LE MATEMATICHE Vol. LI (1996) – Fasc. II, pp. 203–220

ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS IN UNBOUNDED DOMAINS OF \mathbb{R}^2

MARIO TROISI - ANTONIO VITOLO

Dedicated to Professor Francesco Guglielmino on his seventieth birthday

In this paper we are concerned with second order elliptic equations in unbounded domains Ω of \mathbb{R}^2 . We establish existence and uniqueness theorems under the assumptions that the leading coefficients are bounded and measurable in Ω and satisfy a suitable condition at infinity.

Introduction.

Let Ω a sufficiently regular open subset of \mathbb{R}^2 . In Ω we consider the second order linear differential operator

(1)
$$Lu := -\sum_{i,j=1}^{2} a_{ij} u_{x_i x_i} + \sum_{i=1}^{2} a_i u_{x_i} + au,$$

which is uniformly elliptic with symmetric, bounded and measurable leading coefficients, i.e.

(2)
$$a_{ji} = a_{ij} \in L^{\infty}(\Omega), \quad \sum_{i,j=1}^{2} a_{ij}\xi_i\xi_j \ge \nu |\xi|^2 \quad \text{a.e. in } \Omega \quad \forall \xi \in \mathbb{R}^2,$$

Entrato in Redazione il 5 marzo 1997.

where ν is a positive constant.

As well known, the Dirichlet problem

(3)
$$u \in W^2(\Omega) \cap W_0^1(\Omega), \quad Lu = f, \quad f \in L^2(\Omega),$$

has been exhaustively studied (see [9]) under the only assumption (2) in the case of a bounded domain Ω .

Indeed, assuming that a_{ij} satisfy (2), whilst a_i and a are bounded and measurable, G. Talenti [9] has established for a solution u of (3) the estimate

(4)
$$|u_{xx}|_{2,\Omega} \le c(|f|_{2,\Omega} + |u|_{2,\Omega})$$

with c independent of u; by using (4) and an uniqueness result of C. Pucci (see [8]), he has also shown that problem (3) is uniquely solvable when

essinf
$$a \ge 0$$
.

In this paper we study the same problem (3) when Ω is an unbounded domain.

After recalling (see Sec. 1) definitions and properties of the spaces of Morrey type $M^p(\Omega)$, $VM^p(\Omega)$, $\tilde{M}^p(\Omega)$, $M_0^p(\Omega)$, introduced and studied in [11], [14], we prove (see Sec. 2) that the a-priori bound (4) still holds true, assuming (2) and

(5)
$$a_i \in \widetilde{M}^s(\Omega)$$
 for some $s > 2$, $a \in \widetilde{M}^2(\Omega)$.

Plainly, in the case of unbounded domains the above estimate (4) is not sufficient to get an existence and uniqueness result.

In order to do this our method proceeds through a L^{∞} -bound of Pucci type

(6)
$$\sup_{\Omega} |u| \le c |f|_{2,\Omega}$$

and a W^2 -estimate of type

(7)
$$\|u_{xx}\|_{W^2(\Omega)} \le c(|f|_{2,\Omega} + |u|_{2,\Omega_0}),$$

where Ω_0 is a bounded open subset of Ω , to be satisfied by a solution u of problem (3) in an unbounded domain Ω , with c and Ω_0 independent of u and f.

By virtue of the already given assumptions on the coefficients of the operator L, the a-priori bound (6) is contained in a recent paper (see [15]).

For the estimate (7) we need further conditions (at infinity) about the boundary of Ω and the behavior of the coefficients of *L*. Precisely, in order to get (7), we suppose $\partial\Omega$ has non-negative curvature outside some closed ball \overline{B}_{r_0} of sufficiently large radius r_0 and centered at the origin, a.e. with respect to the one-dimensional Hausdorff measure on $\partial\Omega$, and the coefficients of *L* satisfy (2) together with the following conditions:

(8)
$$a_i \in M_0^s(\Omega)$$
 for some $s > 2$, $a = a' + b \in \widetilde{M}^s(\Omega)$, $a' \in M_0^2(\Omega)$,

and

(9)
$$\mu^{-2} \operatorname{esssup}_{\Omega \setminus \overline{B}_{r_1}} \sum_{i=1}^{2} (e_{ij} - ga_{ij})^2 + \mu_1^{-2} \operatorname{esssup}_{\Omega \setminus \overline{B}_{r_1}} (e - gb)^2 < 1$$

for a sufficiently large r_1 with μ , $\mu_1 \in \mathbb{R}_+$ and e_{ij} , $e \in L^{\infty}(\Omega)$ such that

$$e_{ji} = e_{ij}, \sum_{i,j=1}^{2} e_{ij}\xi_i\xi_j \ge \mu |\xi|^2 \quad \text{a.e. in } \Omega \quad \forall \xi \in \mathbb{R}^2,$$
$$(e_{ij})_{x_k}, e_{x_k} \in M_0^s(\Omega) \text{ for some } s > 2, \quad \operatorname{essinf}_{\Omega} e \ge \mu_1,$$

$$g \in L^{\infty}(\Omega), \quad \operatorname{essinf}_{\Omega} g > 0.$$

We notice that (9) implies

(10)
$$\operatorname{essinf}_{\Omega\setminus\overline{B}_{r_1}} b > 0.$$

On the other side, we remark that (9) holds true for any b satisfying (10) if the coefficients a_{ij} converge at infinity (see Remark 3.5) and that for any matrix-function with coefficients a_{ij} satisfying (2) there exists a b verifying (9) (see (2.5)).

