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EXTENDED SOLUTIONS OF A SYSTEM OF NONLINEAR
INTEGRO-DIFFERENTIAL EQUATIONS

U. V. LÊ - L. T. T. NGUYÊN - E. PASCALI - A. H. SANATPOUR

This paper deals with extended solutions of a system of nonlinear
integro-differential equations. This system is obtained in the process of
applying the Galerkin method for some initial-boundary value problems.
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1. Introduction

The Galerkin method has received considerable attention as a powerful numer-
ical solution technique to differential equations. It has been widely used as a
main tool in the study of wave equations with different boundary value types
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(see [4–12, 14]) and the references therein. In [5] Lê applies the Galerkin
method to show the solvability of the following initial-boundary value problem
with the unknown u(x, t), 0 < x < 1, 0 < t < T :

∂ 2u
∂ t2 (x, t)−µ(t)

∂ 2u
∂x2 (x, t)+F

(
u(x, t),

∂u
∂ t

(x, t)
)

= f (x, t), (1.1)

u(0, t) = 0, (1.2)

−µ(t)
∂u
∂x

(1, t) = Q(t), (1.3)

u(x,0) = u0(x),
∂u
∂ t

(x,0) = u1(x), (1.4)

where T > 0 is given, and

Q(t) = K1(t)u(1, t)+λ1(t)
∂u
∂ t

(1, t)−g(t)−
∫ t

0
k(t− s)u(1,s)ds, (1.5)

F
(

u,
∂u
∂ t

)
= K|u|p−2u+λ

∣∣∣∣∂u
∂ t

∣∣∣∣q−2
∂u
∂ t

for p, q≥ 2, (1.6)

with given constants K and λ , and given functions u0,u1, f ,µ,g,k,K1, and λ1.
The system (1.1)-(1.6) is known as a mathematical model describing the shock
of a rigid body and a viscoelastic bar, see [5, 9] and the references therein.
In the integral equation of the unknown boundary value u(1, t), curiosity of
the appearance of the convolution k ∗u(1, ·) over (0, t) is usually an interesting
topic. For a clarification, we would like to refer to [13], in which the mechanical
motivation of the above convolution is specifically detailed by a practical model
for the collision between a free-fall hammer of a pile-driver and an elastic pile.
Since [13] is now online, let us omit the details of this considerable theme.

By applying the Galerkin method, the author in [5] constructs solutions
of certain type of finite-dimensional approximations for this system (see also
[1, 15, 16, 18]). Specifically, by considering

{
ω j
}

as a denumerable and or-
thonormal basis of

V = {v ∈ H1(0,1) : v(0) = 0},

the approximate solutions of the problem (1.1)-(1.6) are presented as follows:

um(x, t) =
m

∑
j=1

cm j(t)ω j (x) , (1.7)

where the unknown coefficients cm j satisfy the following system of ordinary
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linear differential equations:

〈
∂ 2um

∂ t2 (·, t),ω j

〉
+
〈

∂um

∂x
(·, t),ω ′j

〉
+Qm(t)ω j(1)+

+
〈

F
(

um(·, t), ∂um

∂ t
(·, t)

)
,ω j

〉
=
〈

f (·, t),ω j
〉
, 1≤ j ≤ m, (1.8)

Qm(t) = um(1, t)+
∂um

∂ t
(1, t)+g(t)−

∫ t

0
k(t− s)um(1,s)ds, (1.9)

with

um(·,0) = u0m =
m

∑
j=1

αm jω j→ u0 strongly in V, (1.10)

∂um

∂ t
(·,0) = u1m =

m

∑
j=1

βm jω j→ u1 strongly in L2, (1.11)

here 〈·, ·〉 is the scalar product in L2(0,1). By a similar argument to that of the
case

F
(

u,
∂u
∂ t

)
= Ku+λ

∂u
∂ t

in [12, Section 3.1], one can see that also in the general case of (1.6) the un-
known coefficients cm j are the solution of the following system:

c′′i (t)+
m

∑
j=1

[
〈w′j,w′i〉+w j(1)wi(1)

]
c j(t)+

m

∑
j=1

w j(1)wi(1)c′j(t)−

−
m

∑
j=1

w j(1)wi(1)
∫ t

0
k(t− s)c j(s)ds+ 〈F

(
u(·, t), ∂u

∂ t
(·, t)

