
LE MATEMATICHE
Vol. LI (1996) � Fasc. I, pp. 59�76

IMPLEMENTING FUZZY POLYNOMIAL

INTERPOLATION (FPI) AND

FUZZY LINEAR REGRESSION (LFR)

MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

This paper presents some preliminary results arising within a general
framework concerning the development of software tools for fuzzy arithmetic.
The program is in a preliminary stage. What has been already implemented
consists of a set of routines for elementary operations, optimized functions
evaluation, interpolation and regression. Some of these have been applied to
real problems.
This paper describes a prototype of a library in C++ for polynomial interpo-
lation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear
regression and a program with graphical user interface allowing the use of
such routines.

1. Introduction.

Fuzzy sets theory, as it is known, is a powerful mathematical tool for tack-
ling real-world problems, particularly for its capability in treating uncertainty,
ambiguity, complex systems, natural language and for the wide range of its ap-
plications.
As a matter of fact traditional mathematical theories consider data uncertainty
and imprecision only as perturbative factors, and in such a way one can miss

Entrato in Redazione l�8 gennaio 1996.

Keywords: Fuzzy arithmetic; Fuzzy polynomial interpolation; Fuzzy linear regression.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Le Matematiche (Dipartimento di Matematica e Informatica, Università degli Studi di...

https://core.ac.uk/display/236002106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

a relevant part of the original information. Fuzzy sets theory on the contrary
allows a schematization of real phenomena which globally preserves data un-
certainty in the most transparent way for �nal users [20]. In particular, the use of
fuzzy arithmetic as an extension and generalization of interval arithmetic allows
to handle imprecise numerical quantities with the introduction of the concept
of fuzzy number. We could then represent a fuzzy number as a set of con�-
dence intervals, each of them providing the related numerical value at a given
presumption level α ∈ [0, 1] (see [10] for a detailed de�nition).
In the following we are going to describe an extension of the effective and user
friendly working tool for fuzzy arithmetic recently developed by our team [1]
for the basic mathematical operations. In particular we implemented the fuzzy
polynomial interpolation (FPI) and the fuzzy linear regression (FLR) as an ex-
tension and generalization of the respective non fuzzy theories.
We focused our attention on FPI and FLR as they could be very interesting for
applications in several research �elds such as:

• computer graphics;

• image analysis and processing;

• engineering design;

• statistical studies.

It is a matter of fact that a lot of interest is growing in these �elds, even if these
applications are not well known, due to the lack of practical tools. We hope
this paper will �ll this gap and extend the possible applications in this �eld.
Moreover, in the future fuzzy arithmetic libraries could be implemented in Hw,
reducing computational costs.

2. The fuzzy polynomial interpolation (FPI).

Our FPI implementation follows the rules of most fuzzy tools, that is to
consider FPI as an extension of polynomial interpolation (PI): in such a way we
look at its applications in a wider way.
In the last years interval extensions of PI have been utilized in CAD/CAM ap-
plications, especially in the reconstruction (by approximation) of curves and
surfaces (with others of lower degree or simpler analytical form, or that require
less data for their speci�cation) [16]. The problem was to preserve detailed
information about approximation error through interval analysis, because this
information has a considerable weight in some applications like tolerance anal-
ysis of mechanical components.
Another example of CAD application could be found in a new technique, called

IMPLEMENTING FUZZY POLYNOMIAL. . . 61

interproximation [2], recently developed, that allows to �nd curves that both in-
terpolate all the crisp points and also approximate the uncertain points (passing
through the regions that specify the uncertainty of these points). This tech-
nique however, during the approximation, loses information and has prohibitive
computational costs due to the use of trial-error methods in the approximation
process.
Also image processing, especially for what it may concern shape reconstruction
from imprecise data collected by sensors, could be a practical �eld of applica-
tion of FPI. A potentially important area of application is in the rendering of
contours of natural objects (which, as a rule, do not have sharp boundaries).
In these contexts FPI is a good solution because it does not cause losses of in-
formation contents, it requires computational resources similar to those of PI, it
allows a smooth passage from a certain point to an uncertain one, and it manages
uncertainty with its elective tool, the fuzzy number.