Alternatively, we prove (7), for a sufficiently regular domain Ω , when conditions (2), (8), (10) are verified and the operator

(11)
$$L_0 u := -\sum_{i,j=1}^2 a_{ij} u_{x_i x_j}$$

can be approximated (at infinity) by means of an uniformly elliptic operator $-\sum_{i,j=1}^{2} \alpha_{ij} u_{x_i x_i}$ having coefficients α_{ij} such that

$$\alpha_{ji} = \alpha_{ij} \in L^{\infty}(\Omega), \quad (\alpha_{ij})_{x_k} \in M_0^s(\Omega) \text{ for some } s > 2.$$

Finally, by using (7) together with the results of [15], we show that (3) is a zero index problem, uniquely solvable when a' = 0.

We also remark that such conclusions can fail when (10) is not satisfied. For instance (see [2]) we have uniqueness, but not always existence, when we consider the Dirichlet problem

$$u \in W^2(\mathbb{R}^2), \quad -\Delta u = f, \quad f \in L^2(\mathbb{R}^2).$$

1. The spaces of Morrey type $M^{p}(\Omega)$, $VM^{p}(\Omega)$, $\widetilde{M}^{p}(\Omega)$, $M_{0}^{p}(\Omega)$.

In this section we introduce the notations which will be used throughout the paper.

For $x \in \mathbb{R}^2$ and $r \in \mathbb{R}_+$ we set

$$B(x, r) := \{ y \in \mathbb{R}^2 : |y - x| < r \},\$$

in particular $B_r := B(0, r)$.

We denote by ζ_1 a function of class $C_0^\infty(\mathbb{R}^2)$ such that

$$0 \leq \zeta_1 \leq 1$$
, $\zeta_1 = 1$ on \overline{B}_1 , $\zeta_1 = 0$ on $\mathbb{R}^2 \setminus B_2$,

and put

$$\zeta_r(x) := \zeta_1(x/r), \quad x \in \mathbb{R}^2.$$

For an open subset Ω of \mathbb{R}^2 we let

$$\Omega(x,r) := \Omega \cap B(x,r), \quad \Omega(x) := \Omega(x,1), \quad \Omega_r := \Omega(0,r)$$

and denote by $\Sigma(\Omega)$ the σ -algebra of the Lebesgue-measurable subsets of Ω . For $p \in [1, +\infty]$, if $A \in \Sigma(\Omega)$ and $g \in L^p(A)$, we put

> |A| := Lebesgue-measure of A, $\chi_A :=$ characteristic function of A, $|g|_{p,A} := ||g||_{L^p(A)}.$

Introducing $\mathcal{D}(\overline{\Omega})$, the class of the restrictions to Ω of the functions in $C_0^{\infty}(\mathbb{R}^2)$, and $L_{\text{loc}}^p(\overline{\Omega})$, the class of the functions $g : \Omega \to \mathbb{R}$ such that $\zeta g \in L^p(\Omega)$ for every $\zeta \in \mathcal{D}(\overline{\Omega})$, we define $M^p(\Omega)$ as the space of the functions $g \in L_{\text{loc}}^p(\overline{\Omega})$ such that

(1.1)
$$\|g\|_{M^p(\Omega)} := \sup_{x \in \Omega} |g|_{p,\Omega(x)} < +\infty,$$

endowed with the norm given in (1.1).

We also need the following subspaces of $M^p(\Omega)$:

 $VM^p(\Omega)$, the subspace of the functions $g \in M^p(\Omega)$ such that

$$\eta_p[g,\Omega](\tau) := \sup_{x\in\Omega} |g|_{p,\Omega(x,\tau)} \to 0 \quad \text{as } \tau \to 0;$$

 $\widetilde{M}^{p}(\Omega)$, the subspace of the functions $g \in M^{p}(\Omega)$ such that

$$\sigma_p[g,\Omega](\tau) := \sup_{A \in \Sigma(\Omega) \atop |A(\tau)| < \tau \quad \forall x \in \Omega} \|\chi_A g\|_{M^p(\Omega)} \to 0 \text{ as } \tau \to 0;$$

 $M_0^p(\Omega)$, the subspaces of the functions $g \in M^p(\Omega)$ such that

$$\theta_p[g,\Omega](r) := \|(1-\zeta_r)u\|_{M^p(\Omega)} \to 0 \text{ as } r \to \infty.$$

Clearly, it turns out that $\widetilde{M}^p(\Omega) \subset VM^p(\Omega)$ and for every $g \in \widetilde{M}^p(\Omega)$

 $\eta_p[g,\Omega](\tau) \leq \sigma_p[g,\Omega](\tau);$

moreover (see Lemma 2.1 of [11])

$$M_0^p(\Omega) \subset \widetilde{M}^p(\Omega).$$

Furthermore we call:

modulus of continuity of $g \in VM^p(\Omega)$ any function $\eta : \mathbb{R}_+ \to \mathbb{R}_+$ such that

 $\eta(\tau) \to 0$ as $\tau \to 0$, $\eta_p[g, \Omega](\tau) \le \eta(\tau) \,\forall \tau \in \mathbb{R}_+;$

modulus of continuity of $g \in \widetilde{M}^p(\Omega)$ any function $\sigma : \mathbb{R}_+ \to \mathbb{R}_+$ such that

 $\sigma(\tau) \to 0 \quad \text{as } \tau \to 0, \ \sigma_p[g, \Omega](\tau) \le \sigma(\tau) \quad \forall \tau \in \mathbb{R}_+;$

modulus of continuity of $g \in M_0^p(\Omega)$ any function $\theta : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\theta(r) \to 0 \text{ as } r \to +\infty, \ \sigma_p[g,\Omega](1/r) + \theta_p[g,\Omega](r) \le \theta(r) \quad \forall r \in \mathbb{R}_+$$

The above-mentioned spaces have been introduced in [10] and represent the particular case $\lambda = 0$ of the spaces $M^{p,\lambda}(\Omega)$, which have been defined in [14].

