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GENERALIZED SET-VALUED VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

In this paper, we introduce and study a new class of variational in-
equalities, which is called generalized set-valued variational inequality. The
projection technique is used to establish the equivalence among generalized
set-valued variational inequalities, �xed point problems and generalized set-
valued Wiener-Hopf equations. This equivalence is used to study the exis-
tence of a solution of set- valued variational inequalities and to suggest a
number of iterative algorithms for solving variational inequalities. We also
consider the auxiliary principle technique to study the existence of a solution
of the generalized set-valued variational inequalities and to suggest a general
and novel iterative algorithm. In addition, we have shown that the auxiliary
principle technique can be used to �nd the equivalent differentiable optimiza-
tion problem for the generalized set-valued variational inequalities. The re-
sults proved in this paper represent a signi�cant re�nement and improvement
of the previous results.

1. Introduction.

One of the most important developments in applicable mathematics over
the last few decades has been the emergence of the theory of variational
inequalities, which constitutes a signi�cant and important extension of the
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calculus of variations, the origin of which can be traced back to Fermat, Newton,
Leibniz, Bernoulli, Euler and Lagrange. This theory provides us with a simple,
natural, uni�ed and general frame to study a wide class of unrelated linear
and nonlinear problems arising in �uid �ow through porous media, elasticity,
transportation, economics, operations research, optimization, regional, physical
and applied sciences, see [1] � [46] and the references therein. The ideas and
techniques of variational inequalities are being applied in a variety of diverse
�elds and proved to be productive and innovative.

Inspired and motivated by the research going on in these �elds, Noor [22]
introduced a new class of variational inequalities, known as the general strongly
nonlinear variational inequality, which enabled him to study the odd-order and
nonsymmetric obstacle, contact, unilateral, free and moving problems, see [24],
[25], [26], [29]. On the other hand, Fang and Peterson [9] considered the multi-
valued version of the variational inequality problem. In this paper, we introduce
and study a new class of variational inequalities which uni�es both these prob-
lems. This new class has many important and signi�cant applications in various
branches of pure and applied sciences. Equally important is the area of math-
ematical sciences known as the Wiener-Hopf equations or normal maps, which
was introduced by Shi [41], [42] and Robinson [38] independently in different
settings. Shi [41] and Robinson [38] also established the equivalence between
the variational inequalities and the Wiener-Hopf equations using essentially the
projection technique. TheWiener-Hopf equations (normal maps) techniques are
being used to develop powerful and ef�cient numerical techniques for solving
variational inequalities and the complementarity problems, see [20], [25], [28],
[31], [32], [34], [35], [37] � [42], [44] and the references therein. Noor [28]
has modi�ed and generalized the Wiener-Hopf equations technique to suggest
and analyze a number of new iterative algorithms for various classes of varia-
tional and quasi variational inequalities. Recently Robinson [29] and Noor [31],
[32] used this technique to study the sensitivity analysis of variational inequal-
ities via different methods. The Wiener-Hopf equations technique provides a
simple and convenient device for formulating a wide variety of important prob-
lems from applications in a single and uni�ed manner. For related work on the
Wiener-Hopf equations, see [44].

In recent years, considerable interest has been shown in developing various
extensions and generalizations of variational inequalities and the Wiener-Hopf
equations, both for their own sake and for their applications. There are sig-
ni�cant developments of these problems related to multivalued operators, non-
convex optimization, iterative methods and structural analysis. Inspired and
motivated by the recent research work going on in these �elds, we introduce
and study a new class of variational inequalities, which is called the generalized
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set-valued variational inequality. This class is the most general and includes
the previously studied classes of variational inequalities as special cases. This
class has important applications in structural analysis and optimization theory.
In particular, we show that if the nonsmooth and nonconvex superpotential of
the structure is quasidifferentiable, then these problems can be studied via the
generalized multivalued variational inequalities. In this formulation, the ascend-
ing and descending branches of non- monotone multivalued and boundary con-
ditions are considered separately. The solution of the multivalued variational
inequalities gives the position of the state equilibrium of the structure. For the
formulation and applications of the generalized set-valued variational inequali-
ties, see the references.

Using essentially the projection technique and its variant forms, we es-
tablish the equivalence between generalized set-valued variational inequalities,
and �xed points; and Wiener-Hopf equations. These alternate formulations are
used to prove the existence of a solution of generalized set-valued variational
inequalities as well as to analyze a number of iterative algorithms. We remark
that the scope of the iterative projection algorithms is limited. In some cases,
one cannot even �nd the projection of the solution. In these cases, we used
the auxiliary principle technique of Noor [21], [23], [24], [26], [27], [29] and
Glowinski, Lions and Tremolieres [11] to study the existence of a solution of
the generalized set-valued variational inequalities. This technique deals with
the auxiliary variational inequality and proves that the solution of the auxil-
iary problem is the solution of the original generalized set-valued variational
inequality. This technique also enables to suggest a novel and general iterative
algorithm for computing the approximate solution of the variational inequal-
ity and related complementarity problems. Furthermore, we also show that the
auxiliary principle technique can be used to �nd the equivalent differentiable
optimization problems for the generalized set-valued variational inequalities.
These equivalent differentiable optimization problems can be used to suggest
general descent and Newton methods with line search to solve the generalized
set-valued variational inequalities and complementarity problems.