2.1. Fuzzy polynomial interpolation theory.

The problem of interpolating �fuzzy values� was initially stated by L.A.
Zadeh [21].
We search a fuzzyfying function � : R → �(R) (where �(R) is the set of
all compact, convex and normal fuzzy sets, that is the set of fuzzy numbers on
R) which is continuous in the appropriate topology and satis�es interpolation
conditions (see Lowen [11] for a rigourous de�nition).
We follow the formulation of Zadeh�s problem made by Lowen [11]:

let now x0 < < xn be n + 1 points in R and let (µi)i=0,......n , be n + 1
fuzzy sets in �(R).
Construct a function � : R → �(R) ful�lling the following properties:

(i) for all i = 0, . . . , n : �(xi) = µi ;
(ii) � is continuous;
(iii) if for all i = 0, . . . , n, µi = 1yi where yi ∈ R and if f is the unique

polynomial of degree ≤ n which passes through the points (xi, yi)i=0,...,n ,
i.e. such that (f (xi) = yi for all i = 0, . . . , n, then � reduces to the
function �(x) = 1 f (x) for all x ∈ R

(and from this last de�nition it is clear that FPI is a generalization of PI)

Lowen then proved the existence and uniqueness of the interpolating function.
Concerning the computational methods used in FPI routines implementation
we follow Kaleva�s paper [9] about the representation of the interpolating
polynomial in terms of α-level sets:

�α(x) = {y ∈ R | y = pdo...dn(x), di ∈ µα
i }

62 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

where �α(x) is the α-level set of �(x) and pdo...dn is the polynomial interpolat-
ing the data (xi , di)i=0,...,n , and µα is the α-level set of µ.
Kaleva also showed a representation of the interpolating polynomial using La-
grange basic polynomials:

(2.1.1) �α(x) =

n�

i=0

Li (x)µ
α
i , hence �(x) =

n�

i=0

Li (x)µi ,

where Li (x) is

Li (x) =

n�

j=0, j �=i

(x − xj)

(xi − xj)
.

Likewise it is possible to express a generic fuzzifying spline f s using bases of
real splines: let f s be an interpolating fuzzy spline of order l . If f sα(x) is the
α-level set of f s(x) then

f sα(x) = {y ∈ R | y = sdo...dn(x), di ∈ µα
i }

where Sdo...dn ∈ Sl (the family of splines of order l) is the spline which
interpolates the data (xi , di)i=0,...,n .
If Si ∈ Sl interpolates the data (xj , fj)j=0,...,n , where fj = 1, if j = i and zero
otherwise, then

(2.1.2) sdo...dn(x) =

n�

i=0

di si (x) and we have f s(x) =

n�

i=0

si(x)µi ,

Although these representations are interesting for their formal elegance they are
not convenient for effectively computing interpolating functions, but we utilized
Kaleva�s computational methods that requires less computational resources.
Therefore the methods for the Lagrange FPI(LFPI) and for fuzzy spline inter-
polation (FSI) computations are based on the same principle which we brie�y
explain in the following. Each interpolated point is computed in terms of α-level
sets. Each level set is represented as a couple of end-points that are computed
with a conventional interpolation of a proper vector of points. The elements of
this vector are conveniently chosen between the end-points of the corresponding
level sets of the points (xi , µi)i=0,...,n. . Such a choice is based on the control of
the sign of basic polynomials.
With more details we may generalize the problem as follows.
Given the points (xi, µi)i=0,...,n and a family of fuzzifying interpolants β on

IMPLEMENTING FUZZY POLYNOMIAL. . . 63

(x0, xn), which is a linear space, such that (b0, bn) is the basis which corre-
sponds to the subdivision � = {x0 < . . . < xn} of [x0, xn], the fuzzyfying
interpolation for (xi , µi) may be expressed as

b̃(x) =

n�

i=0

bi(x)µi .

