
LE MATEMATICHE
Vol. LXV (2010) – Fasc. I, pp. 119–125
doi: 10.4418/2010.65.1.10

THE b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES

M. VENKATACHALAM - VIVIN J. VERNOLD

In this paper, we investigate the b-chromatic number of central graph,
middle graph and total graph of star graph, denoted by C(K1,n), M(K1,n)
and T (K1,n) respectively.We discuss the relationship between b-chromatic
number with some other types of chromatic numbers such as achromatic
number, star chromatic number and equitable chromatic number.

1. Introduction

This paper considers the b-chromatic number of graphs derived by several dif-
ferent constrctions from a star graph.

The b-chromatic number ϕ(G) [9, 12] of a graph G is the largest positive
integer k such that G admits a proper k-coloring in which every color class has
a representative adjacent to at least one vertex in each of the other color classes.
Such a coloring is called a b-coloring. This concept of b-chromatic number was
introduced in 1999 by Irving and Manlove [9], who proved that determining
ϕ(G) is NP-hard in general and polynomial for trees.

Effantin and Kheddouci studied [4–6] the b-chromatic number for the pow-
ers of paths, cycles, complete binary trees, and complete caterpillars.
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It has been proved in [10] by showing that if G is a d-regular graph with
girth 5 and without cycles of length 6, then ϕ(G) = d +1.

Recently, motivated by the works of Sandi Klavžar and Marko Jakovac [12],
who proved that the b-chromatic number of cubic graphs is 4 expect for the
Petersen graph, K3,3, the prism over K3, and one more sporadic example with
10 vertices.

The proof techinque pattern that are followed in this paper is similar to that
of [14, 15].

2. Preliminaries

The notion of star chromatic number was introduced by Branko Grünbaum in
1973. A star coloring [2] of a graph G is a proper vertex coloring in which every
path on four vertices uses at least three distinct colors. Equivalently, in a star
coloring, the induced subgraphs formed by the vertices of any two colors has
connected components that are star graphs. The star chromatic number χs (G)
of G is the least number of colors needed to star color G.

The achromatic number was introduced by Harary, Hedetniemi and Prins
[8]. An achromatic coloring [8] of a graph G is a proper vertex coloring of G in
which every pair of colors appears on at least one pair of adjacent vertices. The
achromatic number of G denoted χc(G), is the greatest number of colors in an
achromatic coloring of G.

The notion of equitable coloring [11], was introduced by Meyer in 1973. If
the set of vertices of a graph G can be partitioned into k classes V1,V2, · · · ,Vk
such that each Vi is an independent set and the condition ||Vi|−|Vj|| ≤ 1 holds for
every pair (i, j), then G is said to be equitably k-colorable. The smallest integer k
for which G is equitable k-colorable is known as the equitable chromatic number
[11] of G and denoted by χ=(G).

For a given graph G = (V,E) we do an operation on G, by subdividing each
edge exactly once and joining all the non adjacent vertices of G. The graph
obtained by this process is called central graph [13, 14] of G denoted by C(G).

Let G be a graph with vertex set V (G) and edge set E(G). The middle
graph [3] of G, denoted by M(G) is defined as follows.The vertex set of M(G)
is V (G)∪E(G).Two vertices x,y in the vertex set of M(G) are adjacent in M(G)
in case one the following holds: (i) x,y are in E(G) and x,y are adjacent in G.
(ii) x is in V (G), y is in E(G), and x,y are incident in G.

Let G be a graph with vertex set V (G) and edge set E(G). The total graph
[3, 7] of G, denoted by T (G) is defined as follows. The vertex set of T (G) is
V (G)∪E(G). Two vertices x,y in the vertex set of T (G) are adjacent in T (G)
in case one the following holds: (i) x,y are in V (G) and x is adjacent to y in G.
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(ii) x,y are in E(G) and x,y are adjacent in G. (iii) x is in V (G), y is in E(G),
and x,y are incident in G.

3. b-chromatic number on Central graph, Middle graph and Total graph
of Star graph

Theorem 3.1. For any star graph K1,n, the b-chromatic number is ϕ(C(K1,n)) =
n, ∀ n≥ 2.

Proof. Let v1,v2, · · · ,vn be the pendant vertices of K1,n and let v be the vertex
of K1,n adjacent to vi,1 ≤ i ≤ n. Obviously, deg(v) = n. Let the edge vvi be
subdivided by the vertex ui,1≤ i≤ n in C(K1,n) and let V = {v1,v2, · · ·vn},V ′ =
{u1,u2, · · ·un}. Clearly V (C(K1,n)) = V ∪V ′ ∪{v}, {u1,u2, · · ·un} is indepen-
dent set and, also, {ui : 1 ≤ i ≤ n} adjacent with {vi : 1 ≤ i ≤ n} respectively.
Note that in C(K1,n), the induced subgraph 〈v1,v2, · · ·vn〉 is complete. Therefore,
by proper coloring, ϕ(C(K1,n))≥ n.