In Section 2, we formulate the variational inequality and review some
basic results. In Section 3, we establish the equivalence between the set-
valued variational inequalities, the �xed points and the Wiener-Hopf equations.
This equivalence is used to study the existence of a solution of the set-valued
variational inequalities. The auxiliary principle technique is also discussed. In
Section 4, we suggest a number of iterative algorithms for solving the set-valued
variational inequalities.
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2. Preliminaries.

Let H be a real Hilbert space whose inner product and norm are denoted
by �· , ·� and �.� respectively. Let K be a nonempty closed convex set in H . Let
2H be the family of all nonempty compact subsets of H .

For given multivalued operators T , V : H → 2H , single-valued operators
g : H → H ,and N : H × H → H , we consider the problem of �nding u ∈ H
such that ω ∈ T (u), y ∈ V (u), g(u)∈ K and

(2.1) �N (w, y), g(v)− g(u)� ≥ 0, for all g(v)∈ K ,

where v ∈ H . The inequality of type (2.1) is called the generalized set-valued
variational inequality and has many important and potential applications in
mechanics, elasticity, �uid �ow through porous media, oceanography, pure and
applied sciences. Furthermore, there are problems arising in structural analysis,
which can be studied only by the variational inequality (2.1).

Example 2.1. For simplicity and to convey an idea of the applications of
the multivalued variational inequality (2.1), we consider an elastoplasticity
problem, which is mainly due to Panagiotopoulos and Stavroulakis [36]. For
simplicity, it is assumed that a general hyperelastic material law holds for the
elastic behaviour of the elastoplastic material under consideration. For the basic
de�nitions and concepts, see [36]. Let us assume the decomposition

(2.2) E = Ee + E p,

where Ee denotes the elastic and E p , the plastic deformation of the three-
dimensional elasto-plastic body. We write the complementary virtual work
expression for the body in the form

(2.3) �Ee, τ − σ � + �E p, τ − σ � = � f, τ − σ �, for all τ ∈ Z .

Here we have assumed that the body on a part �U of its boundary has
given displacements, that is, µi = Ui on �U and that on the rest of its boundary
�F = � − �U , the boundary tractions are given, that is, Si = Fi on �F , where

�E, σ � =

�

�

εi jσi j d�(2.4)

� f, σ � =

�

�U

Ui Si d�(2.5)

Z =
�
τ : τij , j + fi = 0 on�, i, j = 1, 2, 3,(2.6)

Ti = Fi on �F , i = 1, 2, 3
�
,
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is the set of statically admissible stresses and � is the structure of the body. Let
us assume that the material of the structure � is hyperelastic such that

(2.7) �Ee, τ − σ � ≤ �W �
m(σ ), τ − σ �, for all τ ∈ R

6,

where Wm is the superpotential which produces the constitutive law of the
hyperelastic material and is assumed to be quasidifferentiable [36], that is, there
exist convex and compact subsets ∂ �Wm and ∂ �Wm such that

�W �
m(σ ), τ − σ � = max

W e
1
∈∂ �Wm

�W e
1 , τ − σ � +(2.8)

+ min
W e
2
∈∂ �Wm

�W e
2 , τ − σ �.

We also introduce the generally nonconvex yield function P ⊂ Z , which is
de�ned by means of the general quasidifferentiable function F(σ ), that is,

(2.9) P = {σ ∈ Z ; F(σ ) ≤ 0}.

Here Wm is a generally nonconvex and nonsmooth, but quasidifferentiable
function for the case of plasticity with convex yield surface and hyperelasticity.
Combining (2.2) � (2.9), Panagiotopoulos and Stavroulakis [36] have obtained
the following multivalued variational inequality problem:

Find σ ∈ P such that W e
1 ∈ ∂ �Wm(σ ), W e

2 ∈ ∂ �Wm(σ ) and

�W e
1 + W e

2 , τ − σ � ≥ � f, τ − σ �, for all τ ∈ P,

which is exactly the problem (2.1), with N (w, y) = W e
1 + W e

2 , g = I ,

T (u) = ∂ �Wm (σ ), V (u) = ∂ �Wm(σ ), and K = P.

For other applications of the set-valued variational inequalities in mechan-
ics, structural engineering and economics, see [7].

Special Cases.

I. If V ≡ I , the identity operator, T , A, g : H → H are single-valued operators
and N (w, y) = T u + A(u), then problem (2.1) reduces to �nding u ∈ H such
that g(u)∈ K and

(2.10) �T u + A(u), g(v) − g(u)� ≥ 0, for all g(v)∈ K ,
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which is called the general strongly nonlinear variational inequality problem
considered and studied by Noor [22]. For recent applications, formulation,
iterative methods and sensitivity analysis, see for example [24] � [29]. It has
been shown in [24], [25] that the odd-order obstacle, unilateral, contact and
free boundary problems arising in oceanography, elasticity, �uid �ow through
porous media and mechanics can be studied via the general strongly nonlinear
variational inequality technique.

