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show that

% fi (x) - |:m+f:_15ﬁ xﬁfl 7% xﬁ*l XH()C):| fi (X)7

vce

where
a+1,b+1;¢c+ 1;—O‘—Xﬁ>

F (a,b;c;—ﬁ>

H(x)2 a

v

3.3. Some Statistical Functions

The aim of this section is to obtain some basic functions associated with the p.d.f
f1(x), such as the population moments, the cumulative distribution function
(c.d.f.), the survivor function, the hazard rate function and the mean residue life
function. We start with,

3.3.1. Population Moments

In this subsection we derive several types of moments such as the k -th moment
and the moment generating function. We begin by evaluating the k -th moment,
since it will be used to obtain the remaining basic moments, such as the mean,
the variance and the moment generating function.

The k-th Moment: The k-th Moment about the origin of the random vari-
able X is defined by

=)

E [X{‘} = / * £ (1) dt.
0
Substituting with the value of the p.d.f fj (x) given by the equation (26) yields

—a a%ﬂ < _ P
E [Xﬂ = B 5 /x””ﬁ*k*l e F (a,b;c;—x dx,
) v
D GhTe )
E—i—l,v

then by means of the transformation t = ax? and by virtue of equation (26), we
get
a b x D ( a’b;C;g )
g ’"T"’k +1,v

]_ B a,b;c;g
r %—kl,v

27)
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Now since the mean, expected value of the random variable X1, is a special case
of this moment, namely, the mean is the 1-st Moment

-1 n Cl7b;C;§
) o Fx rD< mBrl +1av )
E[Xl]é/tfl (t) dt = — . (28)
b 5 Cl,b,C,a
! %—i—l,v

Similarly, we can obtain the variance of the random variable X , G}%I , using
the equation (27) with k = 2, besides the equation (28), since it is defined as

2 2 2
oy, ZE[X{] - (E[X1])".
Moment generating function: The moment generating function of the random

variable X is is defined by

To avoid the difficulty of this integration, we observe, using Taylor expansion,
that

ok
E[¢%] = k;) = E [xt]. (29)

Using this beside the equation (27), we obtain

B a,b,c;g
> a0 Fx ik mTH‘—i—l,v

M, (t): Z A X 5
k=0 : B a,b;c; ¢

I m_i_I’

3.3.2. The Distribution Function

The cumulative distribution function Fj (x) of the random variable X; is given
by

=oP aab;c’i

i Dy ( %Jrl,% >

R 2P <0 = [ fi(d = —,
0 5 a,b,c,a
" %+1,v
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hence the survivor function S; (x)can be expressed as

3.3.3. The Hazard Rate Function

For a p.d.f fj (x) the hazard rate function is defined by

mmégg.

Using the equations (27) and ( 30), it follows that

m _ 1 — ~, B
B BTl ya Bl o8 F (a,b;c;—“i)

5 . 31)
D, ( A )
ox E—|-]7v

3.3.4. The Mean Residue Life Function.

hl (x) =

For a random variable X; the mean residue life function is defined by
Ki(x)=E[Xi—x /X >x] =

oo

! 1
—Sl(x)x/(t—x)fl (t)dt = 5 (x)/tf] (t)dt —x. (32)

Using equation (30), and

.6
. D" a,b;c; 4

1 aXﬁ mgl—i_l)v
/tf1(t) dt=a F x

... 0 ’
x o(550)
ﬁ—l—l,v

we get
P a,b;c,g
1 ' aXﬁ ml—;l + 17v
Ki(x)=a B x —x. (33)
- < a,bic;8 )
" oxb Ly
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4. The r—Generalized Beta Function ,B

We begin this section by introduce our generalized r—Beta function in the fol-
lowing form

Definition 4.1. Continue with the preceding assumptions on the parameters a,
b, c, r,uand v. Then for Re (a+p) and Re (b+p) >0

oo

) . 8 t
,B( “’b’”) /z“ (1 4r) ™™ F (a,b;c;—f) di, (34
u, %

0

For » = 0, since the Gauss hypergeometric function is the classical Gauss
hypergeometric function therefore equation (34) becomes

oo

. 1
(50 e ot e e o (oY,
u, 1t Y

0

and by letting b = ¢, we have

B<abcv> / +1) dr.
5 V+t

Moreover, if we take a = 0 then equation (34) reduces to the ordinary Beta

function, i.e.

