provided by Le Matematiche (Dipartimento di Matematica e Informatica

LE MATEMATICHE Vol. LXIV (2009) – Fasc. II, pp. 71–77

HENSTOCK INTEGRAL AND DINI-RIEMANN THEOREM

GIUSEPPE RAO - FRANCESCO TULONE

In [5] an analogue of the classical Dini-Riemann theorem related to non-absolutely convergent series of real number is obtained for the Lebesgue improper integral. Here we are extending it to the case of the Henstock integral.

1. Introduction

The classical Dini-Riemann theorem (see [2]) stating that if a series of real numbers is non-absolutely convergent, then it can be rearranged so that the new series converges to any arbitrary assigned value, was extended in [5] for the Lebesgue improper integral, using a measure preserving mapping instead of permutation.

In the same paper we have noticed that this fact is not true for some nonabsolute integrals. An example is the Kolmogorov A-integral (see [1] and [7]) which being non-absolute is known to be invariant under measure preserving mapping.

In this paper we extend the previous result to the case of Henstock integral. Once again we present a direct construction of measure preserving mapping that changes the value of the integral.

Entrato in redazione: 22 dicembre 2009

AMS 2000 Subject Classification: 26A39, 40A15

Keywords: Dini-Riemann theorem, Henstock integral, Lebesgue improper integral, Measure preserving mapping

2. Notations and results

All the functions we are considering here are real valued and defined in $[0,1]$ and μ , μ^* are understood as the Lebesgue measure and outer Lebesgue measure respectively.

We remind that a map ϕ is called measure preserving if the image $\phi(A)$ of any measurable set *A* is measurable and $\mu(\phi(A)) = \mu(A)$

The definition of the Henstock integral can be found for example in [3]. The only property of Henstock integral we need is the following theorem.

Theorem 2.1. *If a function* $f : [0,1] \rightarrow \mathbb{R}$ *is Lebesgue improper integrable, then it is Henstock integrable on* [0,1] *with the same integral value.*

Proof. This theorem is a special case of [3, Theorem 2.8.3] having in mind that each Lebesgue integrable function is Henstock integrable with the same value. \Box

The result of this paper is the following theorem.

Theorem 2.2. *For any Henstock integrable function* $f : [0,1] \rightarrow \mathbb{R}$ which is *not Lebesgue integrable and for any* $\alpha \in \mathbb{R}$ there exists a measure preserving *mapping* $\psi_{\alpha} : [0,1] \rightarrow [0,1]$ *one-to-one up to a set of measure zero such that* $f(\Psi_{\alpha}(x))$ *is also Henstock integrable function with integral value equal to* α *.*

Proof. We start with a modification of a construction given in [4].

Consider the measurable sets $A_n = \{x \in [0,1] : n-1 \le f(x) < n\}$ and $B_n =$ ${x \in [0,1]: -n \le f(x) < -n+1}$ for $n = 1,2,...$.

Putting

$$
A_n^k = A_n \bigcup \left[\frac{k-1}{n^2}, \frac{k}{n^2} \right] \quad \text{and} \quad B_n^k = B_n \bigcup \left[\frac{k-1}{n^2}, \frac{k}{n^2} \right]
$$

we have $A_n = \bigcup_{k=1}^{n^2} A_n^k$ and $B_n = \bigcup_{k=1}^{n^2} B_n^k$. It is clear that

$$
(\bigcup_{k,n} A_n^k) \cup (\bigcup_{k,n} B_n^k) = [0,1].
$$
 (1)

By the definition of the above sets for each *n* and *k* we get

$$
0 \le \int_{A_n^k} f \le n \cdot \frac{1}{n^2} = \frac{1}{n} \text{ and } 0 \ge \int_{B_n^k} f \ge -n \cdot \frac{1}{n^2} = -\frac{1}{n},
$$

so that

$$
\lim_{n\to\infty}\int_{A_n^k}f=\lim_{n\to\infty}\int_{B_n^k}f=0,
$$

independently of *k*.