II. If g, V ≡ I , the identity operators, T , A : H → H are nonlinear operators
and N (w, y) = T u + A(u), then problem (2.1) is equivalent to �nding u ∈ K
such that

(2.11) �T u + A(u), v − u� ≥ 0, for all v ∈ K .

The inequality of the type (2.11) is known as the strongly (mildly) nonlinear
variational inequality, which is mainly due to Noor [18], [19]. For the physical
formulation, applications, generalizations, numerical methods and sensitivity
analysis, see, for example [4], [8], [13], [20] � [30].

III. If K ∗ = {u ∈ H : �u, v� ≥ 0 for all v ∈ K } is a polar cone of the
convex cone in H , then problem (2.1) is equivalent to �nding u ∈ H , w ∈ T (u),
y ∈ V (u), g(u)∈ K such that

(2.12) N (w, y)∈ K ∗, �N (w, y), g(u)� = 0,

which is known as the set-valued complementarity problem and appears to be a
new one.

IV. If V ≡ 0, the identity operator and T : H → H is a single-valued operator,
then problem (2.1) collapses to �nding u ∈ K such that

(2.13) �T u, v − u� ≥ 0, for all v ∈ K ,

which is known as the classical variational inequality problem, and is originally
due to Stampacchia [45]. For recent applications, generalizations and numerical
techniques, see [1] � [46] and the references therein.

For a suitable choice of operators T , A, g, V and convex set K , one can
obtain various classes of variational inequalities and complementarity problems
as special cases of the problem (2.1). In addition, problem (2.1) also enables to
study a wide number of problems arising in regional, physical, mathematical,
and engineering sciences in a uni�ed framework, see [7].
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Lemma 2.1 ([2], [14]). Let K be a closed convex set in H . Then, for a given
z ∈ H , u = PK z, if and only if u ∈ K satis�es

�u − z, v − u� ≥ 0, for all v ∈ K ,

where PK is the projection of H into K .

De�nition 2.1. For all u1, u2 ∈ H , the operator N (· , ·) is said to be strongly
monotone and Lipschitz continuous with respect to the �rst argument, if there
exist constants α > 0, β > 0 such that

�N (w1, ·)− N (w2, ·), u1 − u2� ≥ α�u1 − u2�
2,

for all w1 ∈ T (u1), w2 ∈ T (u2)

�N (u1, ·)− N (u2, ·)� ≤ β�u1 − u2�.

In a similar way, we can de�ne the strongly monotonicity and Lipschitz
continuity of the operator N (· , ·) with respect to the second argument.

De�nition 2.2. The set-valued operator V : H → C(H ) is said to be M-
Lipschitz continuous, if there exists a constant ξ > 0 such that

M(V (u), V (v)) ≤ ξ�u − v�, for all u, v ∈ H ,

where C(H ) is the family of all nonempty compact subsets of H and M(· , ·) is
the Hausdorff metric on C(H ).

3. Equivalence and existence theory.

In this section, we use the projection technique to establish the equivalence
between generalized set-valued variational inequality (2.1) and generalized
�xed point problem. This equivalence is used to prove the existence of a solution
of the problem (2.1). For this purpose, we need the following result, which can
be proved by invoking Lemma 2.1.

Lemma 3.1. Let K be a closed nonempty convex set in H . Then (u, w, y) is a
solution of (2.1) if and only if (u, w, y) satis�es the relation

(3.1) g(u) = PK [g(u)− ρN (w, y)],

where ρ > 0 is a constant and PK is the projection of H into K .
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Lemma 3.1 implies that the generalized set-valued variational inequality
(2.1) is equivalent to the �xed point problem. This equivalent formulation of
the generalized set-valued variational inequality (2.1) is very important from
both theoretical and numerical analysis point of views. This formulation en-
ables us not only to study the existence of a solution of the set-valued vari-
ational inequality (2.1), but also to develop iterative algorithms for computing
the approximate solutions of various classes of variational inequalities and com-
plementarity problems.

Theorem 3.1. Let K be a closed convex set in H . Let the operator N (. , .)
be strongly monotone with constant α > 0 and Lipschitz continuous with
constant β > 0 with respect to the �rst argument. Let the single-valued
operator g : H → H be strongly monotone with constant σ > 0 and Lipschitz
continuous with constant δ > 0. Assume that the operator N (. , .) is Lipschitz
continuous with constant η > 0 with respect to the second argument and V
is M-Lipschitz continuous with constant ξ > 0. Let T : H → 2H be a M-
Lipschitz continuous with constant µ > 0. If γ < α, where γ is de�ned by
(3.11) and

�
�
�ρ −

α − (1− k)ηξ

β2µ2 − η2ξ2

�
�
� <(3.2)

<

�
[α − (1− k)ηξ ]2 − k(β2µ2 − η2ξ2)(2− k)

β2µ2 − η2ξ2

α > (1− k)ηξ +
�

k(β2µ2 − η2ξ2)(2− k)(3.3)

ρηξ < 1− k(3.4)

k = 2
�
1− 2σ + δ2 ,(3.5)

then the generalized set-valued variational inequality (2.1) has a unique solu-
tion u ∈ H such that w ∈ T (u), y ∈ V (u) and g(u)∈ K .