/t“ V(40" dr
0
(34) can be rewritten as

,B( a,bl:;;;v > /t” ! 1+vt) ™ #7" F (a,b;c;—t) dt. (36)
’ 0

The following recurrence relations for B can be easily derived from its defini-
tion besides the recurrence relations of ,F given in (12) and (13).

Theorem 4.2. The following relations hold:

(c—b—1) ,B( by ) =
u,

—(e—1) rg< a,b,c—1;v > _ br§< a,b+1;c;v ) (37)
u, u,
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- ( a,b;c;v
c,B ( ’ ) =
u, i

— (c—b) rg<a,b;c+1;v>+brg<a,b+1;c+1;v) (38)

u, u,u

Moreover, using (11) and integration by parts to the integral representation
of B we obtain the following result.

Lemma 4.3. With the preceding assumptions, we have
~( a,bic;v |
B ( e ) -

__u B a,bic;v \ ab B a+1,b+1;c+1;v . (39)
u+p u,p (u+p)c u+1,u—1

We end this section by giving the partial derivatives of the generalized Beta
function

Lemma 4.4. The partial derivatives of .B < a’:;:v > are
o .
B a,b;c;v _
Ju" u, 1

/ n+1 (140" (140) 4 F (a,b;c;—%) dr,  (40)
0

" < ( ab;cyv n ~( a+nbicy
W rB < u, > = (—1) (a)n rB ( u, U . (41)
Proof. The first formula is obtained by observing that

al’l
aun [t

) =0 I )] (1) TR

The second formula is obtained by using the integral representation of ,F, that
is

~ 1t
F (a,b;c;—f> =
\
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F(c) 1sb L1 —ys)° eb=l r
= ¥, [(A — | d
b)T (c— bo/ 1+" ¥ (@3, 0):(rm); s (s —1) >
to write
_ u—1 —U—u
=5 /! (1+71)
0
lsl’1 l—s e=b=1 r
lP —_— p—
0/ ) (SR AT R B
N 1
c b—1 r
Lo o [ |
0
/zu—‘ (L40) ™" (vtst) dr | ds
0
where

B = ,B( “”L’:‘jp ) and L=B(b,c—b)

besides noting that

n

ot

(v+st) ™ =(=1)" (a), (v+st)“".

4.1. The Generalized Incomplete Beta Functions ,B

a,b;c;v
u, f
0, and |argv| < m, the related functions

Generalizing ,B < > , we define, for x, Reu ,Re (a+ ) ,Re (b+pu) >

X
- a,b;c;v _ _ o . t
,B;;( n > —y “/t” (1 4r) ™ " F (a,b;c;—;) di, (42
0

and call it the generalized incomplete Beta function, and its companion function

~o [ a,b;c;v _ 7 _ L . t
B ( n ):v “/t” U (1 qq)u ,F(a,b;c;—;) di,  (43)
X
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and call it the generalized complementary incomplete Beta function. In other
words we have

rE< a,b;c;v > _ rgjoc< a,b;c;v >+ rBf:< a,b;c;v ) (44
u, [ u, | u, g

The next theorem lists some differential properties and recurrence relations of

these incomplete functions. For simplicity, we let

a,b;c;v

B B 5 B b:c:
By = rB’é( i > and BT % rBi°< “ ’;’v )
Theorem 4.5. Continuing with the preceding notations, we have
r%( a7b;C;V >: u rg)(;< a,b;C;V >_
u+1l,u u+u u,u