)
,wi〉=

=−g(t)wi(1)+ 〈 f (·, t),wi〉 , (1.12)

ci(0) = αi,c′i(0) = βi, 1≤ i≤ m (1.13)

with the unknown functions c j. Let us denote

c(t) = (c1(t),c2(t), · · · ,cm(t)) ,



6 U. V. LÊ - L. T. T. NGUYÊN - E. PASCALI - A. H. SANATPOUR

and for each 1≤ i≤ m,

F1i
(
t,c(t),c′(t)

)
=−

m

∑
j=1

[
〈ω ′j,ω ′i 〉+ω j(1)ωi(1)

]
c j(t)−

−
m

∑
j=1

ω j(1)ωi(1)c′j(t)−g(t)ωi(1)+ 〈 f (·, t),ωi〉−

−
〈

F
( m

∑
j=1

ω jc j(t),
m

∑
j=1

ω jc′j(t)
)

,ωi

〉
=

=−
m

∑
j=1

[
〈ω ′j,ω ′i 〉+ω j(1)ωi(1)

]
c j(t)−

m

∑
j=1

ω j(1)ωi(1)c′j(t)−g(t)ωi(1)+

+〈 f (t),ωi〉−
m

∑
j=1

K
〈∣∣∣∣ m

∑
j=1

ω jc j(t)
∣∣∣∣p−2

ω jc j(t),ωi

〉
+

+
m

∑
j=1

λ

〈∣∣∣∣ m

∑
j=1

ω jc′j(t)
∣∣∣∣q−2

ω jc′j(t),ωi

〉
, (1.14)

and

F2i
(
c(t)
)

=
m

∑
j=1

ω j(1)ωi(1)c j(t). (1.15)

Then by setting αi = ci(0) and βi = c′i(0), 1≤ i≤m, and considering the multi-
variable functions F1i : [0,T ]×R2m→ R and F2i : Rm→ R described in (1.14)
and (1.15), we can rewrite the system (1.12)-(1.13) as the following equivalent
system of integro-differential equations:

ci(t) = αi +βit +
∫ t

0

(∫
τ

0

(
Gc
)

i(s)ds
)

dτ, (1.16)

(
Gc
)

i(t) = F1i
(
t,c(t),c′(t)

)
+
∫ t

0
k(t− s)F2i

(
c(s)

)
ds, (1.17)

where 0 ≤ t ≤ T, 1 ≤ i ≤ m; αi and βi are given constants, and k, F1i : [0,T ]×
R2m→ R,F2i : Rm→ R are given functions.

It is worth mentioning that the appearance of the system (1.16)-(1.17) from
(1.16)-(1.17) gives an important connection between systems of partial differen-
tial equations and systems of integro-differential equations. Besides giving this
relationship between different aspects of differential equations, [12, Remark 3]
gives another interest for the study of system (1.16)-(1.17) by describing this
system as a generalization of the Lotka-Volterra system, see [2, 3, 17]. Indeed it
is shown that in the case of n = 2, by suitable choices of k, F1i and F2i, i = 1,2,
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the system (1.16)-(1.17) admits the following differential form of Lotka-Volterra
equations:

c′1(t) = β1 + c1(t)
(
a11 +a12c2(t)

)
, (1.18)

c′2(t) = β2 + c2(t)
(
a21 +a22c1(t)

)
, (1.19)

where βi,ai j ∈ R for i, j = 1,2.

Lê and Pascali in [12] prove that the system (1.16)-(1.17) is solvable in
C1 ([0,T ∗];Rm) for some T ∗ ∈ (0,T ], when k ∈ L1(0,T ), F1i ∈ C

(
R2m+1;R

)
and F2i ∈C (Rm;R), 1≤ i≤m. Later, the system (1.16)-(1.17) is generalized to
the following system of integro-differential equations:

ci (t) = Gi (t)+
∫ t

0
Ni (t− τ)(V c)i (τ)dτ, 0≤ t ≤ T,1≤ i≤ m, (1.20)

(V c)i (t) = H1i

(
t,c(t) ,c′ (t) , · · ·,c(k) (t)