(a) Uniqueness. Let u1, u2 ∈ H , u1 �= u2 be two solutions of the variational
inequality (2.1), then

�N (w1, y1), g(v)− g(u1)� ≥ 0(3.6)

�N (w2, y2), g(v)− g(u2)� ≥ 0.(3.7)

Now taking v = u2 in (3.6) and v = u1 in (3.7) and adding the resultant
inequalities, we have

�N (w1, y1)− N (w2, y2), g(u1)− g(u2)� ≤ 0,
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which can be written as

�N (w1, y1) − N (w2, y1), u1 − u2� ≤

≤ �N (w1, y1)− N (w2, y1), u1 − u2 − (g(u1)− g(u2))�

+ �N (w2, y1)− N (w2, y2), g(u1)− g(u2)�.

Using the strongly monotonicity and Lipschitz continuity of the operator N (. , .)
with respect to the �rst argument, we have

α�u1 − u2�
2 ≤(3.8)

≤ �N (w1, y1) − N (w2, y1)��u1 − u2 − (g(u1) − g(u2))�

+�N (w2, y1)− N (w2, y2)��g(u1)− g(u2)�

≤ β�w1 − w2��u2 − u1 − (g(u1)− g(u2)�

+�N (w2, y1)− N (w2, y2)��g(u1)− g(u2)�

≤ βM(T (u1), T (u2))�u1 − u2 − (g(u1)− g(u2))�

+�N (w2, y1)− N (w2, y2)��g(u1)− g(u2)�

≤ µβ�u1 − u2��u1 − u2 − (g(u1)− g(u2)�

+�N (w2, y1) − N (w2, y2)��g(u1)− g(u2)�.

Since g : H → H is strongly monotone Lipschitz continuous, so

�u1 − u2 − (g(u1)− g(u2))�
2 = �u1 − u2�

2(3.9)

− 2�g(u1)− g(u2), u1 − u2� + �g(u1)− g(u2)�
2 ≤ (1− 2σ + δ2)�u1 − u2�

2.

Using the Lipschitz continuity of the operator N (. , .) with respect to the second
argument and the M -Lipschitz continuity of V , we have

�N (w2, y1) − N (w2, y2)� ≤ η�y1 − y2� ≤(3.10)

≤ ηM(V (u1), V (u2)) ≤ ηξ�u1 − u2�.

Combining (3.8), (3.9), (3.10) and using the Lipschitz continuity of the operator
g : H → H , we obtain

α�u1 − u2�
2 ≤ {βµ

�
1− 2σ + δ2 + ηξδ}�u1 − u2�

2 = γ �u1 − u2�
2,
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where

(3.11) γ = ηξδ + βµ
�
1− 2σ + δ2 .

Hence
(a − γ )�u1 − u2�

2 ≤ 0,

which shows that u1 = u2, the uniqueness of the solution, since γ < α.

(b) Existence. From Lemma 3.1, it follows that the generalized set-valued
variational inequality (2.1) is equivalent to the �xed point problem

(3.12) u = F(u) ≡ u − g(u)+ PK [g(u)− ρN (w, y)].

In order to prove the existence of a solution of (2.1), it is suf�cient to show that
the problem (3.12) has a �xed point. Thus, for all u1, u2 ∈ H , u1 �= u2, we have

�F(u1)− F(u2)� = �u1 − u2 − (g(u1) − g(u2)) +(3.13)

+ PK [g(u1) − ρ(N (w1, y1))]− PK [g(u2) − ρ(N (w2, y2))]�

≤ �u1 − u2 − (g(u1)− g(u2))�

+ �PK [g(u1)− ρ(N (w1, y1))] − PK [g(u2)− ρ(N (w2, y2))]�

≤ �u1 − u2 − (g(u1)− g(u2))� +�g(u1)− g(u2)− ρ(N (w1, y1)− N (w2, y1))�

+ ρ�N (w2, y1)− N (w2, y2)�

≤ 2�u1 − u2 − (g(u1)− g(u2))� + �u1 − u2 − ρ(N (w1, y1) − N (w2, y1))�

+ ρ�N (w2, y1)− N (w2, y2)� ≤
�
2
�
1− 2σ + δ2 + ρηξ

�
�u1 − u2�

+ �u1 − u2 − ρ(N (w1, y1)− N (w2, y1))�,

where we have used (3.9) and (3.10).
Since N (· , ·) is a strongly monotone Lipschitz continuous operator with

respect to the �rst argument, so

�u1 − u2 − ρ(N (w1, y1)− N (w2, y1))�
2 =(3.14)

= �u1 − u2�
2 − 2ρ�N (w1, y1)− N (w2, y1), u1 − u2�

+ ρ2�N (w1, y1)− N (w2, y1)�
2 ≤ (1− 2ρα + ρ2β2µ2)�u1 − u2�

2.

