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A GENERALIZATION OF BERNOULLI’S INEQUALITY

LAURA DE CARLI - STEVE M. HUDSON

We prove the following generalization of Bernoulli’s inequality(
∑

k≤K
ck

J

∏
j=1

(1+a jk)

)s

≤ ∑
k≤K

ck

J

∏
j=1

(1+ sa jk)

where 0 ≤ s ≤ 1, under suitable conditions on the a jk and the ck. We
also prove the opposite inequality when s ≥ 1. These inequalities can be
applied to Weierstrass product inequalities.

1. Introduction

The classical Bernoulli inequality is

(1+ x)s ≤ 1+ sx (1)

for x > −1 and 0 ≤ s ≤ 1. For s > 1, the inequality reverses. This has been
generalized in a number of ways. See Mitrinović and Pećarić [5] for a survey.
The version in this paper, Theorem 1.1 below, can be expressed in terms of
matrices. It is more general than the versions in [7] and [8]. See also [3].
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Theorem 1.1. Let A = (a j k) be a real J ×K matrix, with a j k > −1 for all
1 ≤ j ≤ J and 1 ≤ k ≤ K. Let ck > 0 for all k, and let S = ∑

K
k=1 ck. Assume

m≤∏
J
j=1(1+a jk)

1
J −1≤M. Consider the following conditions on s and A:

(C1) 0≤ s≤ 1, and
S

s−1
J (1+M)s ≤ 1+ sm, (2)

(C2) 0≤ s≤ 1, c1 ≥ 1, and for all j, k, a j k ≤ a j 1.

(C3) s > 1 and a j k >−1
s for all j, k, and

S
s−1

J (1+m)s ≥ 1+ sM, (3)

(C4) s > 1, c1 ≥ 1, and for all j, k, −1
s ≤ a j k ≤ a j 1.

Define

L(A) =

(
∑

k≤K
ck

J

∏
j=1

(1+a jk)

)s

and R(A) = ∑
k≤K

ck

J

∏
j=1

(1+ sa jk).

Then if (C1) or (C2) hold, L(A)≤ R(A) while if (C3) or (C4) hold, L(A)≥ R(A).

We require J and K to be finite for simplicity; the theorem can easily be
extended to the infinite case by taking limits. A special case worth mentioning
is when K = 1, c1 = 1 and 0≤ s≤ 1. The inequality L(A)≤ R(A) reduces to(

J

∏
j=1

(1+a j1)

)s

≤
J

∏
j=1

(1+ sa j1) (4)

which is a straightforward consequence of (1).
Observe that when s > 1, the condition a j1 > −1

s is necessary for L(A) ≥
R(A) (or even the reverse of (4)). Without this condition, the product on the
right hand side might include an even number of large negative factors.

Here is an example of how our results can be useful in a perhaps surprising
manner.

Example. If 0 < s < 1, the following inequality holds(
1+

∫ 1

0

sinx
x

dx
)s

≤ 1+
∫ 1

0

sin(
√

sx)√
sx

dx. (5)



A GENERALIZATION OF BERNOULLI’S INEQUALITY 111

Recalling that, for x∈ [−π,π], sinx
x = ∏

∞
j=1

(
1− x2

(π j)2

)
(see e.g. [1]) we can

prove (5) by applying the theorem to the Riemann sums of these integrals. That
is, given 0≤ s≤ 1 and a regular partition {xk}k=1,...,K of [0,1], let a jk =−

x2
k

(π j)2 ,
for j,k ≥ 1 and let a j0 = 0 (for simplicity, we may start with k = 0 instead of
k = 1). Let ck =

1
K for k ≥ 1 and let c0 = 1, so (C2) holds. Then(

1+ ∑
k≤K

1
K

J

∏
j=1

(
1−

x2
k

(π j)2

))s

= L(A)≤ R(A) = 1+ ∑
k≤K

1
K

J

∏
j=1

(
1−

sx2
k

(π j)2

)
,

and the inequality (5) follows by letting J and K go to infinity. We could prove a
slightly more general version of (5) by replacing [0,1] with [a,b], where −π <
a < b < π .

