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1. Introduction.

Regularity of an ideal / is defined to be the minimal number r such that
the i-th syzygy module of / is generated by elements of degree < i + r for all
i > 0. It is denoted by reg /. The regularity of an ideal can be considered as a
refined notion of the maximal degree of minimal generators of / as a measure
of the complexity of Grébner basis computations and it is important both from
the computational and theoretical point of view.

It is usually difficult to determine the regularity of / without knowing the
shifts of the minimal free resolution of / explicitly. But in order to obtain a
minimal free resolution using computer algebra systems such as Macaulay, a
Grobner basis has to be computed in each step. So from the computational
point of view it is not useful to acquire the regularity from a known minimal
free resolution. What we need are some kind of general estimates for regularity
using other invariants of the ideal /. Using Grobner basis theory, we have
reg I = reg Gin(/), where Gin (/) is a generic initial ideal of I with respect
to the reverse lexicographic order (see, e.g. [4]). Then to estimate reg I, it is
enough to consider the monomial ideal Gin (/). Thus estimating the regularity
of monomial ideals is the first step toward studying general homogeneous ideals.
In this paper, we hence focus on the regularity of monomial ideals.

After preparing some terminology and known facts on simplicial complexes and
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Stanley-Reisner rings in § 2, we give the estimate
reg I < arith-deg /
for a monomial ideal 7 in § 3. This estimates refines the inequality
(maximal degree of minimal generators of /) < arith-deg /

in Sturmfels-Trung-Vogel [14]. After finishing our paper we learned that this
bound for the regularity had independently been proved by Hoa and Trung in
1997 using different methods [8].

In § 4 we generalize a certain inequality which is conjectured by Eisenbud,
and obtained in [16]. The class which is considere in [16] is pure simplicial
complexes connected in codimension 1. Introducing a correcting term we
generalize the estimate to the class of pure simplicial complexes with possibly
more than one connected component, each of which connected in codimension
1. This class contains all Buchsbaum complexes, while the class considered in
[16] does not contain all of these.

In the final section we give some examples showing that all bounds are sharp
and each is best in some situations.

We would like to thank Professors D. Eisenbud and S. Popescu for their
helpful and encouraging suggestions, advice and comments. We would also
like to thank Professors A. Ragusa, G. Paxia and all other organizers of PRAG-
MATIC 97 for their hospitality and EUROPROJ for the financial support that
made PRAGMATIC 97 possible.

2. Preliminaries.

First we fix some notation and recall some facts about simplicial complexes
and Stanley-Reisner rings. The reference for the followingis [12], if not denoted
otherwise.

A simplicial complex A on the vertex set V = {x1, ..., x,,} is a collection
of subsets of V, such that

1) {x;} € A forevery x; € V and
2)ift Coando e A,thenteA.

An element o € A is called an i-face of A, if the number of vertices of o, #o,
is i + 1. The number of i-faces of A is denoted by f;. The maximal faces of a
simplicial complex will also be called facets:

d—1:=dimA :=max{#o — 1:0 € A} =max{i : f; # 0}.
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Let A = k[xy, ..., x,] be a polynomial ring over a field k, where the variables
x; correspond to the vertices x; € V. Then
In i= (X - ooxg, vl <o <0y {Xgys oo, X3 ) € A)

is the square-free monomial ideal corresponding to the simplicial complex A.
The ring k[A] := A/I, is called the Stanley-Reisner ring of A. Its Hilbert-
series can be written in the following way:

F(k[A], A) = Zdimk(k[A]i)ki
i=0

Hence d = dim(k[A]) = dim A + 1 and deg(k[A]) = fu—1.

Now let

0 — QA=) — - — @A) — A — k[A] — 0
be a graded minimal free resolution of k[ A] over A. The minimal length of such
a resolution of k[A] is denoted by pd k[A]. We denote by Ay :={c€A:0 C

W} the restriction of A on the vertex set W. Then the graded Betti-numbers of
k[A] are given by Hochster’s formula [9]

Bij = Z dimﬁj—i—l(AW;k),
HW=jWCV

where ﬁl(AW; k) is the [-th reduced homology of Ay, .