)
+

+
∫ t

0
ki (t− τ)H2i

(
t,τ,c(τ) ,c′ (τ) , · · ·,c(k) (τ)

)
dτ (1.21)

for k,m ∈N, and given functions Gi, Ni, ki, H1i, H2i, 1≤ i≤m. Noticeably, [12,
Section 4] gives a sketch of the proof for the solvability of the system (1.20)-
(1.21) in Ck ([0,T ∗] ;Rm) for some T ∗ ∈ (0,T ]. Here Ck ([0,T ];Rm) denotes the
Banach space of all of k−differential functions

u : [0,T ]→ Rm,

u(t) = (u1(t),u2(t), · · · ,um(t))

endowed with the norm

‖u‖Ck([0,T ];Rm) =
k

∑
j=0
‖u( j)‖0,

‖u‖0 = sup
0≤t≤T

|u(t)|1, |u(t)|1 =
m

∑
i=1
|ui(t)|.

To guarantee the existence of local solutions Lê and Pascali make the following
assumptions on G j, N j, k j, H1 j and H2 j, 1≤ j ≤ m:

(BG) G j ∈Ck ([0,T ];R),

(Bk) k j ∈ L1(0,T ),
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(BN) N j ∈Ck ([0,T ];R), and for each 0≤ p≤ k there exists a constant C jp > 0
such that N(p)

j satisfy the Lipschitz condition:

∣∣∣N(p)
j (t)−N(p)

j

(
t̃
)∣∣∣≤C jp|t− t̃| for all

(
t, t̃
)
∈ [0,T ]2,

(BH) H1 j ∈C
(
R(k+1)m+1;R

)
, H2 j ∈C

(
R(k+1)m+2;R

)
.

For the assumption (BH) more restricted, in this paper we obtain extended
solutions of the system (1.20)-(1.21) by extending the local solutions given in
[12, Theorem 2]. More precisely, as mentioned, while the solvability of this sys-
tem only exists on [0,T ∗]⊆ [0,T ] for T > 0 given, in this project this solvability
is extended in to the full interval [0,T ].

As compared with [12], the result in this paper is more advanced in terms of

� the mathematical reason: the extension of the solution of the system
(1.20)-(1.21) is obtained, as stated, and

� technical difficulties:

. Since more restrictions on the given functions H1 j and H2 j for 1 ≤
j≤m are added, a proof of the mathematical claim must be clarified.
Then one may see how possibly the new result is obtained and the
restricted conditions on the given data are adopted,

. the key constant M in [12] only depends on (α j,β j) for 1 ≤ j ≤ m,
correspondent to G j in this paper. However, here the key constant M
depends not only on G j but also on all given functions of the system
(1.20)-(1.21). On the other hand, if the proof were not specified, or
were only claimed, “the similarity” between the solvability in this
paper and in [12] would be “misunderstood”.

2. Extension of the solution for the system (1.20)-(1.21)

For given natural numbers m, k ≥ 1, we can rewrite the system (1.20)-(1.21) as
follows:

c j (t) = (Uc) j (t) , 0≤ t ≤ T, 1≤ j ≤ m, (2.1)
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where

(Uc) j (t) = G j (t)+
∫ t

0
N j (t− τ)(V c) j (τ)dτ, 0≤ t ≤ T,1≤ j ≤ m,

(2.2)

(V c) j (t) = H1 j

(
t,c(t) ,c′ (t) , · · · ,ck (t)

)
+

+
∫ t

0
k j (t− τ)H2 j

(
t,τ,c(τ) ,c′ (τ) , · · · ,ck (τ)

)
dτ, (2.3)

with 0≤ t ≤ T , and G j,k j,N j,H1 j and H2 j, for 1≤ j ≤ m, given functions. To
obtain the extended solution of the system (2.1)-(2.3), we make the following
assumptions: for each 1≤ j ≤ m,

(EG) G j ∈Ck ([0,T ];R),

(Ek) k j ∈ L1(0,T ),

(EN) N j ∈Ck ([0,T ];R), and for each 0≤ p≤ k there exists a constant C jp > 0
such that N(p)

j satisfy the Lipschitz condition:∣∣∣N(p)
j (t)−N(p)

j

(
t̃
)∣∣∣≤C jp|t− t̃| for all

(
t, t̃
)
∈ [0,T ]2,

(EH)
(
H1 j,H2 j

)
∈C

(
[0,T ]×R(k+1)m;R

)
×C

(
[0,T ]2×R(k+1)m;R

)
and there

exists
(C1,C2) ∈ L∞ ([0,T ];R∗)×L∞

(
[0,T ]2;R∗

)
,

R∗ = R+∪{0}, such that∣∣H1 j(t,x)
∣∣≤C1(t),

∣∣H2 j(t,τ,x)
∣∣≤C2(t,τ)

for all x ∈ R(k+1)m and (t,τ) ∈ [0,T ]2.