From [10] and [14] we also infer the following two lemmas.

Lemma 1.1. $\widetilde{M}^{p}(\Omega)$ is the closure of $L^{\infty}(\Omega)$ in $M^{p}(\Omega)$; $M_{0}^{p}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $M^{p}(\Omega)$.

Lemma 1.2. Let $k \in \mathbb{N}$, $p \in [2, +\infty[$, with p > 2 if k = 1, and suppose Ω endowed with the cone property. Then for every $g \in M^p(\Omega)$ and $u \in W^k(\Omega)$ we have $gu \in L^2(\Omega)$ and

 $|gu|_{2,\Omega} \leq c ||g||_{M^{p}(\Omega)} ||u||_{W^{2}(\Omega)},$

where c is a positive constant depending only on p, k and the characteristic cone of Ω .

From the previous lemmas we easily deduce the following further results.

Lemma 1.3. If the assumptions of Lemma 1.2 are verified and $g \in \widetilde{M}^p(\Omega)$, then for any $\varepsilon \in \mathbb{R}_+$ the bound

 $|gu|_{2,\Omega} \le \varepsilon ||u||_{W^2(\Omega)} + c(\varepsilon)|u|_{2,\Omega}, \quad u \in W^k(\Omega),$

holds true with a positive constant $c(\varepsilon)$ depending only on ε , p, k, the modulus of continuity of $g \in \widetilde{M}^{p}(\Omega)$ and the characteristic cone of Ω .

Lemma 1.4. If the assumptions of Lemma 1.2 are verified and $g \in M_0^p(\Omega)$, then there exist $c(\varepsilon) \in \mathbb{R}_+$ and an open subset $\Omega(\varepsilon) \subset \Omega$ such that for any $\varepsilon \in \mathbb{R}_+$

 $|gu|_{2,\Omega} \le \varepsilon ||u||_{W^2(\Omega)} + c(\varepsilon)|u|_{2,\Omega(\varepsilon)}, \quad \forall u \in W^k(\Omega),$

with $c(\varepsilon)$ and $\Omega(\varepsilon)$ depending only on ε , p, k, the modulus of continuity of $g \in M_0^p(\Omega)$ and the characteristic cone of Ω .

Lemma 1.5. If the assumptions of Lemma 1.2 are verified, then for every $g \in M_0^p(\Omega)$ the operator

$$u \in W^k(\Omega) \to gu \in L^2(\Omega)$$

is compact.

For a function u defined on Ω having derivatives in the sense of the distributions, we will make use of the following notations:

$$u_x = (u_{x_1}^2 + u_{x_2}^2)^{\frac{1}{2}}, \quad u_{xx} = (u_{x_1x_1}^2 + 2u_{x_1x_2}^2 + u_{x_2x_2}^2)^{\frac{1}{2}}.$$

2. Preliminary lemmas.

In the sequel we suppose the open subset Ω of \mathbb{R}^2 has the uniform C^2 -regularity property according to R.A. Adams [1] (see 4.6):

*i*₁) there exist $d \in \mathbb{R}_+$, $k \in \mathbb{N}$, an open covering $\{U_i\}_{i \in \mathbb{N}}$ of $\partial \Omega$ and diffeomorphisms $\Phi_i : U_i \to B_1$, $i \in \mathbb{N}$, of class C^2 such that

1) {
$$x \in \Omega/\operatorname{dist}(x, \partial \Omega) < d$$
} $\subset \bigcup_{i \in \mathbb{N}} \Phi_i^{-1}(B(0, 1/2));$

2) every collection of k + 1 of the sets U_i has empty intersection;

3) $\Phi_i(U_i \cap \Omega) = \{x \in B_1/x_2 > 0\}, i \in \mathbb{N};$

4) the components of Φ_i and Φ_i^{-1} , together with first and second derivatives, are all bounded by a constant independent of $i \in \mathbb{N}$.

Let us consider the differential operator L defined in (1) with principal term L_0 given by (11).

If (2) is verified, $a_i \in M^s(\Omega)$ for some $s > 2, a \in M^2(\Omega)$, then we put

$$\beta := \max\{\max_{i,j} |a_{ij}|_{\infty,\Omega}, \max_{i} ||a_{i}||_{M^{s}(\Omega)}, ||a||_{M^{2}(\Omega)}\}$$

Lemma 2.1. Assuming i_1 , (2), $a_i \in VM^s(\Omega)$ for some s > 2, $a \in M^2(\Omega)$ and

$$(2.1) a_0 := \operatorname{essinf}_{\Omega} a > 0$$

we have the bound

(2.2)
$$\sup_{\Omega} |u| \le c |Lu|_{2,\Omega}, \quad \forall u \in W^2(\Omega) \cap W_0^1(\Omega),$$

where *c* is a constant depending only on v, β , a_0 and the moduli of continuity of $a_i \in VM^s(\Omega)$.

Proof. As a consequence of well known results about Sobolev spaces. A function $u \in W^2(\Omega) \cap W_0^1(\Omega)$ has the following properties:

$$u \in C^{0}(\overline{\Omega}), \quad u = 0 \quad \text{on } \partial\Omega, \quad \lim_{|x| \to +\infty} u(x) = 0.$$

So we deduce the assertion from the results of [15]. \Box

Let us suppose

 i_2) the coefficient of L verify (2) and (5).