Let x∗ ∈ [x0, xn], then

b̃(x∗)α =

n�

i=0

bi(x
∗)µα

i

with µα
i = [aα

i1, aα
i2] an interval on R where aα

i1 is the lower point and aα
i2 the

upper point. Hence b̃(x∗)α = [aα
1 , aα

2] is also an interval on R, where aα
1 is a

linear combination of conveniently chosen end points aα
i1 and aα

i2 , that is, for
each i = 1, . . . , n

aα
1 is

�
aα

i2 if bi(x
∗) ≥ 0

aα
i2 otherwise.

Analogously

aα
2 is

�
aα

i2 if bi (x
∗) < 0

aα
i2 otherwise.

In other words each end point of b̃(x∗)α (the α-level set of interpolation points)
may be computed with a conventional interpolation of conveniently chosen end
points of µα

i (the corresponding level set of fuzzy numbers µi). Hence the LFPI
sign control is simple while for FSI�s it may become more dif�cult because of
the existence of one or more degrees of freedom for a spline of a particular
subdivision.
Kaleva therefore considers a particular kind of splines, �not a knot� splines [4],
whose sign may be kept under control.
In the next section we shall explain our implementation of the above outlined
algorithms.

2.2. FPI implementation.

We have implemented our library as an extension of a working tool for
fuzzy arithmetic [1] with reference also to an additional library for polynomial
interpolation. It has been obtained with the object oriented programming lan-
guage C++ . Thanks to the use of this development tool, the fuzzy arithmetic
library provides users with elementary operations on fuzzy numbers in a simple
way and hides the implementation of the data structure of the fuzzy number data

64 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

type. This allows an easier programming. Moreover, this type of implementa-
tion is suf�ciently �exible to allow changes to be made without rewriting all the
routines. The ef�ciency and the numerical precision of our library will be im-
proved in the future with new versions of the fuzzy arithmetic and PI libraries.
Therefore, concerning Fuzzy Interpolation, our tool provides Lagrange FPI,
Fuzzy linear and cubic spline interpolation and Fuzzy B-splines.

2.2.1. Lagrange FPI.

We implemented two kinds of routines: the �rst are based on representation
(2.1.1), that is on the de�nition of Fuzzy Lagrange interpolating polynomials as
linear combination of basic Lagrange polynomials; the second are based on
Kaleva�s computational methods described in the preceding section (2.1.3), and
just utilize, for the output, the same representation of fuzzy number already
realized [1].
Therefore, concerning to the Lagrange FPI we implemented two kinds of
routines:

• one for the linear combination of basic Lagrange polynomials with fuzzy
data; this combination is easily obtained due to the presence of the fuzzy
arithmetic elementary operators of sum and product de�ned in the fuzzy
arithmetic library [1] with the C++ programming language;

• the other based on the computational methods mentioned before, that
computes interpolated fuzzy data in terms of level sets; i.e. for each
level set it computes the end points through conventional polynomial
interpolation applied to properly selected data vectors. There is also a
routine that carries out the same operations optimizing the evaluation order
making use of Newton�s divided difference method for the conventional
interpolant polynomials computation (it allows the calculation of the level
curves through precomputed divided difference values).

The coexistence of the two types of routines aims at making transparent the
different amount of computational resources employed. For both two types
we allowed computing interpolated fuzzy data in one or several points (not
necessarily equidistant). Figure 1 provides a simple graphical example of the
interpolated data obtained by our routines.
Let the input data of this example be triangular fuzzy numbers, expressed as
µi = (li , mi , ri) where li and ri are the lower and the upper end points of the
support, while mi represents the point where the membership function assumes
the value 1. Suppose we have the following data (xi , µi):

(1.0, (−2.0, 0.0, 1.0)), (1.5, (4.0, 5.0, 7.0)), (2.0, (1.0, 1.0, 4.0)),
(3.5, (0.0, 4.0, 7.0)), (3.9, (−3.0, 0.0, 2.0)), (4.0, (0.0, 1.0, 2.0)).