Now we are proving that the assumptions (EG), (Ek), (EN) and (EH) provide
an extended solution in Ck ([0,T ];Rm) of the system (2.1)-(2.3). Indeed, we find
M > 0 such that the mapping U : S→ S given by (2.1)-(2.3) has a fixed point in
the set

S =
{

c ∈Ck ([0,T ];Rm) : ‖c‖k ≤M
}

.

To do this, we prove the following properties of the operator U , or steps:

(1) U is a selfmap of S,

(2) U : Y → Y is continuous,
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(3) US is a compact subset of Y .

Step 1. U is a selfmap of S.

First note that (V c) j ∈C ([0,T ];R) for each c ∈Y = Ck ([0,T ];Rm) and 1≤
j ≤ m. On the other hand, for each 1≤ j ≤ m and 0≤ p≤ k, from (2.2) we get

(Uc)(p)
j (t) = G(p)

j (t)+
∫ t

0
N(p)

j (t− τ)(V c) j (τ)dτ. (2.4)

This along with the above assumptions imply that Uc∈Y , meaning that UY ⊆Y .
Now for c ∈ S, we deduce from (2.4) that∣∣∣(Uc)(p)

j (t)
∣∣∣≤ ∣∣∣G(p)

j (t)
∣∣∣+∫ t

0

∣∣∣N(p)
j (t− τ)(V c) j (τ)

∣∣∣dτ (2.5)

≤
∥∥∥G(p)

j

∥∥∥
0
+T

∥∥∥N(p)
j

∥∥∥
0

∥∥∥(V c) j

∥∥∥
0

for p = 0,1, ...,k. Thus

‖Uc‖k ≤
k

∑
p=0

m

∑
j=1

∥∥∥G(p)
j

∥∥∥
0
+T

(
k

∑
p=0

m

∑
j=1

∥∥∥N(p)
j

∥∥∥
0

∥∥∥(V c) j

∥∥∥
0

)
. (2.6)

Now we are estimating
∥∥∥(V c) j

∥∥∥
0
. For 1≤ j ≤ m let

N (H1 j) = sup
{∣∣H1 j

(
τ, t1, ..., t(k+1)m

)∣∣ :(
τ, t1, ..., t(k+1)m

)
∈ [0,T ]× [−M,M](k+1)m},

N (H2 j) = sup
{∣∣H2 j

(
τ1,τ2, t1, ..., t(k+1)m

)∣∣ :(
τ1,τ2, t1, ..., t(k+1)m

)
∈ [0,T ]2× [−M,M](k+1)m},

and
N (H1 j,H2 j,k) = N (H1 j)+

∥∥k j
∥∥

L1(0,T ) N (H2 j) . (2.7)

Note that by the assumptions of the theorem the values N (H1 j), N (H2 j), and
hence N (H1 j,H2 j,k) are bounded and well-defined (independent of M). Now
from (2.3) we get∣∣∣(V c) j (τ)

∣∣∣≤ ∣∣∣H1

(
τ,c(τ) ,c′ (τ) · · ·ck (τ)

)∣∣∣+
+
∫

τ

0
|k (τ− s)|

∣∣∣H2

(
τ,s,c(s) ,c′ (s) · · ·ck (s)

)∣∣∣ds, (2.8)

implying ∥∥∥(V c) j

∥∥∥
0
≤ N (H1 j,H2 j,k) for all c ∈ S. (2.9)
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Applying (2.6) and (2.9) yields

‖Uc‖k ≤
k

∑
p=0

m

∑
j=1

∥∥∥G(p)
j

∥∥∥
0
+T

(
k

∑
p=0

m

∑
j=1

∥∥∥N(p)
j

∥∥∥
0

N (H1 j,H2 j,k)

)
. (2.10)

By choosing the constant M large enough, such that

k

∑
p=0

m

∑
j=1

∥∥∥G(p)
j

∥∥∥
0
+T

(
k

∑
p=0

m

∑
j=1

∥∥∥N(p)
j

∥∥∥
0

N (H1 j,H2 j,k)

)
≤M

and applying (2.10), we have ‖Uc‖k ≤M for all c ∈ S, meaning that US⊆ S.
Step 2. U : Y → Y is continuous.