From (3.13) and (3.14), we have

�F(u1)− F(u2)� ≤
�
2
�
1− 2σ + δ2 + ρηξ +

+
�
1− 2ρα + ρ2β2µ2

�
�u1 − u2�

= {k + ρηξ + t(ρ)}�u1 − u2� = θ�u1 − u2�,
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where

θ = k + ρηξ + t(ρ)(3.15)

k = 2
�
1− 2σ + δ2

t(ρ) =
�
1− 2ρα + ρ2β2µ2.(3.16)

From (3.2) � (3.5), it follows that θ < 1, so the map F(u) de�ned by (3.12)
has a �xed point u ∈ H such that w ∈ T (u), y ∈ V (u) satisfying the generalized
set-valued variational inequality (2.1). This completes the proof. �

Related to generalized set-valued variational inequality (2.1), we consider
the problem of solving generalized set-valued Wiener-Hopf equations. Let PK

be the projection of H into the convex set K and QK ≡ I − PK , where I is the
identity operator.

Given multivalued operators T , V : H → 2H , single-valued operators
g : H → H , and N : H × H → H , consider the problem of �nding z, u ∈ H
such that w ∈ T (u), y ∈ V (u) and

(3.17) N (w, y) + ρ−1QK z = 0.

The equations of type (3.17) are called the generalized set-valued Wiener-
Hopf equations, which were introduced by Noor [28] related to the generalized
multivalued variational inequalities. For the general treatment, formulation and
applications of the Wiener-Hopf equations, see [25], [28], [29], [37], [39] and
the references therein.

Using Lemma 2.1, 3.1 and the techniques of Shi [41], [42] and Noor [20],
[25], [28], we prove the following result.

Theorem 3.2. The generalized set-valued variational inequality (2.1) has a
solution u ∈ H such that w ∈ T (u), y ∈ V (u), g(u) ∈ K , if and only if, the
generalized set-valued Wiener-Hopf equations (3.17) have a solution z, u ∈ H
such that w ∈ T (u), y ∈ V (u), where

(3.18) g(u) = PK z,

and

(3.19) z = g(u)− ρN (w, y).



14 MUHAMMAD ASLAM NOOR

Proof. Let u ∈ H such that w ∈ T (u), y ∈ V (u), and g(u)∈ K be a solution of
(2.1). Then by Lemmas 2.1 and 3.1, we have

(3.20) g(u) = PK [g(u)− ρN (w, y)].

Using the fact QK ≡ I − PK and equations (3.20), we obtain

QK [g(u)− ρN (w, y)] = g(u)− ρN (w, y)−

− PK [g(u)− ρN (w, y)] = −ρN (w, y),

which implies that

N (w, y) + ρ−1QK z = 0, with z = g(u)− ρN (w, y),

the required (4.1).
Conversely, let z ∈ H such that w ∈ T (u), and y ∈ V (u) be a solution of

(3.17), then

(3.21) ρN (w, y) = −QK z = PK z − z.

Now invoking Lemma 2.1 and (3.21), for all v ∈ K , we have

0 ≤ �PK z − z, v − PK z� = ρ�N (w, y), v − PK z�.

Thus (u, w, y), where u = g−1PK z, is a solution of (2.1), the required result.
�

We now consider another technique to study the existence of a solution
of the variational inequality (2.1), which does not depend on the projection
method. This technique is known as the auxiliary principle technique, which has
been developed by Noor [21], [23], [24], [26] in recent years. This technique is
being used to develop a variational formulation of the variational inequalities,
which in turn enables us to develop a general frame of descent type algorithms,
see, for example, [10], [23], [26] and the references therein.

The main and basic idea in the auxiliary principle technique is to consider
an auxiliary variational inequality problem related to the given variational
inequality. This formulation de�nes a mapping connecting the solutions of
both these problems and one has to show that this mapping is a contraction
mapping and consequently it has a �xed point, which is the solution of the
original variational inequality problem. It is known that for a given problem, one
can consider a number of auxiliary variational problems. The main advantage
of this technique is that it enables us to prove the existence of a solution of
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various classes of variational inequalities as well as provides us a variational
formulation of the variational inequalities. This alternate formulation allows
us to develop a large number of numerical techniques for solving variational
inequalities and related optimization problems. To be more precise, for a given
u ∈ H , we consider the problem of �nding a unique z ∈ H , w ∈ T (u), y ∈ V (u),
g(z)∈ K satisfying the auxiliary variational inequality

(3.22) �z, v − z� ≥ �u, v − z� − ρ�N (w, y), g(v)− g(z)�,

for all g(v)∈ K , v ∈ H , where ρ > 0 is a constant.
From now onward, we assume that g is a linear operator. We note that the

solution of the auxiliary variational inequality (3.22) is equivalent to �nding the
minimum of the functional F[z] on K in H , where

(3.23) F[z] =
1

2
�z − u, z − u� + ρ�N (w, y), g(z) − g(u)�,

which is called the auxiliary differentiable functional associated with the prob-
lem (3.22). Using the technique of Fukushima [10], one can prove that the
generalized set-valued variational inequality (2.1) is equivalent to �nding the
minimum of the functional N [u] on K in H , where

(3.24) N [u] =
1

2
�u − z(u), z(u) − u� + ρ�N (w, y), g(u)− g(z(u))�,

where z = z(u) ∈ H such that w ∈ T (z(u)), y ∈ V (z(u)), and g(z(u)) ∈ K
is the solution of the auxiliary variational inequality (3.22). The functional
N [u] de�ned by (3.23) is known as the gap (merit) function associated with
the generalized set-valued variational inequality (2.1). These gap functions can
be used to develop general framework for descent and Newton methods with
line search for solving the generalized set-valued variational inequality (2.1)
using the technique of Fukushima [10], Larsson and Patriksson [16] and Zhu
and Marcotte [46].