IMPLEMENTING FUZZY POLYNOMIAL. . . 65

Lagrange FPI

-10

-5

0

5

10

15

20

25

30

1 1.5 2 2.5 3 3.5 4

Figure 1

The central line in the �gure represents the crisp interpolation (that is where
the membership function assumes the value 1), while the upper and lower ones
de�ne the support of the interpolated fuzzy values (in other words the width
between them gives an idea of fuzzy values uncertainty). The �gure shows
just two levels to have an immediate idea of Fuzzy interpolation; however it is
possible to visualize the most useful levels for a speci�c application.

2.2.2. Linear spline interpolation.

In order to provide a better explanation about [our] fuzzy linear spline
implementation, it could be useful a brie�y review of conventional linear
splines.
Given the data (xi , yi)i=0,...,n where K = {x0 < xl < x2 < · · · < xn} is the knot
sequence, we calculate the unique linear spline L that satis�es the interpolation
conditions L(xj) = yj j=0,...,n .
Then for a generic value x we may obtain the linear spline with the following
steps:

• searching the value i such that x ∈ [xi, xi+1];

• computing the af�ne map A(yi , yi+1, t) = (1 − t)yi + t yi+1 where t =
x − xi

xi+1 − xi

t ∈ [0, 1].

66 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

For fuzzy linear spline we use the following expression:

f s(x) =
(xi+1 − x)

(xi+1 − xi)
µi +

(x − xi)

(xi+1 − xi)
µi+1

obtained by (2.1.2) with the linear splines basis functions; we can now rewrite
the last expression as:

�A(µi , µi+1, t) = (1− t)µi + tµi+1 .

Therefore we implemented two routines for fuzzy linear spline interpolation,
where the computation of �A is carried out with the fuzzy arithmetic elementary
operators already implemented in [1]. Moreover the computational resources
involved are similar to that of conventional linear splines interpolation (grow
linearly with the data dimension).

Fuzzy Linear Spline

-3

-2

-1

0

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4

Figure 2

Figure 2 shows the output of these last routines applied to the same input data
of Figure 1.

IMPLEMENTING FUZZY POLYNOMIAL. . . 67

2.2.3. Cubic spline interpolation.

For what it may concern fuzzy cubic splines we carry out the computation
with two different methods:

1) directly from the expression (2.1.2), as the linear combination of a basis of
interpolant cubic splines with fuzzy data Ui ;

2) using the Kaleva�s computational method already described.

For both we use the following calculation process:
Given a segment of an interpolant cubic spline as:

spj (x) =

3�

k=0

ckj (x − xj)
k

with x ∈ [xj , xj+1] and j = 0, . . . , n − 1.
Then we represent the cubic splines coef�cients ckj (k = 0, . . . , 3, j =

0, . . . , n − 1) with the moments Mj (i = 0, . . . , n), which are the values of
the second derivative at the knots x0, . . . , xn , and we calculate Mj solving a
tridiagonal system of n − 1 equation; the solution process is carried out using a
classical algorithm.
We compute two types of cubic splines interpolants:

(∗) those satisfying the natural condition;
(∗∗) those satisfying the �not and knot� condition [4] at knots x1 and xn−1 .

Fuzzy Cubic Spline (Method 1)

-10

-5

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4

Figure 3

68 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

Method 1.

Concerning the �rst method of computation we use the cardinal basis of
both two types of splines (*) and (**). In particular, in the routines implemented
for the computation of the interpolant fuzzy value in several crisp points, the
evaluation of basic cubic splines is carried out only once, with the consequent
decreasing of time complexity.
An immediate visualisation of the output of these routines is provided by
Figure 3 (with the same input data of Figure 1).