Given a graded minimal free resolution of k[A], the regularity of k[A] is defined
as the maximum over all j — i for which B;; # 0. Therefore the regularity of a
Stanley-Reisner ring can be computed by Hochester’s formula:

regk[Al=max{i + 1:3IW C V : H(Aw; k) # 0}.

This formula is not very useful for explicit computations because of the possibly
huge number of subsets W, that has to be considered. For computing regularity
it is in some cases easier to use a formula by [15], which is applicable in the
situation of codimk[A] > 2 and uses the Alexander dual complex A* :=
{V\o :0 ¢ A} of the simplicial complex A:

(%) reg In — indeg In = dimk[A*] — depth k[A*].

Here indeg /5 denotes the minimum of all i for which we have (15); # 0.
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3. A Bound for the Regularity of a Monomial Ideal.

Our goal in this section is to prove a conjecture of Bayer and Mumford [1]
(in the form stated in [6]) that the regularity of a square-free monomial ideal is
bounded by the geometric degree of this ideal. For this proof we will use facts
about Stanley-Reisner rings, especially a formula for regularity by Terai [15].
After this we will use polarization to generalize this bound to the arithmetic
degree of a non-square-free monomial ideal. See [14] for the definitions and
basic properties of geometric and arithmetic degree.

Theorem 3.1. Let In be a square-free monomial ideal corresponding to a
simplicial complex A. Let k[A] denote its Stanley-Reisner ring; suppose
codimk[A] > 2. Then we have

reg I < geom-deg I.

Proof. Denote the minimal number of generators of Ix« by w(A*). This
number is just the number of maximal faces of A by the definition of the
Alexander dual complex. Therefore we need to show that

reg In < w(A™).
By formula () for the regularity this is just
indeg In 4+ dimk[A*] — depthk[A*] < w(A¥).

But indegIx = min{#o : 0 ¢ A} = minfn —#V \ o) : V\o € A*} =
embdim k[A*] — dim k[A*]. So it is left to prove that

embdimk[A*] — depthk[A*] < u(A¥).

In this formula the left side is just the projective dimension of k[A*] by the
Auslander-Buchsbaum theorem. But for the Taylor-resolution (see e.g. [4],
Exercise 17.11) of a monomial ideal the lenght of the resolution is just the
minimal number of generators. So pd kK[A*] < w(A*) is certainly true. U

In the previous proof we have also shown the following equality which is
also interesting itself:

Corollary 3.2. Using the same notation and hypothesis as above, we have:

reg In = pdk[A].
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Let S = k[xy,...,x,] denote the polynomial ring in n variables, let
M = {xq,...,x,} be the set of variables. Let I = (fi,..., f;) be a (not
necessarily square-free) monomial ideal in S.

Definition 3.3. ([14]). Let 2™ be the set of all subsets of M. We denote by
supp(m) the set of variables of the monomial m. A pair (m, Z) consisting of a
monomial m € S and a set Z € 2M is called admissible if Z N supp(m) = @. We
define a partial order < on the set of all admissible pairs by

/

(m,Z) < (m', Z") <= m divides m" and supp(ni) uz' cz.
m

An admissible pair (m, Z) is called standard with respect to I if

i.) m-k[Z]1NI = {0} and

ii.) (m, Z) is minimal with respect to < in the set of pairs satisfying i.).
The number of all standard admissible pairs of I will be denoted by std(I).

In the following we would like to compare the standard admissible pairs
of I = (fi,..., fs) and of a square-free monomial ideal formed by polarizing
1. For this purpose the conditions i.) and ii.) of the above definition will be
substituted by equivalent conditions that make the comparison easier. (Without
loss of generality we may assume that none of the generators divides another
generator of 7).