First note that from (2.2) for each (y1,y2) ∈ Y 2, 0 ≤ p ≤ k and 1 ≤ j ≤ m
we have∣∣∣(Uy1)

(p)
j (t)− (Uy2)

(p)
j (t)

∣∣∣= ∫ t

0

∣∣∣N(p)
j (t− τ)

∣∣∣ ∣∣∣(V y1) j (τ)− (V y2) j (τ)
∣∣∣dτ,

≤ T
∥∥∥N(p)

j

∥∥∥
0
‖V y1−V y2‖0 ,

implying ∥∥∥(Uy1)
(p)− (Uy2)

(p)
∥∥∥

0
≤ T

(
m

∑
j=1

∥∥∥N(p)
j

∥∥∥
0

)
‖V y1−V y2‖0 ,

and hence

‖Uy1−Uy2‖k ≤ T

(
k

∑
p=0

m

∑
j=1

∥∥∥N(p)
j

∥∥∥
0

)
‖V y1−V y2‖0 .

Therefore, to prove the continuity of U : Y → Y , it is enough to prove the conti-
nuity of V : Y →C ([0,T ];Rm).
Let xn→ x0 in Y , which is equivalent to

x(p)
n → x(p)

0 in C ([0,T ];Rm)

for p = 0,1, ...,k. Then one can find a constant M0 > 0 such that

x(p)
n (s) ,x(p)

0 (s) ∈ [−M0,M0]
m

for all s ∈ [0,T ], and p = 0,1, ...,k. Since H1 j is uniformly continuous on

[0,T ]× [−M0,M0]
(k+1)m ,
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we get

sup
0≤t≤T

∣∣∣∣H1 j

(
t,xn (t) ,x′n (t) , · · · ,x(k)

0 (t)
)
−

−H1 j

(
t,x0 (t) ,x′0 (t) , · · · ,x(k)

0 (t)
)∣∣∣∣→ 0 (2.11)

when n→ ∞. Similarly, by the uniform continuity of H2 j on

[0,T ]2× [−M0,M0]
(k+1)m ,

we have

sup
0≤t,s≤T

∣∣∣∣H2 j

(
t,s,xn (s) ,x′n (s) , · · · ,x(k)

n (s)
)
−

−H2 j

(
t,s,x0 (s) ,x′0 (s) , · · · ,x(k)

0 (s)
)∣∣∣∣→ 0 (2.12)

when n→ ∞. Now considering (2.3) we have

‖V xn−V x0‖0 ≤

≤ sup
0≤t≤T

m

∑
j=1

∣∣∣∣H1 j

(
t,xn (t) ,x′n (t) , · · · ,x(k)

n (t)
)
−

−H1 j

(
t,x0 (t) ,x′0 (t) , · · · ,x(k)

0 (t)
)∣∣∣∣+

+ sup
0≤t≤T

m

∑
j=1

∫ t

0
|k (t,s)|

∣∣∣∣[H2 j

(
t,s,xn (s) ,x′n (s) , · · · ,x(k)

n (s)
)
−

−H2 j

(
t,s,x0 (s) ,x′0 (s) , · · · ,x(k)

0 (s)
)]∣∣∣∣ds≤

≤ sup
0≤t≤T

m

∑
j=1

∣∣∣∣H1 j

(
t,xn (t) ,x′n (t) , · · · ,x(k)

n (t)
)
−

−H1 j

(
t,x0 (t) ,x′0 (t) , · · · ,x(k)

0 (t)
)∣∣∣∣+

+‖k‖L1(0,T ) sup
0≤t,s≤T

m

∑
j=1

∣∣∣∣[H2 j

(
t,s,xn (s) ,x′n (s) , · · · ,x(k)

n (s)
)
−

−H2 j

(
t,s,x0 (s) ,x′0 (s) , · · · ,x(k)

0 (s)
)]∣∣∣∣.