In section 2, we show that conditions like the (Ci) above are necessary for
universal comparability of L(A) and R(A), and then we prove our main re-
sults. In section 3, we apply our generalized Bernoulli inequalities to prove
new Weierstrass product inequalities.

Acknowledgements. We wish to thank the referee for his/her many suggestions
and comments which helped us to improve our paper.

2. Remarks on the (Ci) and the proof of Theorem 1.1

We cannot suggest any simple necessary and sufficient conditions for the in-
equality L(A)≤R(A) in Theorem 1.1, but will show that with weaker conditions
than the given (Ci) it can fail. For example, consider

(C5) 0≤ s≤ 1, and −1 < a jk for all j, k.

(C6) s≥ 1, and −1
s < a jk for all j, k.

The following example shows (C5) cannot replace (C1) or (C2) in the theo-
rem. Let s = 1/2 and let ck = 1/K for all k. Let a j1 = 1 for all j and let a jk = 0
whenever k ≥ 2. So, (C5) holds, but neither (C1) nor (C2) do. The product in
L(A) is 2J when k = 1, and otherwise is 1. The product in R(A) is (3/2)J when
k = 1, and otherwise is 1. So,

L(A) = K−1/2[2J +(K−1)]1/2,

R(A) = K−1[(3/2)J +(K−1)].

After multiplying both sides by K = (4/3)J (or the nearest integer)

K ·L(A)≥ K
1
2 2J/2 = (8/3)J/2,
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while
K ·R(A)≤ (3/2)J +(4/3)J ≤ 2(3/2)J.

Since (8/3)1/2 > 3/2, L(A)> R(A) for large enough J, so we have an example
that shows that (C5) is insufficient for L(A)≤ R(A).

We now show that if (C3) and (C4) are replaced by the weaker (C6), then
L(A)≥ R(A) is not necessarily true. Set s = 2, K = 2, and a j1 = 0, and a j2 = 1
for all j’s. We also let c2 = 2−J and c1 = 1− 2−J with J ≥ 4. Then, L(A) =
(2−2−J)2 < 4, and R(A) = 2−J(1+2)J +(1−2−J)> (3/2)J > 4 > L(A).

The a jk in the examples above “spike” as a function of k; that is, there is a
value of k for which a jk is ”much larger” than the average. M is much bigger
than m. The conditions (C1)-(C4) can be viewed as anti-spiking conditions. For
example, with spiking (2) in (C1) is a fairly strong condition on s and S. But
when S = 1 and m = M, 2 is just the standard Bernoulli inequality; and (3) is
similar.

So, (C1)-(C4) cannot be replaced by the simpler (C5) or (C6), but it is pos-
sible that they can be weakened in other ways. For example, in the special case,
J = 1, 0≤ s≤ 1, and S =∑k≤K ck = 1, the inequality L(A)≤ R(A) holds without
any anti-spiking assumptions. Indeed,(

∑
k≤K

ck(1+a1k)

)s

=

(
1+ ∑

k≤K
cka1k

)s

≤ 1+ s ∑
k≤K

cka1k = ∑
k≤K

ck(1+ sa1k).

(6)
Lemma 2.1 below reduces the proof of Theorem 1.1 to the special case in

which the a jk do not depend on j. Assume the s and A = (a jk) satisfy (C5) or
(C6). Define pk = ∏

J
j=1(1+ a jk)

1/J − 1. Recall that in Theorem 1.1 we have
assumed m ≤ pk ≤M. Without loss of generality we can assume M = maxk pk
and m = mink pk. Replacing each a jk by pk defines a new matrix P with L(P) =
L(A). Also, if A satisfies any of the conditions Ci (1 ≤ i ≤ 4) in Theorem 1.1,
then P does too.

Lemma 2.1. With P as above:

a) If A satisfies (C5), then R(P)≤ R(A).

b) If A satisfies (C6), then R(P)≥ R(A).

Proof. We consider only case a), since the proof in case b) is similar. So, 0 <
s ≤ 1 and −1 < a jk. Consider the problem of finding a J×K matrix B = (b jk)
such that

J

∏
j=1

(1+b jk) =
J

∏
j=1

(1+a jk)



A GENERALIZATION OF BERNOULLI’S INEQUALITY 113

for all k, which minimizes R(B). For compactness, we also require that

min a jk ≤ b jk ≤max a jk

for all j,k,which insures that a solution B exists, with R(B) ≤ R(A). We will
show that bik = b jk for all i, j,k, which implies B = P and proves the Lemma. If
not, then without loss of generality, i and j are 1 and 2, k = 1 and b11 < b21.