Using the ideas and techniques of Noor [23], [24] and Cohen [5], we can
propose and analyze a general algorithm. For a given u ∈ H , we introduce the
following general auxiliary problem of �nding the minimum of the functional
M[z] on K in H , where

M[z] = E(z) − E(u) − �E �(u), z − u� +(3.25)

+ ρ�N (w, y), g(z) − g(u)�.
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Here E(z) is a differentiable convex function. Thus we can associate to (2.1),
the equivalent optimization problem

max{M(z), z ∈ K },

which is known as the variational principle in the terminology of Blum and
Oettli [3]. One can easily show that the minimum of M[z], de�ned by (3.24),
on K can be characterized by a variational inequality of the type

(3.26) �E(z), v − z� ≥ �E �(u), v − z� − ρ�N (w, y), g(v)− g(z)�,

for all v ∈ H such that g(v)∈ K .
It is clear that the auxiliary variational inequality (3.22) is a special case

of (3.24). We also remark that if z = u, then z is a solution of the variational
inequality (2.1). In many applications, the auxiliary variational inequalities of
the type (3.22) and (3.24) occur, which do not arise as result of minimization
problems. The main motivation of this section is to suggest a general auxiliary
generalized set-valued variational inequality problem, which includes (3.22),
(3.23) � (3.25) as special cases.

Auxiliary Principle 3.1. For a given u ∈ H , we consider the problem of �nding
z ∈ H such that w ∈ T (u), y ∈ V (u), g(z)∈ K and

(3.27) �B(z), v − z� ≥ �B(u), v − z� − ρ�N (w, y), g(v)− g(z)�,

for all v ∈ H such that g(v)∈ K and B : H → H is a single-valued nonlinear
operator.

We remark that if z = u, then z is a solution of the generalized set-valued
variational inequality (2.1).

4. Iterative Algorithms.

In this section, we invoke Lemma 3.1 and Theorem 3.2 to suggest a
number of iterative algorithms for solving generalized set-valued variational
inequality (2.1) and its various special cases. From Lemma 3.1, it is clear that
the variational inequality (2.1) is equivalent to the �xed point problem of the
type

u = u − g(u)+ PK [g(u)− ρN (w, y)],

which implies that

(4.1) u = (1− λ)u + λ{u − g(u)+ PK [g(u)− ρN (w, y)]},

where 0 < λ < 1 is a parameter and ρ > 0 is a constant.
We use this �xed point formulation to suggest the following uni�ed algo-

rithm for the variational inequalities (2.1).
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Algorithm 4.1. Let K be a nonempty closed convex set in H . Assume that
g : H → H , V , T : H → 2H operators. For a given u0 ∈ H , let us consider
w0 ∈ T (u0), y0 ∈ V (u0),g(u0)∈ K and

u1 = (1− λ)u0 + λ
�
u0 − g(u0) + PK [g(u0)− ρN (w0, y0)]

�
.

Since w0 ∈ T (u0), y0 ∈ V (u0), so there exist w1 ∈ T (u1), y1 ∈ V (u1) such that

�w0 − w1� ≤ M(T (u0), T (u1))

�y0 − y1� ≤ M(V (u0), V (u1)).

Let

u2 = (1− λ)u1 + λ
�
u1 − g(u1) + PK [g(u1)− ρN (w1, y1)]

�
.

Continuing this way, we can obtain the sequences {un}, {wn}, and {yn} such that

wn ∈ T (un) : �wn − wn+1� ≤ M(T (un), T (un+1))(4.2)

yn ∈ V (un) : �yn+1 − yn� ≤ M(V (un+1), V (un))(4.3)

un+1 = (1− λ)un + λ{un − g(un)+ PK [g(un)− ρN (wn, yn)]},(4.4)

for n = 0, 1, 2, . . ..

If T , V : H → 2H , and g ≡ I , the identity operator, then Algorithm 4.1
reduces to:

Algorithm 4.2. For a given u0 ∈ K such that w0 ∈ T (u0), y0 ∈ V (u0), compute
{un}, {wn} and {yn} from the iterative schemes

wn ∈ T (un) : �wn − wn+1� ≤ M(T (un), T (un+1))

yn ∈ V (un) : �yn+1 − yn� ≤ M(V (un+1), V (un))

un+1 = (1− λ)un + λPK [un − ρN (wn, yn)],

n = 0, 1, 2, . . ..