It is known (e.g., see [4], [9]) that the uniform ellipticity of L in an open subset Ω of \mathbb{R}^2 is equivalent to Cordes' hypothesis:

(2.3)
$$\operatorname{essinf}_{\Omega} \frac{\left(\sum_{i=1}^{2} a_{ii}\right)^{2}}{\sum_{i,j=1}^{2} a_{ij}^{2}} > 1.$$

If we put

(2.4)
$$\varepsilon_{0} := \operatorname{essinf}_{\Omega} \frac{\left(\sum_{i=1}^{2} a_{ii}\right)^{2}}{\sum_{i,j=1}^{2} a_{ij}^{2}} - 1, \quad \gamma := \operatorname{essinf}_{\Omega} \frac{\sum_{i=1}^{2} a_{ii}}{\sum_{i,j=1}^{2} a_{ij}^{2}},$$

we have

$$\operatorname{esssup}_{\Omega} \sum_{i,j=1}^{2} (\delta_{ij} - \gamma a_{ij})^{2} = 1 - \varepsilon_{0}$$

and so (2.3) is equivalent to the condition

(2.5)
$$\operatorname{esssup}_{\Omega} \sum_{i,j=1}^{2} (\delta_{ij} - \gamma a_{ij})^{2} < 1.$$

Lemma 2.2. Assuming i_1) and i_2), we have bound

(2.6)
$$|u_{xx}|_{2,\Omega} \le c(|Lu + \lambda u|_{2,\Omega} + |u|_{2,\Omega}),$$
$$\forall u \in W^2(\Omega) \cap W_0^1(\Omega) \text{ and } \forall \lambda \in [0, +\infty[,$$

where *c* is a constant depending only on Ω , *v*, β and the moduli of continuity of $a_i \in \widetilde{M}^s(\Omega)$, i = 1, 2, and of $a \in \widetilde{M}^2(\Omega)$.

Proof. From Theorem 3 of [12] we have (2.6) with L_0 instead of L, and so we obtain the result by applying Lemma 1.3.

3. Conditions at infinity on the coefficients a_{ij} .

Let
$$\mu \in \mathbb{R}_+$$
 and $k \in \mathbb{N}$.

We denote by $E_k(\mu, \Omega)$ the class of the $k \times k$ matrix-functions $((e_{ij}))$ such that

$$e_{ji} = e_{ij} \in L^{\infty}(\Omega), \quad \sum_{i,j=1}^{k} e_{ij}\xi_i\xi_j \ge \mu |\xi|^2 \text{ a.e. in } \Omega, \quad \forall \xi \in \mathbb{R}^k,$$

 $(e_{ij})_{x_k} \in M_0^s(\Omega)$ for some s > 2.

Moreover we put

$$\mathscr{G}(\Omega) := \{ g \in L^{\infty}(\Omega) : \operatorname{essinf}_{\Omega} g > 0 \}.$$

We will use the pair (a_{ij}, b) to indicate the operator

$$L_0u + bu, \quad u \in W^2(\Omega),$$

with L_0 given by (11) and $b \in \widetilde{M}^2(\Omega)$ such that essinf b > 0 for some $r \in \mathbb{R}_+$.

Hypothesis 3.1. There exist μ , μ_1 , $r_1 \in \mathbb{R}_+$, $e_{ij} \in E_2(\mu, \Omega)$, $e \in E_1(\mu_1, \Omega)$, $g \in \mathscr{G}(\Omega)$ such that

(3.1)
$$\mu^{-2} \operatorname{essup}_{\Omega \setminus \overline{B}_{r_1}} \sum_{i,j=1}^2 (e_{ij} - ga_{ij})^2 + \mu_1^{-2} \operatorname{essup}_{\Omega \setminus \overline{B}_{r_1}} (e - gb)^2 < 1.$$

To be more explicit, we will also say that (a_{ij}, b) verifies Hypothesis 3.1 (with respect to (e_{ij}, e, g)).

Remark 3.2. As a consequence of (2.5), in order that (a_{ij}, b) verifies Hypothesis 3.1 (with respect to (e_{ij}, e, γ) , where γ has been defined in (2.4)) it is sufficient that there exist $\mu_1, r_0 \in \mathbb{R}_+, e \in E_1(\mu_1, \Omega)$, such that

(3.2)
$$\operatorname{esssup}_{\Omega \setminus \overline{B}_{r_0}} |e - \gamma b| < \mu_1 \sqrt{\varepsilon_0}.$$

Remark 3.3. Let $\mu, r \in \mathbb{R}_+, e_{ij} \in E_2(\mu, \Omega), g \in \mathscr{G}(\Omega)$, such that

(3.3)
$$\alpha = 1 - \mu^{-2} \operatorname{essup}_{\Omega \setminus \overline{B}_r} \sum_{i,j=1}^2 (e_{ij} - ga_{ij})^2 > 0.$$

As a consequence of Remark 4.1 of [3], Hypothesis 3.1 is satisfied (by (a_{ij}, b)) if there exist $r_0 \in \mathbb{R}_+$ such that

(3.4)
$$\operatorname{essinf}_{\Omega \setminus \overline{B}_{r_0}}(gb) > (1 - \sqrt{\alpha}) \operatorname{essup}_{\Omega \setminus \overline{B}_{r_0}}(gb).$$