Define β by (1+ β )2 = (1+ b11)(1+ b21). Define a new matrix B from
B by replacing both b11 and b21 with β . This substitution does not change
∏

J
j=1(1+ b j1), so B is admissible for the minimization problem above. Also,

the variables b11 and b21 only occur in one term of R(B):

(1+ sb11)(1+ sb21) = ([1− s]+ s[1+b11])([1− s]+ s[1+b21]).

So, for some positive constant c, R(B)−R(B) = c([1+ b11)]+ [1+ b21]−
2[1+β ]) = c([1+b11]

1/2− [1+b21]
1/2)2 > 0. This contradicts our assumption

that B minimizes R and completes the proof of the Lemma.

We now proceed with the proof of Theorem 1.1.
Proof that (C1) implies L(A) ≤ R(A). With P defined as above, L(A) = L(P),
and by Lemma 2.1, R(P)≤ R(A). Then,

L(P) =

(
∑

k≤K
ck(1+ pk)

J

)s

≤

(
∑

k≤K
ck(1+M)J

)s

= Ss(1+M)sJ ≤ S(1+ms)J

≤ ∑
k≤K

ck

J

∏
j=1

(1+ spk) = R(P),

proving L(A)≤ R(A). The proof that (C3) implies L(A)≥ R(A) is similar.

Proof that (C2) implies L(A) ≤ R(A). By Lemma 2.1, it suffices to prove that
L(P) ≤ R(P). By (C1) and the definition of pk, −1 < pk ≤ p1, for all k; also,
c1≥ 1. The calculation below uses the facts that s→ as is an increasing function
of s when a > 1 and is decreasing when a < 1 in the first two inequalities, and
Bernoulli 1 in the last one:

L(P) =

(
∑

k≤K
ck(1+ pk)

J

)s
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= cs
1(1+ p1)

sJ

(
1+

K

∑
k=2

c−1
1 ck

(
1+ pk

1+ p1

)J
)s

≤ cs
1(1+ p1)

sJ

(
1+

K

∑
k=2

c−1
1 ck

(
1+ pk

1+ p1

)J
)

≤ cs
1(1+ p1)

sJ

(
1+

K

∑
k=2

c−1
1 ck

(
1+ pk

1+ p1

)sJ
)

= cs
1(1+ p1)

sJ +
K

∑
k=2

cs−1
1 ck (1+ pk)

sJ

≤ c1(1+ sp1)
J +

K

∑
k=2

ck (1+ spk)
J = R(P).

and the proof is complete. The proof that (C4) implies L(A)≥ R(A) is similar.

We conclude this section with a proposition which is very similar in spirit
to Lemma 2.1. That Lemma showed that R(A) is minimal (subject to certain
constraints) when A = P; that is, when the a jk depend only on k. Our next
proposition goes further; if L = L(B) is fixed, then the minimal R(B) occurs
when b jk = bk has only 3 distinct values. In effect, it shows we may assume
K ≤ 3. Though not used in this paper, we believe that this second reduction may
have independent interest, and might be applied to other generalized Bernoulli
inequalities.

Proposition 2.2. Fix 0 ≤ s ≤ 1, {ck}, J, K, L and −1 < m < M. Consider the
family of all matrices B with constant columns determined by the bk, and so that
m ≤ bk ≤M for k = 1, ... K, and L(B) = L. If such B minimizes R(B), then all
bk, with the possible exception of one, are equal to m or M. This conclusion is
also true in the opposite case; when s > 1, m >−1

s and R(B) is maximal.