Theorem 3.2 implies that generalized set-valued variational inequalities
(2.1) andWiener-Hopf equations (3.17) are equivalent. This equivalence is quite
general and �exible. We use this equivalence to suggest a number of iterative
algorithms for solving the generalized set-valued variational inequalities and the
complementarity problems.
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I. The equations (3.17) can be written as

QK z = −ρN (w, y),

from which it implies that

z = PK z − ρN (w, y)

= g(u)− ρN (w, y), using (3.18).

This �xed point formulation enables us to suggest the following iterative
method.

Algorithm 4.3. For given z0, u0 ∈ H such that w0 ∈ T (u0), and y0 ∈ V (u0),
compute the sequences {zn }, {un}, {wn}, and {yn} by the iterative schemes

un = un − g(un) + PK zn

wn ∈ T (un) : �wn − wn+1� ≤ M(T (un), T (un+1))

yn ∈ V (un) : �yn+1 − yn� ≤ M(V (un+1), V (un))

zn+1 = g(un)− ρN (wn, yn),

n = 0, 1, 2, . . ..

II. The equations (3.17) may be written as

QK z = −N (w, y) + (1− ρ−1)QK z,

which implies that

z = PK z − N (w, y) + (1− ρ−1)QK z

= g(u)− N (w, y) + (1− ρ−1)QK z, using (3.18).

Using this �xed point formulation, we can suggest the following iterative
scheme.

Algorithm 4.4. For given z0, u0 ∈ H such that w0 ∈ T (u0), and y0 ∈ V (u0),
compute the approximate solutions {zn }, {un}, {wn} and {yn} by the iterative
schemes

un = un − g(un) + PK zn

wn ∈ T (un) : �wn − wn+1� ≤ M(T (un), T (un+1))

yn ∈ V (un) : �yn+1 − yn� ≤ M(V (un+1), V (un))

zn+1 = g(un)− N (wn , yn)+ (1− ρ−1)QK zn ,

n = 0, 1, 2, . . ..
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For a suitable choice of operators T , A, g, V and convex set K , one
can obtain a wide class of iterative algorithms for solving various classes of
variational inequalities and complementarity problems.

For the sake of completeness and to convey an idea, we now study the
convergence of Algorithm 4.1. In a similar way, one can study the convergence
analysis of other algorithms.

Theorem 4.1. Let the operator N (. , .) be strongly monotone with constant
α > 0 and Lipschitz continuous with constant β > 0 with respect to the �rst
argument. Let the single-valued operator g : H → H be strongly monotone
with constant σ > 0 and Lipschitz continuous with constant δ > 0. Let the
operator N (., .) be Lipschitz continuous with constant η > 0 with respect
to the second argument and V : H → 2H be M-Lipschitz continuous with
constant ξ > 0. Let the multivalued operator T be M-Lipschitz continuous with
constant µ > 0. If the relations (3.2) � (3.5) hold, then there exists u ∈ H such
that w ∈ T (u), y ∈ V (u), and g(u) ∈ K satisfying the generalized set-valued
variational inequality (2.1) and the sequences {un}, {wn} and {yn} generated
by Algorithm 4.1 converge to u, w and y strongly in H respectively.

Proof. From Algorithm 4.1, we have

�un+1 − un� ≤ (1− λ)�un − un−1� + λ�un − un−1 − (g(un)− g(un−1))

+ PK [g(un)− ρN (wn , yn)]− PK [g(un−1) − ρN (wn−1, yn−1)]�

≤ (1− λ)�un − un−1� + λ�un − un−1 − (g(un)− g(un−1))�

+ λ�PK [g(un) − ρN (wn , yn)]− PK [g(un−1)− ρN (wn−1, yn−1)]�

≤ (1− λ)�un − un−1� + 2λ�un − un−1 − (g(un) − g(un−1))�

+ λ�un − un−1 − ρ{N (wn, yn)− N (wn−1, yn)}�

+ λρ�N (wn−1, yn)− N (wn−1, yn−1)�

≤ (1− λ)�un − un−1� +
�
2λ

�
1− 2σ + δ2 + λ

�
1− 2ρα + ρ2β2µ2

+ λρηξ
�
�un − un−1�, using (3.9), (3.10) and (3.14)

= {(1− λ)+ λ(k + ρηξ + t(ρ))}�un − un−1�, using (3.15) - (3.16)

= {(1− λ)+ λθ}�un − un−1� = {1− λ(1− θ )}�un − un−1�.

Thus

(4.5) �un+1 − un� ≤ h�un − un−1�,
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where
h = 1− λ(1− θ ).

Now from (3.2) - (3.5), we have 0 < θ < 1. It follows that h < 1.
Consequently, from (4.5), we know that the sequence {un} is a Cauchy sequence
in H , that is, there exists u ∈ H with un+1 → u. Also from (4.3), we have

(4.6) �yn+1 − yn� ≤ M(V (un+1), V (un)) ≤ ξ�un+1 − un�,

which implies that the sequence {yn} is a Cauchy sequence in H , so that there
exists y ∈ H such that yn → y . Now by using the continuity of the operators
T , A, g, V , PK and Algorithm 4.1, we have

u = (1− λ)u + λ{u − g(u)+ PK [g(u)− ρN (w, y)]},

that is
g(u) = PK [g(u)− ρN (w, y)]∈ K .