If we write an admissible pair as (xff” - xla c Z =Axjj ¢ i, ... i),
a; > 0, the conditions for an admissible pair to be standard can be reformulated

as follows:
aj()+1

1) Vl§sEIj(l)e{i1,...,i,}:xj(l) divides f;
2)VZ2'52, 72 #7, 31 <s3acSmonomial: a- fiex;" - x;" - k[Z'],
where {x;,...,x; } =M\ Z".

The equivalence of the conditions 1.) and i.) is easy to check:
If there is no such j(/), then we can find a monomial a € S, such thata - f; €
X -xf:i’ -k[Z] and therefore the conditioni.) cannot be satisfied. On the other

1

hand we will never find a monomial a € § such thata - f; € xf][i‘ .- -xf:" -k[Z],

. . . o+l
if there is a monomial b € S such that b - x%°"

o = /1. In a similar way also the
equivalence of 2.) and ii.) can be checked:

If for some set Z' D> Z, Z' # Z we cannot find a generator f; of I
and a monomial a € § such that a - f; € x;.f” ---xjp”’ - k[Z'], then the pair
(x;fj b -x;:” , Z') satisfies the condition 1.) and is less than our pair with respect
to our order <. If conversely we can find such / and a forall Z' > Z,Z" # Z,

then our pair is indeed minimal.
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Now we are interested in the square-free monomial ideal /p,; corresponding to
I by polarization in the following way:

&%

We replace each factor x; of the minimal generators of the monomial ideal /
by X1y« Xiq). We always use the lowest possible second index. We have
IPol C SPol = k[X(l’l), e X8 s x(n,ﬂ,,)]v where ,3,' is the maximum over
all exponents of x; in the generators of /. Our new set of variables will be
denoted by Mp,; = {x(l,l), ceey x(n,ﬁ,,)}-

Since Ip,; is generated by square-free monomials, all standard admissible pairs
of Ip,; must be of the structure (1, Zp,;) for a suitable subset Zp,; C Mp,
([14], Lemma 3.5). By our special choice of the polarization we achieved also
that whenever x; ,) is a factor of a minimal generators of Ip,, s0 is x(; 5 for
all p < p. Therefore none of the subsets Z p,; can lack more than one variable
with the same first index.

Hence we can write a standard admissible pair of Ipy as (1, Zpy = {x(j p) :
(J, p) ¢ {Gi1, p1), ..., (ir, pr)}}), where i; < ... < i.. By the same considera-
tions as before we can now reformulate the conditions for an admissible pair of
the above structure to be standard:

Lpor) VYU <531, p) € Mpoi \ Zpor : X, py divides fi py

2po) VZ,y D Zpots, Zpy # Zror, I =5 fipa €KIZ},].

Remark 3.4. Since Ip,; is a square-free monomial ideal, it is corresponding to
some simplicial complex A. From this point of view, the condition 1 p,;.) means
that Zp, € A. 2p,.) is equivalent to saying that Z p,; is maximal among the
faces of A under condition 1p,.).

Lemma 3.5. There is a I to 1 correspondence between the standard admissible
pairs of 1 and those of Ip,;.

Proof. Claim: A pair (x;" ---x{" | Z = {x; 1 i ¢ {i1,....i,}}) is a standard
admissable pair of I iff (1, Zpy = {xq ) : (i, j) ¢ {Gi, 0, + 1), ..., Gy +
1)}}) is a standard admissible pair of Ip,,.

The equivalence of the two conditions 1.) and 1p,,.) is a direct consequence of
the fact that x; ) divides f; py, iff x j” divides f; by our construction of /p,;.
The condition 2.) just means that the factor x; of f; has at most the exponent
«; for each i € {i, ..., i} or in other words after polarization x; 4,+1) cannot
be a factor of f; p,;. Hence condition 2.) implies condition 2 p,,;.). If conversely
X(i,;+1) 18 not a factor of f; p,; the exponent of x; in f; cannot have exceeded o;
before polarization. (]

As shown by Sturmfels, Trung and Vogel ([14], Lemma 3.3) std(/) =
arith-deg(7). Thus our last lemma shows:
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Corollary 3.6. arith-deg I = artith-deg Ip,;.
Remark 3.7. The inequality
arith-deg I < arith-deg Ip,,

can also be seen as a special case of ([10], Theorem 2.1]).