Fuzzy Cubic Spline (Method 2)

-5

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4

Figure 4

Method 2.

On the other hand, in the second method of computation that we imple-
mented, we used only the basis of cubic splines satisfying the �not a knot�
condition [4] at the knots x1 and xn−1 .
Due to a theorem stated by Kaleva [9], it is simple to keep under control the sign
of this type of splines. as we mentioned before, Kaleva�s computation method
is based on the use of these splines to evaluate the end-points of each α-level set
of interpolant fuzzy values.
Concerning this second method of computation for fuzzy cubic splines we have
implemented the following routines:

IMPLEMENTING FUZZY POLYNOMIAL. . . 69

• the �rst computes the interpolant fuzzy value on one point and the compu-
tation process is carried out level by level; the end-points of each α-level
set are evaluated with conventional cubic splines, properly interpolating
selected vectors of data and satisfying the �not a knot� condition.

• the second computes interpolant fuzzy values on several points using the
same computational method of the previous routine; moreover it optimizes
the evaluation order by avoiding repeated evaluation of same values. Fig-
ure 4 then provides an easy approach to the output of these two last routines
(with the same input data of Figure 1).

3. The fuzzy linear regression (FLR).

Ordinary regression (OR) is widely used in almost every �eld of science,
such as economics, engineering and natural sciences. However, there are cir-
cumstances for which OR is not useful as it needs strict statistical assumptions,
and it assumes that the data and the relationships between them are crisp; Fuzzy
Regression (FR) methods have been proposed, in recent years, to be used in
such circumstances.
In other words, while in OR the deviation between the observed values and the
estimated values is taken to be a measurement error, in FR this gap is attributed
to the vagueness and ambiguity of the modelled system. As a matter of fact in
a general FR model the relationship between input and output data is expressed
by a fuzzy�ng function and a possibilistic distribution of the data is assumed.
In this section we will brie�y recall basic facts about Fuzzy Linear Regression
(FLR) theory and methods and explain our implementation.

3.1. Fuzzy linear regression theory.

FLR was originally introduced by Tanaka et al. [19] in 1982 and up to
now several approaches [7], [17], [18], [15], [14], [13], to this theory have been
formulated.
In FLR analysis we express the relationship between a dependent variable Y
and the independent variables x1,xn , with a linear fuzzy function:

Y = A0 + A1x1 + + Anxn = Ax

where x is the crisp vector of the independent variable and A is the fuzzy vector
of the coef�cients. But fuzzy coef�cients A are fuzzy sets, so we can de�ne
them by membership functions. In literature these membership functions are
expressed according to the de�nition of L-R fuzzy numbers given by Dubois
and Prade [5].

70 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

Here we refer to the de�nition of fuzzy coef�cients as symmetric L-R fuzzy
numbers:
a fuzzy coef�cient Aj is expressed as Aj = (αj , cj), where αj is the centre and
cj the width of the fuzzy number Aj , and its membership function is de�ned as

µA(x) = L((x − α)/c) c > 0

where L(x) is the reference function such that

(3.1.1)

1) L(x) = L(−x)

2) L(0) = 1

3) L(x1) > L(x2) ∀x1, x2 ∈ [0, ∞) : x1 < x2 .

According to this formulation of FLR, Tanaka et al. [19] proved that the
membership function for the output of a linear possibility system is

µY (y) = L((y − x tα)/ct |x |)

where |x | = (|x1|, . . . , |xn|)
t . In other words, for the possibility distribution