Therefore, by applying (2.11) and (2.12) we get

‖V xn−V x0‖0→ 0, n→ ∞,
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which implies the continuity of V : Y →C ([0,T ];Rm). This completes the proof
of this step.

Step 3. US is a compact subset of Y .

Let c ∈ S and t1, t2 ∈ [0,T ]. Then from (2.4) we get∣∣∣(Uc)(p)
j (t1)− (Uc)(p)

j (t2)
∣∣∣≤ ∣∣∣G(p)

j (t1)−G(p)
j (t2)

∣∣∣+
+
∣∣∣∣∫ t1

0
N(p)

j (t1− τ)(V c) j (τ)dτ−
∫ t2

0
N(p)

j (t2− τ)(V c) j (τ)dτ

∣∣∣∣
≤
∣∣∣G(p)

j (t1)−G(p)
j (t2)

∣∣∣+∫ t2

0

∣∣∣N(p)
j (t1− τ)−N(p)

j (t2− τ)
∣∣∣ ∣∣∣(V c) j (τ)

∣∣∣dτ+

+
∣∣∣∣∫ t2

t1
N(p)

j (t1− τ)(V c) j (τ)dτ

∣∣∣∣
≤
∣∣∣G(p)

j (t1)−G(p)
j (t2)

∣∣∣+TC jp ‖(V c)‖0 |t1− t2|+
∥∥∥N(p)

∥∥∥
0
‖(V c)‖0 |t1− t2| .

(2.13)

On the other hand, G j ∈ Ck ([0,T ];R). Therefore by (2.13) and using Arzela-
Ascoli theorem we conclude that US is compact in Y . In summary, by the
Schauder fixed-point theorem U : S→ S has fixed point c ∈ S, which implies
the existence of the solution c for the system (2.1)-(2.3). Therefore we have the
following result:

Theorem 2.1. The assumptions (EG), (Ek), (EN) and (EH) provide an extended
solution c ∈Ck ([0,T ];Rm) of the system (1.20)-(1.21).

Remark 2.2. It is worth noting out that the nonlinear damping-source term
of the equation (1.1) F

(
u, ∂u

∂ t

)
given by (1.6) is correspondent to that in [12]

with respect to p = q = 2, a linear case. This difference does not actually give
any changes of the systems of integro-differential equations studied in both this
paper and in [12]. By starting from the nonlinear initial-boundary value prob-
lem (1.1)-(1.6), we would like to show that these systems of integro-differential
equations obviously cover the system deduced from the process of applying
the Galerkin approximation for not only the problem (1.1)-(1.6), but also many
other nonlinear initial-boundary problems.

Remark 2.3. Observing the assumption (EH) and the solution of the system
(1.20)-(1.21), one can see that the functions H1i and H2i, 1≤ i≤m, are adapted
to the problem (1.1)-(1.6) in terms of the continuity and the boundedness in time
of these functions.
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3. Some further problems

In this paper, the first open problem in [12, Section 5] has been solved. Here let
us recall some further interesting questions regarding system the (1.20)-(1.21)
as follows:

1. The solvability by a suitable iterative procedure, even with less restricted
data.

2. Numerical solutions with respect to some special given data.

3. One can consider the solution existence when Hi j are not continuous for
each i∈ {1,2} and j = 1,m, we can suppose that Hi j satisfy the following
conditions:

◦ H1 j(t, ·) and H2 j(t,τ, ·) are bounded on bounded sets of R(k+1)m for
(t,τ) ∈ R2

+,

◦ H1 j(·,ξ ,η) and H2 j(·, ·,ξ ,η) are measurable on R+ and on R2
+,

respectively, for every fixed (ξ ,η) ∈ R2(k+1)m,

◦ H1 j(t, ·, ·) and H2 j(t,τ, ·, ·) are continuous R2(k+1)m for all (t,τ) ∈
R2

+.

4. Approximating the solutions by sequences of polynomials.
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[10] U. V. Lê, Contraction-Galerkin method for a semi-linear wave equation, Com-
mun. Pure Appl. Anal. 9 (2010), 141–160.
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