Now we show that y ∈ V (u). In fact,

d(y, V (u)) ≤ �y − yn� + d(yn, V (u)) ≤ �y − yn� + M(V (un), V (u))

≤ �y − yn� + ξ�un − u� → 0 as n → ∞,

where d(y, V (u)) = inf{�y − z� : z ∈ V (u)}. Since the sequences {un}

and {yn} are the Cauchy sequences, it follows from the above inequality that
d(y, V (u)) = 0. This implies that y ∈ V (u). In a similar way, we can show that
w ∈ T (u). By Lemma 3.1, it follows that u ∈ H such that w ∈ T (u), y ∈ V (u),
g(u) ∈ K , which satis�es the inequality (2.1) and un → u, wn → w, yn → y
strongly in H , the required result. �

Remark 4.1. It is worth mentioning that various methods including projection,
linear approximation, relaxation and decomposition methods for solving vari-
ational inequalities can be derived from the auxiliary principle technique by a
suitable and appropriate rearrangement of the operators T , g, V and the convex
set K , see, for example, [23] and the references therein. In recent years, the
auxiliary principle technique has been used to �nd the equivalent differentiable
optimization problems for the variational inequalities. These equivalent differ-
entiable optimization problems are being used to develop the general descent
and Newtons methods with line search to solve the variational inequalities and
complementarity problem. For recent development in this direction, see Lars-
son and Patriksson [16], Zhu and Marcotte [46] and Noor [23], [26]. In brief,
we conclude that by a suitable choice of the auxiliary principle problem, one
can �nd not only a number of equivalent formulations for various types of vari-
ational inequalities, but can also study the existence of the solution. These facts
show that the auxiliary principle technique is quite general and �exible.
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Remark 4.2. In many applications of the variational inequalities, the convex
set K also depends explicitly or implicitly on the solution u. In this case,
problem (2.1) is called generalized set-valued quasi variational inequality. We
remark that with a suitable modi�cation, the techniques discussed in Section 3
and Section 4 can be extended to obtain similar results for quasi variational
inequalities. An extension of the auxiliary principle technique for generalized
set-valued quasi variational inequalities is still an open problem, which is
another direction for future research in this interesting area. The development
and implementation of ef�cient iterative algorithms for generalized set-valued
variational inequalities deserve further research efforts.

REFERENCES

[1] G. Auchmuty, Variational Principles for variational inequalities, Num. Funct.
Anal. Optim., 10 (1989), pp. 863�879.

[2] C. Baiocchi - A. Capelo, Variational and Quasi Variational Inequalities, J. Wiley
and Sons, New York, 1984.

[3] E. Blum -W. Oettli, From optimization and variational inequalities to equilibrium
problems, Math. Student, 63 (1994), pp. 123�145.

[4] S.S. Chang - N.J. Huang, Generalized strongly nonlinear complementarity prob-
lems in Hilbert spaces, J. Math. Anal. Appl., 158 (1991), pp. 194�202.

[5] G. Cohen, Auxiliary problem principle extended to variational inequalities, J.
Optim. Theor. Appl., 59 (1988), pp. 325�333.

[6] R.W. Cottle - F. Giannessi - J.L. Lions, Variational inequalities and Complemen-
tarity Problems: Theory and Applications, J. Wiley and Sons, New York, 1980.

[7] V.F. Demyanov - G.E. Stavroulakis - L.M. Polyakova - P.D. Panagiotopou-
los, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering
and Economics, Kluwer Academic Publications, Holland, 1996.

[8] X.P. Ding, Generalized strongly nonlinear quasi variational inequalities, J. Math.
Anal. Appl., 173 (1993), pp. 363�383.

[9] S.C. Fang - E.L. Peterson, Generalized variational inequalities, J. Optim. Theory
Appl., 38 (1982), pp. 363�383.

[10] M. Fukushima, Equivalent differentiable optimization problems and descent meth-
ods for asymmetric variational inequality problems, Math. Program., 53 (1992),
pp. 99�110.



22 MUHAMMAD ASLAM NOOR

[11] R. Glowinski - J.L. Lions - R. Tremolieres, Numerical Analysis of Variational
Inequalities, North-Holland, Amsterdam, 1981.

[12] P.T. Harker - J.S. Pang, Finite dimensional variational inequality and nonlin-
ear complementarity problems: a survey of theory, algorithms and applica-
tions, Mathematical Programming, 48 (1990), pp. 181�220.

[13] D.H. Hyer - G. Isac - Th.M. Rassias, Topics in Nonlinear Analysis and Applica-
tions, World Scienti�c Publ. Co., Singapore, 1997.

[14] D. Kinderlehrer - G. Stampacchia, An Introduction to Variational Inequalities and
Their Applications, Academic Press, New York, 1980.

[15] N. Kikuchi - J.T. Oden, Contact Problems in Elasticity, SIAM Publishing Co.,
Philadelphia, 1988.

[16] T. Larsson - M. Patriksson, A class of gap functions for variational inequali-
ties, Math. Program., 64 (1994), pp. 53�79.

[17] J.L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math.,
20 (1967), pp. 493�519.
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