For square-free monomial ideals the arithmetic degree coincides with the
geometric degree. So combining this corollary and the bound for the regularity
of a square-free monomial ideal, we have shown:

Theorem 3.8. Let I C k[xy,...,x,] be a monomial ideal and suppose
codimk[xy, ..., x,]/1 > 2. Then the regularity of I is bounded by its arith-
metic degree, i.e.,

reg I < arith-deg/ .

4. A better bound for some square-free monomial ideals.

In this section, we generalize a theorem in [16] that is an affirmative
answer for a certain conjecture of Eisenbud [6], which is a monomial version of
Eisenbud-Goto Conjecture [5]. The class which we consider includes the class
of Buchsbaum Stanley-Reisner rings, while the class considered in [16] does
not include that class completely.

Theorem 4.1. ([16]). Let k be a field and let A be a pure simplicial complex
connected in codimension 1. Then we have

reg [ < degk[A] — codimk[A] + 1.

Corollary 4.2. Let k be a field and let A be a simplicial complex consisting
of connected components Ay, ..., A;, each of these pure and connected in
codimension 1. Then we have

reg In < max{degk[A;] — codimk[A;] + 1}.

1<i<s
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Theorem 4.3. Let k be a field, let A be a pure simplicial complex allowing
more than one connected component, each of them connected in codimension
one. Then we get the following bound for the regularity:

deg k[A] — codimk[A] + dim Hy(A; k) - dim A + 1 > reg I.

We give a proof simplified by suggestions of Eisenbud. For reader’s

convenience, we overlap some parts of the proof in [16].
Proof. Let V be the vertex set of A. Put #(V) = n and dimk[A] = d. We

prove the theorem by induction on the number f;_; of facets in A.

First if codimk[A] < 1, then k[A] is a hypersurface. In this case the
theorem is clear.

Suppose codimk[A] > 2 and f;_; > 2. Then there exists a facet 0 € A
such that

A = A\ {reA| forany facet p(#£0)€A;T Z p}

is pure and connected in codimension 1. Denote by V' the vertex set of A" and
by f;_, the number of facets in A". There are three cases.

Case (). V # V. Put V\ V' = {v}. For W C V with v ¢ W we have
Aw = AY,. On the other hand, for W C V with v € W, Ay has the same
homotopy type with Ay, (. Since

reg In = max{i +2 | Hi(Aw; k) # 0 forsome W C V},
we have

reg [n =reg In
<fi, —(—1=d)+(d—1)dimHy(A'; k) + 1
= fyo1 —(n —d)+ (d — 1)dim Hy(A; k) + 1.

Case (ii). V = V'. We have reg In = pdk[A*] by Corollary 2.2. If we
prove pd k[A*] < pd k[(A")*] + 1, we have
reg In <regla +1
< fi_y —(n—d)+(d — 1)dim Hy(A'; k) + 2
= fuo1 — (n—d)+(d — 1)dim Hy(A; k) + 1.
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Then we have only to prove
pdk[A*] < pdk[(A")"] + 1.
Put k[A*] = k[(A")*]/(m), where m = Tl cy\,X;. If we show that
pdk[(A")*] = pd (I(ary + (m))/ I ary,
then the mapping cone guarantees that
pdk[A*] < pdk[(A")"]+1
by [4], Exercise A.3.30. But now we have

ary + m)) /I ans = (m)/((m) N Liary)
= (m)/((m) N (my, ..., m))
= (m)/(lem(m, my), ..., lem(m, m,))
= A/(my,...,m)) @4 (m),
where Iay = (my, ..., m;), m; = lcmfn—m"” and A = k[x; | x; € V]. Hence,
we have only to show
pd k[(A)] = pd A/(m), ... m)).
Now we have k[(A")*],, = A, /(m, ..., m;)A, . Hence we have
PAKI(A)*] = pdk[(A'Y ] = pd Ap/(m}, ..., m)) A, = pd Af(m}, ..., m]).