We note that, since the function *f* is not Lebesgue integrable but Henstock integrable, then (see [4])

$$
\sum_{n}\sum_{k}\int_{A_n^k}f = +\infty \text{ and } \sum_{n}\sum_{k}\int_{B_n^k}f = -\infty.
$$

As in the proof of classical Dini-Riemann theorem we can introduce a linear numeration of the sequence

$$
\left\{ \int_{A_n^k} f \, , \, \int_{B_m^h} f \right\}_{n,k,m,h}
$$

denoting it as ${c_i}_{i=1}^{\infty}$ in such a way that $\sum_{i=1}^{\infty} c_i = \alpha$.

We denote by C_i the set A_n^k or B_m^h for which $\int_{A_n^k} f$ or $\int_{B_m^h} f$ is equal to c_i . We note that on each C_i the function f keeps the sign.

By (1) we have $\bigcup_{i=1}^{\infty} C_i = [0,1]$ and since C_i are non-overlapping the equality $\sum_{i=1}^{\infty} \mu(C_i) = 1$ holds.

Let $D_i \subset C_i$ be the subset of all density points of C_i that belong to C_i . We take into account only those C_i for which D_i is nonempty. The sets D_i are mutually disjoint. We still have $\sum_{i=1}^{\infty} \mu(D_i) = 1$ and $\mu([0,1] \setminus (\cup_i D_i)) = 0$.

We put $t_0 := 0$ and $t_j := \sum_{i=1}^{j}$ $\mu_{i=1}^{J} \mu(D_i)$ for $j \ge 1$. Now we define the function φ : $\cup_i D_i \rightarrow [0,1]$ so that

$$
\varphi(x) = \sum_{i=1}^{j-1} \mu(D_i) + \mu(D_j \cap [0, x]) = t_{j-1} + \mu(D_j \cap [0, x]) \text{ for } x \in D_j.
$$
 (2)

This function is strictly increasing on D_j for each fixed *j*. Indeed if we take two points x_1 and x_2 of the same D_j , $x_1 < x_2$, then

$$
\varphi(x_2) - \varphi(x_1) = \mu(D_j \cap [0, x_2]) - \mu(D_j \cap [0, x_1]) = \mu(D_j \cap (x_1, x_2]) > 0.
$$

Moreover if x_1 and x_2 belong to different sets $x_1 \in D_i$ and $x_2 \in D_i$ with *l* > *j*, then $\varphi(x_1) \neq \varphi(x_2)$ because $\varphi(x_2) - \varphi(x_1) \geq \mu(D_i \cap (x_1, 1]) > 0$. From this follows that the sets $\varphi(D_i)$ are mutually disjoint. We note also that

$$
\varphi(D_j) \subset [t_{j-1}, t_j]. \tag{3}
$$

and $\varphi(\cup_i(D_i)) = \cup_i(\varphi(D_i)) \subset [0,1]$. Therefore φ is one-to-one and we can define $\varphi^{-1} : \varphi(\cup_i D_i) \to \cup_i D_i$.

We prove that the function φ is measurable and preserves the measure. As for measurability it is enough to note that for any $0 < c < 1$ there exist *j* and *y* such that

$$
\{x : \varphi(x) < c\} = (\cup_{i=1}^{j-1} D_i) \cup (D_j \cap [0, y))
$$

where *j* is chosen in such a way that $\sum_{i=1}^{j-1}$ $j-1 \atop i=1} \mu(D_i) \leq c < \sum_{i}^j$ $\mu_{i=1}^{J}$ $\mu(D_i)$.

Because of σ -additivity of the measure and because the sets D_i are disjoint together with their images, it is enough to prove that φ is measure preserving mapping on each D_j , $j = 1, 2, \dots$ So let *j* be fixed.

We shall use the following estimate (see [6], ch. VII, theorem 6.5): if a measurable function *F* is differentiable on a measurable set *A* then

$$
\mu^*(F(A)) \le \int_A |F'(x)| d\mu. \tag{4}
$$

We apply the above estimation for a function φ_i defined on [0,1] by

$$
\varphi_j(x) = \sum_{i=1}^{j-1} \mu(D_i) + \int_0^x \chi_{D_j} d\mu.
$$

The function φ_j is continuous being the indefinite Lebesgue integral. We obviously have $\varphi_j([0,1]) = [t_{j-1}, t_j]$ and so

$$
\varphi_j(1) - \varphi_j(0) = \mu(D_j). \tag{5}
$$

We note also that for $x \in D_j$ we have $\varphi_i(x) = \varphi(x)$. Since each point $x \in D_j$ is a point of density of D_j then $\varphi'_j(x) = 1$ for such *x*. Now using (4) for any measurable set $M, M \subset D_j$, we obtain

$$
\mu^*(\varphi(M)) = \mu^*(\varphi_j(M)) \le \int_M \chi_{D_j} d\mu = \mu(M). \tag{6}
$$