Proof. Suppose first that 0 < s < 1. We will show that one element in every
pair of bk’s is either m or M. We may take the pair to be {b1,b2} and can
assume b1 ≤ b2. We will treat these elements as variables in the interval [m,M]
and consider minimizing R(B). Let t1 = (1 + b1)

J and t2 = (1 + b2)
J , with

(1+m)J ≤ t1 ≤ t2 ≤ (1+M)J . Fix c1t1 + c2t2 = T , so that changing the ti will
not affect L(B). We will show that R(B) is minimal when at least one of the ti is
an endpoint, meaning that one of the bi is an endpoint. The summand in R(B)

affected by ti is equal to (st
1
J
i +1− s)J . Thus, we minimize

f (t1) = c1(st
1
J
1 +1− s)J + c2(st

1
J
2 +1− s)J.

where t2 is a function of t1. Note that dt2
dt1

=− c1
c2

. So,
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d f (t1)
dt1

= sc1(st
1
J
1 +1− s)J−1t

1
J−1
1 − sc1(st

1
J
2 +1− s)J−1t

1
J−1
2

= sc1[(1+ sb1)
J−1(1+b1)

1−J− (1+ sb2)
J−1(1+b2)

1−J]

It is easy to check that, for s < 1, 1+sx
1+x decreases with x. So, f ′ > 0, which

implies the minimum of f occurs when t1 is minimal or when t2 is maximal, and
we are done. When s > 1, 1+sx

1+x increases with x, so f ′ < 0, and the maximum
of f occurs when t1 is minimal or t2 is maximal.

3. Weierstrass Inequalities

We can use Theorem 1.1 to prove some Weierstrass product inequalities. In
order to study the convergence of infinite products, it is useful to find lower
bounds for products of the form ∏

n
i=1(1+xi) and ∏

n
i=1(1−xi) which are named

after K. Weierstrass, in terms of linear functions. K. Weierstrass was probably
the first to prove the following inequalities:

1+
n

∑
i=1

xi ≤
n

∏
i=1

(1+ xi), xi >−1, (7)

and if 0≤ x≤ 1

1−
n

∑
i=1

xi ≤
n

∏
i=1

(1− xi). (8)

These inequalities and their generalizations have attracted a lot of interest.
See for example [2], [4], [9] just to cite a few. The following is a corollary of
Theorem 1.1:

Theorem 3.1. Let ck ≥ 0 and 0≤ a jk < 1 and 0 < s < 1. Then,(
1+ ∑

k≤K
ck

J

∏
j=1

(1−a jk)

)s

≤ 1+ ∑
k≤K

ck

J

∏
j=1

(1− sa jk). (9)

When s > 1 and 0≤ a jk ≤ 1
s the inequality reverses.

Proof. In Theorem 1.1, set c1 = 1 and a j1 = 0 for all j. For k ≥ 2, replace
a jk by −a j,k−1, with a similar re-indexing of the ck. Then (C2) is satisfied and
Theorem 1.1 gives immediately Theorem 3.1. For the reverse, apply (C4).

Theorem 3.2. Let a jk ∈
[
−1

s ,1
]

and ck ≥ 0. Assume ∑k≤K ck = 1 and s≥ 1 and
m≤∏

J
j=1(1+a jk)

1/J−1≤M and

1+ sM ≤ (1+m)s.
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Then

1+ s ∑
k≤K
j≤J

cka jk ≤

(
∑

k≤K
ck

J

∏
j=1

(1+a jk)

)s

.

Proof. By (C3) of Theorem 1.1, and (7),(
∑

k≤K
ck

J

∏
j=1

(1+a jk)

)s

≥ ∑
k≤K

ck

J

∏
j=1

(1+ sa jk)

≥ ∑
k≤K

ck

(
1+ s ∑

j≤J
a jk

)
= 1+ s ∑

k≤K
j≤J

cka jk

as required.

Theorem 3.3. Let s≥ 1 and let a jk ∈ [0,1/s]; Let ck ≥ 0. Then

2− s ∑
k≤K
j≤J

cka jk ≤

(
1+ ∑

k≤K
ck

J

∏
j=1

(1−a jk)

)s

.

Proof. Follows from Theorem 3.1 and (8). Indeed,(
1+ ∑

k≤K
ck

J

∏
j=1

(1−a jk)

)s

≥ 1+ ∑
k≤K

ck

J

∏
j=1

(1− sa jk)

≥ 1+ ∑
k≤K

ck

(
1− s ∑

j≤J
a jk

)
= 2− s ∑

k≤K
j≤J

cka jk.
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