Remark 3.4. From (2.5) and Remark 3.3 we deduce that Hypothesis 3.1 is satisfied (by (a_{ij}, b)) if there exists $r \in \mathbb{R}_+$ such that

$$\frac{\operatorname{essinf}_{\Omega \setminus \overline{B}_r}(\gamma b)}{\operatorname{essunp}_{\Omega \setminus \overline{B}_r}(\gamma b)} > 1 - \sqrt{\operatorname{essinf}_{\Omega \setminus \overline{B}_r} \frac{(a_{11} + a_{22})^2}{a_{11}^2 + 2a_{12}^2 + a_{22}^2} - 1}.$$

Remark 3.5. As a consequence of Remark 3.3, Hypothesis 3.1 is satisfied (by (a_{ij}, b)), whatever b is, in the case of

$$a_{ij} = a'_{ij} + a''_{ij}, \ (a'_{ij})_{x_k} \in M^s_0(\Omega) \text{ for some } s > 2, \ \lim_{|x| \to +\infty} a''_{ij} = a^0_{ij} \in \mathbb{R},$$

because (3.3) and (3.4) can be satisfied by taking $\mu = \nu/2, r_0 \in \mathbb{R}_+, e_{ij} = a'_{ij} + a^0_{ij}, g = 1$, such that

$$\operatorname{esssup}_{\Omega\setminus\overline{B}_{r_0}}|a_{ij}''-a_{ij}^0| < \frac{\nu}{2} \left[1 - \left(1 - \frac{\operatorname{essinf}}{\Omega\setminus\overline{B}_{r_0}}b\right)^2\right]^{\frac{1}{2}}.$$

We also observe (see note (1) of M. Giaquinta [5] and Proposition 1 of M. Chicco [2]) that, if we set

(3.5)
$$g_0 := \frac{\mu^{-2} \sum_{i,j=1}^2 e_{ij} a_{ij} + \mu_1^{-2} eb}{\mu^{-2} \sum_{i,j=1}^2 a_{ij}^2 + \mu_1^{-2} b^2},$$

then for any function $f: \Omega \to \mathbb{R}$ we have

$$\mu^{-2} \sum_{i,j=1}^{2} (e_{ij} - g_0 a_{ij})^2 + \mu_1^{-2} (e - g_0 b)^2 \le \mu^{-2} \sum_{i,j=1}^{2} (e_{ij} - f a_{ij})^2 + \mu_1^{-2} (e - f b)^2.$$

Therefore a pair (a_{ij}, b) verifies Hypothesis 3.1 with respect to (e_{ij}, e, g) if and only if (a_{ij}, b) does it with respect to (e_{ij}, e, g_0) .

Moreover

$$\mu^{-2} \sum_{i,j=1}^{2} (e_{ij} - g_0 a_{ij})^2 + \mu_1^{-2} (e - g_0 b)^2 =$$

= $\mu^{-2} \sum_{i,j=1}^{2} e_{ij}^2 + \mu_1^{-2} e^2 - \frac{\left(\mu^{-2} \sum_{i,j=1}^{2} e_{ij} a_{ij} + \mu_1^{-2} eb\right)^2}{\mu^{-2} \sum_{i,j=1}^{2} a_{ij}^2 + \mu_1^{-2} b^2},$

and so (a_{ij}, b) verifies Hypothesis 3.1 with respect to (e_{ij}, e, g) if and only if

$$\operatorname{esssup}_{\Omega \setminus \overline{B}_{r_0}} \left[\mu^{-2} \sum_{i,j=1}^{2} e_{ij}^2 + \mu_1^{-2} e^2 - \frac{\left(\mu^{-2} \sum_{i,j=1}^{2} e_{ij} a_{ij} + \mu_1^{-2} e b \right)^2}{\mu^{-2} \sum_{i,j=1}^{2} a_{ij}^2 + \mu_1^{-2} b^2} \right] < 1.$$

4. A-priori bounds.

We state in advance some lemmas.

Lemma 4.1. If Ω has the uniform C^2 -regularity property, then each $u \in W^2(\Omega) \cap W_0^1(\Omega)$ is the limit in $W^2(\Omega)$ of a sequence $\{u_n\}_{n \in \mathbb{N}}$ such that

$$u_n \in W^2(\Omega) \cap C^2(\overline{\Omega}), \quad u_n = 0 \text{ on } \partial\Omega.$$

Proof. Let us take $v_n \in \mathcal{D}(\overline{\Omega})$, $n \in \mathbb{N}$, such that

(4.1)
$$v_n \to u \quad \text{in } W^2(\Omega).$$

By virtue of Theorem 5.4 of [11] for each $n \in \mathbb{N}$ there exists a solution $u_n \in W^2(\Omega) \cap W_0^1(\Omega)$ of the equation

(4.2)
$$-\Delta u_n + u_n = -\Delta v_n + v_n;$$

from Theorem 5.1 of [2] we deduce that $u_n \in W^{2,p}(\Omega)$ for every $p \in [2, +\infty[;$ so in particular $u_n \in C^0(\overline{\Omega})$, whence, by known results (see [6]), $u_n \in C^2(\overline{\Omega})$.

On the other side, as a consequence of Theorem 4.2 of [11], the solution

$$u_n - u \in W^2(\Omega) \cap W_0^1(\Omega)$$

of the equation

$$-\Delta(u_n - u) + (u_n - u) = -\Delta(v_n - u) + (v_n - u)$$

satisfies a bound of the type

$$||u_n - u||_{W^2(\Omega)} \le c| - \Delta(v_n - u) + (v_n - u)|,$$

with $c \in \mathbb{R}_+$ independent of *n*, whence the result. \Box

Lemma 4.2. Let Ω have the uniform C^2 -regularity property and $r_0 \in \mathbb{R}_+$ be such that the curvature is non-negative on $\partial \Omega \setminus \overline{B}_{r_0}$ a.e. with respect to the one-dimensional Hausdorff measure on $\partial \Omega$.