In particular we have

$$
\mu^*(\varphi(D_j)) \le \mu(D_j). \tag{7}
$$

Let $S_j = \{x \in [0, 1] : \varphi'_j(x) = 0\}$ and

$$
P_j = \{x \in [0,1] : 0 < \varphi'_j(x) < 1 \text{ or } \varphi'_j(x) \text{ does not exists} \}.
$$

The Lebesgue density theorem implies that

$$
\mu(S_j) = \mu([0,1] \setminus D_j) \text{ and } \mu(P_j) = 0.
$$

Applying (4) to the function φ_i and the set S_i we get

$$
\mu(\varphi_j(S_j)) = 0. \tag{8}
$$

The function φ_j being the indefinite Lebesgue integral is absolutely continuous and so has Lusin (N)-property, hence

$$
\mu(\varphi_j(P_j)) = 0. \tag{9}
$$

Now combining the (7), (8) and (9) we obtain

$$
\mu(\varphi_j([0,1])) \leq \mu^*(\varphi_j(D_j)) + \mu(\varphi_j(P_j)) + \mu(\varphi_j(S_j)) = \mu^*(\varphi(D_j)) \leq \mu(D_j). \tag{10}
$$

As φ_j is monotonic and continuous on [0,1], so $\mu(\varphi_j([0,1])) = \varphi_j(1) - \varphi_j(0)$. Combining this with (5) and (10) we get

$$
\mu(D_j) \leq \mu^*(\varphi(D_j)) \leq \mu(D_j).
$$

Therefore we finally obtain

$$
\mu^*(\varphi(D_j)) = \mu(D_j) = t_{j-1} - t_j.
$$
\n(11)

Moreover $\varphi(D_i)$ is measurable. Indeed

$$
\varphi(D_j) = \varphi_j(D_j) \supset \varphi_j([0,1]) \setminus (\varphi_j(P_j) \cup \varphi_j(S_j)) = [t_{j-1},t_j] \setminus (\varphi_j(P_j) \cup \varphi_j(S_j)).
$$

This together with (3) shows that $\varphi(D_j)$ coincides with the interval $[t_{j-1}, t_j]$ up to the set of measure zero and hence it is measurable. So we can rewrite (11) as

$$
\mu(\varphi(D_j)) = \mu(D_j). \tag{12}
$$

To get the same equality for any measurable *M*, $M \subset D_i$ we rewrite (6) for $D_j \setminus M$ obtaining $\mu^*(\varphi(D_j \setminus M)) \leq \mu(D_j \setminus M)$. This together with (12) and the subadditivity of outer measure gives

$$
\mu^*(\varphi(M)) \geq \mu(\varphi(D_j)) - \mu^*(\varphi(D_j \setminus M)) \geq \mu(D_j) - \mu(D_j \setminus M) = \mu(M).
$$

Comparing this with (6) we obtain that $\mu^*(\varphi(M)) = \mu(M)$ for any $M \subset D_j$.

From this, (12) and the fact that the mapping φ is one-to-one on D_i we get

$$
\mu^*(\varphi(D_j)\setminus \varphi(M)) = \mu^*(\varphi(D_j\setminus M)) = \mu(D_j\setminus M) = \mu(D_j) - \mu(M) =
$$

= $\mu(\varphi(D_j) - \mu^*(\varphi(M)).$

Considering $\varphi(M)$ as a subset of measurable set $\varphi(D_i)$ we can interpret the above equality as Lebe sgue criterium for measurability of $\varphi(M)$. So we have proved that φ is a measure preserving mapping on D_i and therefore on whole ∪*iDⁱ* .

We also have

$$
\mu(\varphi(\cup_i D_i)) = \mu(\cup_i(\varphi(D_i))) = \sum_i \mu(\varphi(D_i)) = \sum_i \mu(D_i) = 1.
$$

So both functions $\pmb{\varphi}$ and $\pmb{\varphi}^{-1}$ are mapping $[0,1]$ onto $[0,1]$, up to a set of measure zero. We show now that $\psi_{\alpha} := \varphi^{-1}$ is the function we are looking for.