Y the centre is
�

αj xj and the width is
�

cj |xj |. Since all coef�cients are
fuzzy sets also Y is a fuzzy set, and we can express it as a symmetric L-R fuzzy
number Yi = (yi, ei), where yi is the centre and ei is the width.
In order to express the degree h to which the given data Yi is included in an
inferred (predicted) one Y ∗

i , Tanaka et al. [17] employed h-level sets. Therefore
if Yh

i and Y ∗h
i are h-level sets of Yi and Y ∗

i , the degree of �t of Yi to Y ∗
i is given

by the maximum H , said h̄i , such that Y
H
i ⊂ Y ∗H

i .
Then the degree of �tting of the fuzzy linear model to the data is de�ned by
H = min h̄i . (see Tanaka [19] for a rigourous de�nition).
According to the formulation stated above, in the last years several methods
for the solution of a FLR model have been proposed. we will review some of
these methods that we implemented in our applications, based on the following
assumptions:
given the data (Yi , xi) the basic idea is to �nd two models expressed by the
fuzzy�ng linear functions �f and f̄ such that �f (xi)⊂

h
Yi ⊂

h
f̄ (xi). The fuzziness

of these functions is estimated by coef�cients �A and A through a functional
J : R

n+1 → R to be speci�ed later. Therefore it is possible to �nd the
parameters of the two models solving the following two problems:

a) Problem of minimum: min
Aj

J (c̄) f̄ (xi)⊃
h

Yi

IMPLEMENTING FUZZY POLYNOMIAL. . . 71

b) Problem of maximum: max
Ãj

J (c̄) f̃ (xi)⊂
h

Yi .

Tanaka proves the equivalence of these two problems with two linear program-
ming ones. In the following we will brie�y show just three FLR methods with
a different de�nition of the functional J .

1) A �rst method, the original fuzzy linear regression method, introduced
by Tanaka et al. [19] de�nes J as the sum of the fuzzy widths, that is:

J (c) =
n�

i=0

ci .

2) Afterwards Tanaka [17] proposed a second method where he de�nes J as

a weighted sum of fuzzy widths, that is: J (c) =
N�

i=1

ct |xi |.

3) Savic and Pedrycz [15] introduced then another formulation of fuzzy
linear regression referring to their approach as �Fuzzy least squares linear
regression�, based on two phases:
a) �tting the vector α with a crisp regression line by using the available
information about the centre points of input data.
b) using the �ttest vector α∗ to carry out method 2.

3.2. FLR implementation.

Our implementation of the methods above brie�y explained has been
carried out with the programming language FORTRAN. For each method
we have implemented three routines: one to solve the minimization problem
associated to fuzzy linear regression with standard data, the other two for the
minimization and maximisation problems associated respectively to the FLR
minimum and maximum problems with fuzzy data.
The sample data set (Yi , xi), i = 1, . . . , m, is processed by our routines as input
parameter under matrix form.
In order to represent the fuzzy parameters, which gives the solution of the
model, we utilize two vectors of real numbers which contain, as in the theory
above explained, respectively, the centres (α) and the widths (c) of fuzzy
parameters. The solution is found carrying out three steps:

1) by translating the initial fuzzy linear regression problem into a linear
programming one;

2) by solving the latter making use of the revised simplex method;
3) by translating the optimal feasible vector into the two vectors mentioned
above.

As we have seen in the previous paragraph, the solution to the minimum
problem is granted (which does not happen for the solution of the maximum

72 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

problem); for these reasons our routines generate a �ag that points out the
existence of the solution to the user. Moreover the output provides the value
assumed by the functional J at the fuzzy parameters which have been found: in
such a way we make use of J as a measure of the parameter fuzziness, that is a
measure of the model uncertainty.
It is worth value to underline that our routines run with all symmetric L-R fuzzy
numbers representations because it is not necessary to specify the reference
function L(x) used in the de�nition (3.1.1) in the previous paragraph, but only
the value of its inverse function at the selected degree of �t H , that is L−1(H).
Concerning the implementation of the third method our routines implement the
two phases described at the end of the 3.1 paragraph:

a) calling a routine for the solution of linear systems with least-squares
method;

b) �nding the solution of a linear programming problem in which the α vector
is assumed to be constant.