Let $u \in W^2(\Omega) \cap W_0^1(\Omega)$ and $r > r_0$. If $e_{ij} \in E_2(\mu, \Omega \setminus \overline{B}_{r_0})$, then the function

$$u_r := (1 - \zeta_r) u$$

satisfies the inequality

(4.3)
$$\mu^{2} \int_{\Omega} (u_{r})_{xx}^{2} dx \leq \int_{\Omega} \left| -\sum_{i,j=1}^{2} e_{ij}(u_{r})_{x_{i}x_{j}} \right|^{2} dx + \sum_{i,j,h,k=1}^{2} \int_{\Omega} \left[(e_{ij}e_{hk})_{x_{j}}(u_{r})_{x_{i}}(u_{r})_{x_{h}x_{k}} - (e_{ij}e_{hk})_{x_{h}}(u_{r})_{x_{i}}(u_{r})_{x_{k}x_{j}} \right] dx.$$

Proof. By virtue of Lemma 4.1 we can suppose

$$u \in W^2(\Omega) \cap C^2(\overline{\Omega}), \quad u = 0 \text{ on } \partial\Omega.$$

Setting

$$w_{\rho} := \zeta_{\rho} u_r, \quad \rho \in \mathbb{R}_+,$$

from classical results we deduce that

$$(4.4) \qquad \mu^{2} \int_{\Omega} (w_{\rho})_{xx}^{2} dx + \\ + \int_{\partial \Omega} \sum_{i,j,h,k=1}^{2} e_{ij} e_{hk} [(w_{\rho})_{x_{h}x_{k}}(w_{\rho})_{x_{i}}n_{j} - (w_{\rho})_{x_{j}x_{k}}(w_{\rho})_{x_{i}}n_{h}] d\ell \leq \\ \leq \int_{\Omega} \Big| - \sum_{i,j=1}^{2} e_{ij} (w_{\rho})_{x_{i}x_{j}} \Big|^{2} dx + \\ + \sum_{i,j,h,k=1}^{2} \int_{\Omega} [(e_{ij}e_{hk})_{x_{j}}(w_{\rho})_{x_{i}}(w_{\rho})_{x_{h}x_{k}} - (e_{ij}e_{hk})_{x_{h}}(w_{\rho})_{x_{i}x_{j}}] dx,$$

with $n = (n_1, n_2)$ the unit outward normal to $\partial \Omega$.

By proceeding as in [7] and using the assumption on the curvature, the line integral along $\partial \Omega$ turns out to be non-negative, and so (4.4) yields (4.3) for w_{ρ} (in the place of u_r).

From this we get the result, letting $\rho \to +\infty$, by the dominated convergence theorem of Lebesgue. \Box

We will consider the following two conditions alternatively:

*i*₃) Hypothesis 3.1 is satisfied and there exists $r_0 \in \mathbb{R}_+$ such that the curvature is non-negative on $\partial \Omega \setminus B_{r_0}$ a.e. with respect to the one-dimensional measure of Hausdorff on $\partial \Omega$;

 i'_{3}) there exist $\mu, \mu_{1} \in \mathbb{R}_{+}$, $((\alpha_{ij})) \in E_{2}(\mu, \Omega)$ and, for any $\varepsilon \in \mathbb{R}_{+}$, $r_{\varepsilon} \in \mathbb{R}_{+}$ such that

$$\operatorname{esssup}_{\Omega \setminus \overline{B}_{r_{\varepsilon}}} |\alpha_{ij} - a_{ij}| \leq \varepsilon, \quad \operatorname{esssup}_{\Omega \setminus \overline{B}_{r_{\varepsilon}}} b \geq \mu_{1}.$$

Remark 4.3. Condition i'_3) implies Hypothesis 3.1. In fact, if i'_3) holds true, then (3.1) is satisfied choosing $\mu, \mu_1 \in \mathbb{R}_+$, as given by i'_3), $e_{ij} = \alpha_{ij}$, $e = \mu, g = 1$, for a sufficiently large r_1 .

We will set

$$\beta' \ge \max\{\beta, |e_{ij}|_{\infty,\Omega}, |e|_{\infty,\Omega}, |g|_{\infty,\Omega}\},\$$

with β defined in Section 2, and $\gamma : \mathbb{R}_+ \to \mathbb{R}_+, \gamma(\tau) \to 0$ as $\tau \to 0$, such that

$$\gamma(\tau) \geq \theta_s[(e_{ij})_x, \Omega] + \theta_s[e_x, \Omega],$$

if i_3) is verified, whilst

$$\beta' \geq \max\{\beta, |\alpha_{ij}|_{\infty,\Omega}, \operatorname{essup}_{\Omega\setminus \overline{B}_{r_{\varepsilon}}} b\},\$$

and

$$\gamma(\tau) \geq \theta_s[(\alpha_{ij})_x, \Omega],$$

if i'_3) is verified.

We will also make use of the following condition:

 i_4) $a_i \in M_0^s(\Omega)$ for some s > 2, a = a' + b, with $a' \in M_0^2(\Omega)$.