Star graph K1,n Central graph of Star graph K1,n
Figure 1(a) Figure 1(b)

Assign the following n-coloring for C(K1,n) as b-chromatic: For 1 ≤ i ≤ n,
assign the color ci to vi. For 2 ≤ i ≤ n, assign the color c1 to ui and assign the
color cn to u1. Assign the color c2 to v. If ϕ(C(K1,n)) = n+ 1, ∀ n ≥ 2, there
must be at least n+ 1 vertices of degree n in C(K1,n), all with distinct colors,
and each adjacent to vertices of all of the other colors. But then these must be
the vertices v,v1,v2, · · ·vn, since these are only ones with degree at least n. If the
colors of v,v1 are c,c′, respectively then it is easy to see that no vertex of color
c′ is adjacent to every other color (the only candidate with the right degree is v1
itself, which cannot have a neighbour of color c. Thus, we have ϕ(C(K1,n))≤ n.
Hence, ϕ(C(K1,n)) = n, ∀ n≥ 2. Note that ϕ(C(K1,1)) = 2.
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Theorem 3.2. For any star graph K1,n,the b-chromatic number is ϕ(M(K1,n)) =
n+1, ∀ n≥ 2.

Star graph K1,n Middle graph of Star graph K1,n
Figure 2(a) Figure 2(b)

Proof. Let V (K1,n) = {v,v1,v2, · · · ,vn}. By the definition of middle graph,
each edge vvi, for 1 ≤ i ≤ n, of K1,n is subdivided by the vertex ei in M(K1,n)
and the vertices v,e1,e2, · · · ,en induce a clique of order (n + 1) in M(K1,n).
i.e.,V (M(K1,n))= {v}∪{vi : 1≤ i≤ n}∪{ei : 1≤ i≤ n}. Therefore, ϕ(M(K1,n))
≥ n+1.

Now, consider the color class C = {c1,c2, · · ·cn,cn+1} and assign the b-
coloring to M(K1,n) as follows. For every 1 ≤ i ≤ n, assign the color ci to ei

and assign the color cn+1 to v. For every 2 ≤ i ≤ n, assign the color c1 to vi

and assign the color cn to v1. If ϕ(M(K1,n)) = n+ 2, ∀ n ≥ 2, there must be
at least n+ 2 vertices of degree n+ 1 in M(K1,n), all with distinct colors, and
each adjacent to vertices of all of the other colors. But then these must be the
vertices e1,e2, · · ·en, since these are only ones with degree at least n+1. So an
(n+ 2)− coloring is impossible. Thus, we have ϕ(M(K1,n)) ≤ n+ 1. Hence,
ϕ(M(K1,n)) = n+1, ∀ n≥ 2. Note that ϕ(M(K1,1)) = 3.

Theorem 3.3. For any star graph K1,n, the b-chromatic number is ϕ(T (K1,n)) =
n+1, ∀ n≥ 2.

Star graph K1,n Total graph of Star graph K1,n
Figure 3(a) Figure 3(b)

Proof. Let V (K1,n) = {v,v1,v2, · · · ,vn} and E(K1,n) = {e1,e2, · · · ,en}. By the
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definition of total graph, we have V (T (K1,n)) = {v}∪{ei : 1≤ i≤ n}∪{vi : 1≤
i ≤ n}, in which the vertices v,e1,e2, · · · ,en induce a clique of order (n+ 1).
Therefore, ϕ(T (K1,n))≥ n+1.

Assign the following (n+1)-coloring to T (K1,n) as b-chromatic. For every
1≤ i≤ n, assign the color ci to ei and assign the color cn+1 to v. For every 2≤
i≤ n, assign the color c1 to vi and assign the color cn to v1. If ϕ(T (K1,n))= n+2,
∀ n≥ 2, there must be at least n+2 vertices of degree n+1 in T (K1,n), all with
distinct colors, and each adjacent to vertices of all of the other colors. But then
these must be the vertices v,e1,e2, · · ·en, since these are only ones with degree at
least n+1. So an (n+2)-coloring is impossible. Thus, we have ϕ(T (K1,n)) ≤
n+1. Hence, ϕ(T (K1,n)) = n+1, ∀ n≥ 2. Note that ϕ(T (K1,1)) = 3.

4. Main Theorems

Theorem 4.1. For any star graph, K1,n, χs(M(K1,n)) = χc(M(K1,n)) =
χ=(M(K1,n)) = ϕ(M(K1,n)), ∀ n≥ 2.

Proof. For any star graph, K1,n, χc(M(K1,n)) = n+ 1 [14]. For any star graph,
K1,n, χs(M(K1,n)) = n+1 and χ=(M(K1,n)) = n+1 [16] and hence, from Theo-
rem 3.2, χs(M(K1,n)) = χc(M(K1,n))= χ=(M(K1,n)) = ϕ(M(K1,n)), ∀ n≥ 2.

Theorem 4.2. For any star graph, K1,n, χ=(C(K1,n)) = ϕ(C(K1,n)), ∀ n≥ 2.

Proof. For any star graph, K1,n, χ=(C(K1,n)) = n [1], and hence, from Theorem
3.1, χ=(C(K1,n)) = ϕ(C(K1,n)), ∀ n≥ 2.

Theorem 4.3. For any star graph, K1,n, χs(T (K1,n)) = ϕ(T (K1,n)), ∀ n≥ 2.

Proof. For any star graph, K1,n, χs(T (K1,n)) = n+1 [16], and hence, from The-
orem 3.3, χs(T (K1,n)) = ϕ(T (K1,n)), ∀ n≥ 2.
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