Figure 5

Figure 5 shows the fuzzy line obtained applying the third method for fuzzy

IMPLEMENTING FUZZY POLYNOMIAL. . . 73

linear regression to the following data:

y1 = 2.95 x1 = 1.00 x2 = 2.00
y1 = 3.05 x1 = 1.00 x2 = 2.00
y1 = 3.15 x1 = 1.00 x2 = 2.00
y1 = 4.00 x1 = 1.00 x2 = 3.00
y1 = 4.50 x1 = 1.00 x2 = 3.00
y1 = 5.00 x1 = 1.00 x2 = 4.00

The dashed line represents the centre of the fuzzy line while the two solid lines
respectively the lower and the upper end lines of its support.

4. Goodies and blames.

It could be said that, as in the real case, fuzzy cubic splines are more
useful than the other forms of fuzzy polynomial interpolants. This is due
to the fact that lower-degree polynomials do not provide a large �exibility
in the shape controlling of the fuzzy curve, and higher-degree polynomials
can introduce undesidered wiggles in level curves, causing a dilation of the
support of interpolated data; this last characteristic is well shown not only in
the �gures of the previous paragraphes, but with more details in the Figure 6.
Moreover fuzzy cubic splines require acceptable computational resources in
comparison with higher-degree polynomials ones. In particular we observed
that Fuzzy cubic spline Method 2, compared to Method 1, allows to decrease
the computational costs.
However the computational burdain, which is de�nitely large that in the crisp
case, could be alleviated by using specialized chips (e.g. Interval analysis
chips [6]; see also the chips being developed at the University of Karlsruhe).
Furthermore one could also enhance the computation speed by using parallel
architectures [3].
Concerning the Regression, although FLR is more effective that OR, especially
when we have an ambiguous or vague system, we would also outline the main
possible weakness [14] of these methods:

• scale dependence and coef�cient crispness [13];

• effect of outliers;

• redundance of constraints;

• in�nite solutions;

• sensitivity of fuzzy width to the degree of �t, H , of the estimated fuzzy
linear model to the entire data set [5].

74 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

Lagrange FPI Fuzzy Linear Spline

-25

-20

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4

Fuzzy Cubic Spline (Method 1) Fuzzy Cubic Spline (Method 2)

-25

-20

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4

Figure 6

Figure 6 shows examples of FPI, with the same scale, on the following input
data: (xi , µi):

(1.0, (−1.0, 1.0, 2.0)), (1.5, (3.0, 3.5, 5.0)), (2.0, (−1.0, 0.0, 3.0)),
(2.1, (0.5, 2.0, 4.0)), (3.0, (0.5, 1.0, 3.0)), (3.9, (−0.5, 1.5, 2.0)),
(4.0, (−1.0, 1.0, 2.0)),

where (xi , µi) are triangular fuzzy numbers, with µi = (li , mi , ri) and li and ri

are the lower and the upper end points of the support, while mi represents the
point where the membership function assumes the value 1.

The �rst problem consists in the sensitivity of independent variables to the units

IMPLEMENTING FUZZY POLYNOMIAL. . . 75

of measure: changing the latter will change the possibility distribution of the
model parameters and some of these may become crisp; this problem arises in
the �rst method but is solved with what we call Method 2.
The effect of outlier, common to many ordinary regression methods, has re-
cently found a partial solution by Peters [13], who make use of the concept of
fuzzy interval.
In the end, about the question of in�nite solutions, it should be pointed that the
third method is the only, among the three we implemented, which offers a well
de�ned solution.
We utilize the language C++ for interpolation because the software is linked to
a preexisting one [1], and Fortran for regression in order to use the more robust
simplex method IMSL routines.