Lemma 4.4. If conditions i_1 , i_2 , i_3 , i_4) are verified, then there exists $r^* \in \mathbb{R}_+$ such that

(4.5)
$$\|(1-\zeta_r)u\|_{W^2(\Omega)} \le c|L[(1-\zeta_r)u]|_{2,\Omega}$$

for every $u \in W^2(\Omega) \cap W_0^1(\Omega)$ and $r > r^*$, where *c* is a positive constant depending only on Ω , μ , μ_1 , β' , $\gamma(\tau)$, essinf *g*, and the moduli of continuity of $a_i \in M_0^s(\Omega), a' \in M_0^2(\Omega), b \in \widetilde{M}^2(\Omega)$.

Proof. Starting from inequality (4.3) and proceeding as in the proof of Lemma 6 of [13], we can find a bounded open subset Ω_0 of Ω such that

(4.6)
$$\|(1-\zeta_r)u\|_{W^2(\Omega)} \le c(|L[(1-\zeta_r)u]|_{2,\Omega} + |(1-\zeta_r)u|_{2,\Omega_0})$$

for $r > \max\{r_0, r_1\}$, whence the result follows at once. \Box

Theorem 4.5. If conditions i_1), i_2), i_3) or i'_3) (alternatively, i_4) are verified, then there exist $c \in \mathbb{R}_+$ and a bounded open subset Ω_0 of Ω such that

(4.7)
$$||u||_{W^2(\Omega)} \le c(|Lu|_{2,\Omega} + |u|_{2,\Omega_0}), \quad \forall u \in W^2(\Omega) \cap W_0^1(\Omega),$$

with c and Ω_0 depending only on Ω , μ , μ_1 , β' , $\gamma(\tau)$, essinf g, and the moduli of continuity of $a_i \in M_0^s(\Omega)$, $a' \in M_0^2(\Omega)$, $b \in \widetilde{M}^2(\Omega)$.

Proof. Firstly, we consider the case when i_1 , i_2 , i_3 , i_4) are verified.

Let $r^* \in \mathbb{R}_+$ as in Lemma 4.4. By applying Lemma 2.2 to $\zeta_r u$ and using (4.5), for $r > r^*$ we have:

(4.8)
$$\|u\|_{W^2(\Omega)} \leq c_1 (|Lu|_{2,\Omega} + |L(\zeta_r u)|_{2,\Omega} + |\zeta_r u|_{2,\Omega}).$$

From i_2), by virtue of Lemma 1.3, we deduce that

(4.9)
$$|L(\zeta_r u)|_{2,\Omega} \le |Lu|_{2,\Omega} + \varepsilon ||u||_{W^2(\Omega)} + c(\varepsilon)|u|_{2,\Omega_r}$$

with Ω_r a bounded open subset of Ω , whence (4.7) in the present case.

Now, let us suppose that i_1 , i_2 , i'_3 , i_4) are verified.

In this case (see, e.g., Theorem 4.4 of [11]) there exist c_2 and a bounded open subset Ω' of Ω such that

(4.10) $\|(1-\zeta_r)u\|_{W^2(\Omega)} \le c_2 (|L[(1-\zeta_r)u] + \sum_{i,j=1}^2 (a_{ij}-\alpha_{ij})[(1-\zeta_r)u]_{x_ix_i}|_{2,\Omega} + |(1-\zeta_r)u|_{2,\Omega'}).$

whence, by virtue of i'_3), choosing a sufficiently large $r_{\varepsilon} \in \mathbb{R}_+$ we get

$$\|(1-\zeta_r)u\|_{W^2(\Omega)} \le c_2(|L[(1-\zeta_r)u]|_{2,\Omega}+|(1-\zeta_r)u|_{2,\Omega'})+\varepsilon\|(1-\zeta_r)u\|_{W^2(\Omega)},$$

for $r \ge r_{\varepsilon}$, which yields an inequality of type (4.6) and so (4.5).

By arguing as in the first part of this proof, then we obtain (4.7). \Box

Theorem 4.6. Let us suppose that the conditions of Theorem 4.5 are verified and assume

$$(4.11) a_0 := \operatorname{essinf}_{\Omega} a > 0.$$

Then we have the estimate

(4.12)
$$\|u\|_{W^2(\Omega)} \le c |Lu|_{2,\Omega}, \quad \forall u \in W^2(\Omega) \cap W_0^1(\Omega),$$

with c depending only on a_0 the parameters occurring in the constant of the bound (4.7).

Proof. The result is an obvious consequence of Theorem 4.5 and Lemma 4.2, since a modulus of continuity in $M_0^s(\Omega)$ is a modulus of continuity in $VM^s(\Omega)$, too. \Box

5. Existence theorems.

In this section we consider the problem

(5.1)
$$u \in W^2(\Omega) \cap W^1_0(\Omega), \quad Lu = f, \quad f \in L^2(\Omega).$$

Theorem 5.1. If the conditions of Theorem 4.5 are verified, then (5.1) is a zero index problem.

If in addition (4.11) is verified, then problem (5.1) is uniquely solvable.

Proof. Firstly, we consider the case when (4.11) is verified. Let us set

(5.2)
$$L_{\tau}u := \tau Au + (1 - \tau)Lu, \quad \tau \in [0, 1],$$

where

(5.3)
$$Au := -\sum_{i,j=1}^{2} e_{ij} u_{x_i x_i} + eu,$$

if we consider i_3),

(5.4)
$$Au := -\sum_{i,j=1}^{2} a_{ij} u_{x_i x_i} + bu,$$

if we consider i'_3).