To prove that ψ_{α} is also measure preserving mapping it is enough to check that the pre-image of any measurable set under our mapping φ is measurable. So, let $\varphi(E)$ be a measurable set then $\varphi(E) = A \cup B$ where *A* is a Borel set and $\mu(B) = 0$. Then $E = \varphi^{-1}(A) \cup \varphi^{-1}(B)$, with $\varphi^{-1}(A)$ measurable as preimage of a Borel set under measurable mapping. We can also find a Borel set *G* such that $B \subset G$ and $\mu(G) = 0$. Therefore $\varphi^{-1}(B) \subset \varphi^{-1}(G)$ with $\varphi^{-1}(G)$ measurable. Since we know that φ is measure preserving mapping on the class of measurable sets we get $\mu(G) = \mu^*(\varphi(\varphi^{-1}(G))) = \mu(\varphi^{-1}(G))$. This implies $\mu(\varphi^{-1}(B)) = 0$ and then $\varphi^{-1}(B)$ is measurable. This proves the measurability of *E*. As φ is one-to-one on [0,1] up to the set of measure zero and is measure preserving mapping we obtain that $\psi_{\alpha} = \varphi^{-1}$ is also measure preserving mapping.

The function $f(\psi_\alpha(y))$ is defined almost everywhere on [0, 1]. As the Lebesgue integral is invariant under measure preserving mapping we get

$$
\int_{t_{j-1}}^{t_j} f(\psi_\alpha(y))d\mu_y = \int_{\varphi(D_j)} f(\psi_\alpha(y))d\mu_y = \int_{D_j} f(x)d\mu_x = c_j.
$$

Therefore we get $\int_0^{t_n} f(\psi(y)) d\mu_y = \sum_{k=1}^n c_k$.

So, having in mind that $\sum_{n=1}^{+\infty} c_n = \alpha$, we obtain

$$
\lim_{n\longrightarrow\infty}\int_0^{t_n}f(\psi)d\mu_y=\lim_{n\longrightarrow\infty}\sum_{k=1}^nc_k=\alpha.
$$

Considering now any *t*, $0 < t < 1$, there exists *n* such that $t_{n-1} < t < t_n$ and the interval (t_{n-1}, t_n) is the image of D_j , up to a set of measure zero. As the function *f*(ψ) keeps the sign on [t_{n-1}, t_n], then the value of $\int_0^t f(\varphi^{-1}(y)) d\mu_y$ is between the values $\int_0^{t_{n-1}} f(\varphi^{-1}(y)) d\mu_y$ and $\int_0^{t_n} f(\varphi^{-1}(y)) d\mu_y$, and we conclude

$$
\lim_{t\longrightarrow 1}\int_0^t f(\varphi^{-1}(y))d\mu_y=\alpha
$$

proving that improper Lebesgue integral of function $f(\psi(y))$ on [0,1] is equal to α . Now applying Theorem 2.1 we complete the proof of Theorem 2.2. \Box

REFERENCES

- [1] N. K. Bary: *A treatise on trigonometric series*, Macmillam, New York, 1964.
- [2] E.W. Hobson: *The theory of functions of a real variables and the theory of Fourier's series*, Vol. 2, Dover Publications Inc., New York, 1957.
- [3] P.Y. Lee R. Vyborny: *The Integral: An Easy Approach after Kurzweil and Henstock*, Cambridge University Press, 2000.
- [4] S. P. Lu P.Y Lee, *Globally small Riemann sums and the Henstock integral*, Real Analysis Exchange 16 (2) (1990/91), 537–545.
- [5] G. Rao F. Tulone: *Analogue of Dini-Riemann theorem for non-absolutely convergent integrals*, Le Matematiche, Vol 62 (1) (2007), 129–134.
- [6] S. Saks: *Theory of the integral*, Dover, New York, 1964.
- [7] V.A. Skvortsov: *A Martingale closure theorem for A-integrable martingale sequences*, Real Analysis Exchange, 24 (2) (1998/99), 815–820.

GIUSEPPE RAO Department of Mathematic and Applications Palermo University e-mail: rao@math.unipa.it

FRANCESCO TULONE Department of Mathematic and Applications Palermo University e-mail: tulone@math.unipa.it