5. Conclusions.

Finally we would underline that the whole tool of Fuzzy arithmetic, espe-
cially with the FPI and the FLR extensions, may offer a practical, simple and
ef�cient way to manage imprecise informations for a wide range of applica-
tions. Within this framework it is possible to treat the very promising �eld of
interproximation which will be the subject of future researches. Moreover a
planned-friendly graphical user interface, an extension of FPI with other tech-
niques, and a further improvement of the FLR usefulness, with a large number
of practical examples will offer this tool as a complete and available alternative
way to handle uncertainty.
Actually, all the routines we presented in this paper are available at the Math-
ematics Department of the University of Catania. More informations will be
available writing to the following e-mail: �oreno@dipmat.unict.it and novel-
li@agata.dipmat.unict.it.

REFERENCES

[1] A.M. Anile - S. Deodato - G. Privitera, Implementing fuzzy arithmetic, Fuzzy sets
and Systems, 72 (1995), pp. 239-250.

[2] F. Cheng - B. Barsky, Imterproximation using Cubic B-Spline Curves, Computer
Aided Design, pp. 359-373.

[3] A. Clematis - G. Privitera - M. Spagnuolo, Calcolo di funzioni Fuzzy su architet-
ture parallele, Rapporto Tecnico Istituto per la Matematica Applicata n. 7196,

76 MARIA CRISTINA FLORENO - GIOVANNI NOVELLI

Genova, giugno 1996.

[4] C. De Boor, A practical guide to splines, Springer-Verlag, New York, 1978).

[5] D. Dubois - H. Prade, Fuzzy Sets and Systems, Theory and Applications, Acade-
mic Press, Cambridge Mass., 1980, pp. 53-57.

[6] E.R. Hansen, Global Optimization using Interval Analysis, Marcel Dekker, New
York, 1992.

[7] B. Heshmaty - A. Kandel, Fuzzy linear regression and its applications to forecast-
ing in uncertain events, Fuzzy Sets and Systems, 15 (1985), pp. 159-191.

[8] S. József, On the effect of linear data transformations in possibilistic fuzzy linear
regression, Fuzzy Sets and Systems, 45 (1992), pp. 185-188.

[9] O. Kaleva, Interpolation of fuzzy data, Fuzzy Sets and System, 61 (1994), pp. 63-
70.

[10] Kaufmann - M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applica-
tions, Van Nostrand Reinohold, New York, 1991.

[11] R. Lowen, A fuzzy Lagrange interpolation theorem, Fuzzy Sets and System, 34
(1990), pp. 33-38.

[12] H.Moskowitz - K. Kim, On assessing the H value in fuzzy linear regression, Fuz-
zy Sets and Systems, 58 (1993), pp. 303-327.

[13] G. Peters, Fuzzy linear regression with fuzzy intervals, Fuzzy Sets and Systems,
63 (1994), pp. 45-55.

[14] D.T. Redden - W. Woodall, Properties of certain fuzzy linear regression meth-
ods, Fuzzy Sets and Systems, 64 (1994), pp. 361-375.

[15] D. Savic - W. Pedrycz, Evaluation of fuzzy linear regression models, Fuzzy Sets
and Systems, 39 (1991), pp. 145-160.

[16] T.W. Sederberg - R.T. Farouki, Approximation by Interval Bezier Curves, IEEE
CG & A, September 1992, pp. 87-95.

[17] H. Tanaka, Fuzzy data analysis by possibilistic linear models, Fuzzy Sets and
Systems, 24 (1987), pp. 363-375.

[18] H. Tanaka - H. Ishibuchi, Identi�cation of possibilistic linear systems by quadratic
membership function of fuzzy parameters, Fuzzy Sets and Systems, 41 (1991),
pp. 145-160.

[19] H. Tanaka - S. Uegima - K. Asai, Linear regression analysis with fuzzy
model, IEEE Trans. Systems Man Cybern., 12 (1982), pp. 903-907.

[20] L.A. Zadeh, Fuzzy logic neural networks and soft computing, Comm. ACM, 37
(1994).

[21] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), pp. 338-353.

CoRiMME,
Stradale Primosole 50,

I-95100 Catania (ITALY)