u—1 —H—u
R Ut M (a,b;c;—f) _ (45)
(u+p) xve v

_ ab B a+1,b+1;c+1;v
(u+p)c™?° u+1l,u—1

~o [ a,b;c;v _u ~.( a,b;c;v
er<u+1;,u)_M+'u,er( M,‘LL >+

u—1 1 —H-u
S ) M (a,b;c;—f) _ (46)
(w+u) xve v
B ab 5 a+1,b+1;c+1;v
(utp)c™™ u+1,p—1
4 [X'TBY] = (1—w)x By +v“(1+x)H7" F(a b'C'—{>
dx rP0 rP0 r y Ul v I
d u n. u— D —a. u— r
a[(l—i—x)“+ B = (ut ) (L) By v 1,F<a,b;c;—§),
d
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4.2. The Probability Density Function f; (x)

The probability density function (p.d.f) of a random variable X, associated with
equation (34) is defined by

—a Lu—1 1 —M—u rF ’b; ;_E
e (14x) (a,b;¢ V)xl[x>0] 47)
< a,b;c;v >
B
u,

It is obvious that [ f> (t) df = 1. We observe that the behavior of f> (x) at
0

f(x) =

i

zero depends on u, that is:

0 , u>1
0) = . e -1
12(0) [v“ rB< a,b;c;v ﬂ w1
Ly
Moreover, we have lim f(x) =c0 ,u<1 and limf;(x)=0. Itcanbe
x—0t X—o0

easily shown that

u—1 u+u ab rF(a+1,b+l;c—|—1;—§)

x o lfx e F (a,b;c;—%) ] 2olx). 48)

iﬁ@Z[

4.3. Some Statistical Functions

The aim of this section is to obtain some basic functions associated with the p.d.f
f2(x), such as the population moments, the cumulative distribution function
(c.d.f.), the survivor function, the hazard rate function and the mean residue life
function. We start with

4.3.1. Population Moments

Now we derive several types of moments such as the k-th moment and the mo-
ment generating function. We begin by evaluating the k-th moment, since it will
be used to obtain the remaining basic moments, such as the mean, the variance
and the moment generating function.

The k-th Moment:
The k-th Moment about the origin of the random variable X, whose p.d.f



38 Y. BEN NAKHI - S. L. KALLA

/2 (x) given by the equation (47) is

vfaftk+u71 (1+t)*“*” rF(a,b;c;—%) dt r1§< a,b;c;v >

u+k,u—k
E[Xﬂ: : - ( ab;cv - - ( a,b;c;v
rB( ) b 9 ) rB( ) 9 9 )
u, u,
(49)

In particular, the expected value of the random variable X;, is

l§< a,b;c;v )
d u+l,u—1
E[X] = s . (50)

r1§< a,b;c;v )

u, 1
Similarly, we can obtain the variance of the random variable X5 , 0')%2 , using
the equation (49) with kK = 2, besides the equation (50).

Moment generating function:

The moment generating function of the random variable X, is

~ b;c;v
o)
d utk,pu—k t*
=¥

= — ; XE.
~ k! - ~( a,b;c;v !
k=0 k=0 rB< >

4.3.2. The Distribution Function

The cumulative distribution function F (x) of the random variable X; is given

by

(o)
B ( avi;;;v > 7
hence the survivor function S, (x) can be expressed as

~( a,b;c;v
’Bx< u, )

Sz(X)Zl—Fz(X): . (51)

r§< a,b;c;v >
i, 4

BE(x)2P(X,<x)=
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4.3.3. The Hazard Rate Function

Using the equations (49) and ( 51) , the hazard rate function for a p.d.f f> (x) is
given by
vax T (14x) 7" L F (a,bye—2)

- a,b;c;v
= ( , >

4.3.4. The Mean Residue Life Function

hy (x) = (52)

Using (32), the mean residue life function for a random variable X, is given by

< a,b;c;v
By < u+1l,u—1 )
K> (x) = —X.

~ ( a,b;c;v
U wpu
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