In the case of assumption i_3), we observe that for every $\tau \in [0, 1]$

(5.5)
$$\nu^{-2} \sum_{i,j=1}^{2} [e_{ij} - g_{\tau}(\tau e_{ij} + (1-\tau)a_{ij})]^2 + \mu^{-2} [e - g_{\tau}(\tau e + (1-\tau)b)]^2 \le \nu^{-2} \sum_{i,j=1}^{2} (e_{ij} - g_0 a_{ij})^2 + \mu^{-2} (e - g_0 b)^2,$$

where

$$g_{\tau} := \frac{\mu^{-2} \sum_{i,j=1}^{2} e_{ij} [\tau e_{ij} + (1-\tau)a_{ij}] + \mu_{1}^{-2} e[\tau e + (1-\tau)b]}{\mu^{-2} \sum_{i,j=1}^{2} [\tau e_{ij} + (1-\tau)a_{ij}]^{2} + \mu_{1}^{-2} [\tau e + (1-\tau)b]^{2}},$$

which is reduced to (3.5) for $\tau = 0$.

Since (a_{ij}, b) verifies Hypothesis 3.1 with respect to (e_{ij}, e, g_0) , then for every $\tau \in [0, 1]$ the pair $([\tau e_{ij} + (1 - \tau)a_{ij}], [\tau e + (1 - \tau)b])$ verifies Hypothesis 3.1 with respect to (e_{ij}, e, g_{τ}) .

Furthermore, since $\tau \to g_{\tau}$ is a continuous function, from Theorem 4.6 we deduce that there exists $c \in \mathbb{R}_+$ such that

(5.6)
$$\|u\|_{W^2(\Omega)} \le c |L_{\tau}u|_{2,\Omega} \quad \forall u \in W^2(\Omega) \cap W_0^1(\Omega) \text{ and } \forall \tau \in [0,1].$$

In the case of assumption i'_3 , the coefficients of L_{τ} satisfy condition i'_3 uniformly with respect to $\tau \in [0, 1]$ and so again Theorem 4.2 yields (5.6).

Now, we recall that, as a consequence of known results, the problem

(5.7)
$$u \in W^2(\Omega) \cap W_0^1(\Omega), Au = f, f \in L^2(\Omega),$$

is uniquely solvable. For instance, we can get this result observing that the proof of Theorem 5.4 of [11] remains unchanged if we suppose the coefficient of ubelongs to $\tilde{M}^2(\Omega)$ rather than to $M^{t_0}(\Omega)$ for some $t_0 > 2$.

From the uniqueness and existence result for problem (5.7), together with (5.6), we can apply the classical method of continuity along a parameter in order to establish that problem (5.1) is uniquely solvable if (4.11) is verified.

If (4.11) is not verified, by applying the above conclusions to the operator Lu - a'u and observing that, as a consequence of Lemma 1.5, the operator $u \in W^k(\Omega) \rightarrow a'u \in L^2(\Omega)$ is compact, we deduce that (5.1) is a zero index problem from well known results of functional analysis.

REFERENCES

- [1] R.A. Adams, Sobolev spaces, Academic Press, 1971.
- [2] A. Canale M. Longobardi G. Manzo, Existence and uniqueness results for second order elliptic equations in unbounded domains, Rend. Accad. Naz. Sci. XL, Mem. Mat., (5) 18-1 (1994), pp. 171-187.
- [3] P. Cavaliere P. Di Gironimo M. Longobardi, *Dirichlet problem for a class of second order elliptic equations in unbounded domains,* to appear on Ric. Mat.
- [4] M. Chicco, Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl., (4) 112 (1977), pp. 241-259.

- [5] M. Giaquinta, *Equazioni ellittiche di ordine 2m di tipo Cordes*, Boll. Un. Mat. Ital., (4) 2 (1971), pp. 251-257.
- [6] D. Gilbarg N.S. Trudinger, *Elliptic partial differential equations of second order,* Second Edition, Springer, Berlin, 1983.
- [7] O.A. Ladyzhenskaja N.N. Ural'tseva, *Equations aux derivèes partielles de type elliptique*, Dunod, Paris, 1966.
- [8] C. Pucci, *Limitazioni per soluzioni di equazioni ellittiche*, Ann. Mat. Pura Appl., 74 (1966), pp. 15-30.
- [9] G. Talenti, *Equazioni lineari ellittiche in due variabili*, Le Matematiche, 21 (1966), pp. 339-376.
- [10] M. Transirico M. Troisi, Equazioni ellittiche del secondo ordine a coefficienti discontinui e di tipo variazionale in aperti non limitati, Boll. Un. Mat. Ital., (7) 2 (1988), pp. 385-398.
- [11] M. Transirico M. Troisi, Equazioni ellittiche del secondo ordine di tipo non variazionale in aperti non limitati, Ann. Mat. Pura Appl., (4) 152 (1988), pp. 209-226.
- [12] M. Transirico M. Troisi, *Equazioni ellittiche del secondo ordine di tipo Cordes in aperti non limitati di* \mathbb{R}^n , Boll. Un. Mat. Ital., (7) 3 (1989), pp. 169-184.
- [13] M. Transirico M. Troisi, Limitazioni a priori per una classe di operatori differenziali lineari ellittici del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital., (7) 5 (1991), pp. 757-771.
- [14] M. Transirico M. Troisi, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains, Boll. Un. Mat. Ital., (7) 9 (1995), pp. 153-174.
- [15] A. Vitolo, Uniqueness estimates for elliptic equations with discontinuous coefficients on unbounded, to appear.

DIIMA,

Università di Salerno, Sede distaccata, Via S. Allende, 84081 Baronissi (Sa) (ITALY)