Case (iii). V' C V,#V' =#V —d.
This situation corresponds to taking away the last simplex of a connected
component. Therefore we have:

degk[A] = degk[A'] + 1
codimk[A] = codimk[A'] + d
dim Ho(A; k) = dim Hy(A'; k) + 1.
Then we have
reg Iy =reg Iy < degk[A'] — codimk[A] + (d — 1) dim Hy(A'; k) + 1
= degk[A] — codimk[A] + dim A + (d — 1)dim Hy(A; k) + 1. O
Corollary 4.4. Let A be a Buchsbaum complex. Then we have

deg k[A] — codimk[A] + dim Hy(A; k) - dim A + 1 > reg /.
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The condition that each connected component has to be connected in
codimension 1 cannot be dropped by introducing a correcting term as we did
when allowing more than one connected component, at least not without making
the bound much weaker for most situations. If the simplicial complex is no
longer connected in codimension 1, we can have various situations each leading
to a different correcting term, e.g.

1.) There is a maximal face such that only one vertex of it is also a vertex of
another maximal face. When taking away this maximal face in the process we
loose not only one but dim A vertices. So the formula needs to be corrected by
adding dim A — 1 to the bound for each time this situation appears:

2.) There is a maximal face such that we loose just one vertex but also a
(dim A — 1)-cycle. In this step the regularity drops by dim A — 1, if it was
the last cycle at all that we lost. In this situation we can correct by adding
dim A — 1 just once:

These two cases are the extremes, everything in between is also possible.
Therefore a useful bound in this situation requires more knowledge about the
structure of the simplicial complex. We can of course use the biggest possible
correcting term “+(deg k[A] — 1)(c — 1)” if we know that the complex is
connected in codimension c. But the formula then gives a bound that is far
above deg k[ A] in most situations.
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In one special situation we can also give an exact formula for the regularity in
terms of degree, codimension and homology of the simplicial complex:

Remark 4.5. Let A be a I-dimensional simplicial complex. Then we have

reg In = deg k[A] — codimk[A] + dim Hy(A, k) — max{0, dim H(A, k) — 1}.

Proof. By Hochster’s formula we know that for curves the regularity does not
exceed 3 and that it is equal to 2 iff dim H, (A, k) = 0. Furthermore we know
that deg k[A] = f; and that codim k[A] = fy — 2. So we can prove the above
formula by checking each of the two cases explicitly:

case I: regl =2

deg k[A] — codimk[A] + dim Hy(A, k) — max{0, dim H,(A, k) — 1} = f; —
fo 42+ dim Hy(A, k) — 0.

Using the Euler-Poincaré formula this equals to 2 which is just the regularity of
1

case2:regl =3

deg k[A] — codimk[A] + dim Hy(A, k) — max{0, dim H(A, k) — 1} = f; —
fo + 2+ dim Ho(A , k) — dim Hy (A, k) + 1.

Using again the Euler-Poincaré formula this is just 3. (]

5. Examples.

In this section we will show some examples to prove that the bounds
computed in the previous sections are sharp and that each of those two bounds is
in some situations the best. We will also include a third bound dimk[A] + 1 >
reg Ix which is just a consequence of the fact that reg Iy = max{i +2 :3W C
Vi Hi(Aw: k) # 0.

1. All bounds are sharp
For the hollow n-simplex we have:

X1

X3 X2
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In = (x1.. . X041)

degk[A]l=n+1

codimk[A] =1

dimk[A]l=n

reglpn =n+1

Bound 1: degk[A]l=n+1

Bound 2: deg k[A] — codimk[A]+1=n+1
Bound 3: dimk[A]l+1=n+1

. Bound 1 is the best

For two n-simplices joined in one vertex we have:

X1 Y1
Z
X2 »
In = (X1Y1, o s X1y oo s Xn V)
degk[A] =2

codimk[A] =n

dimk[A]l=n+1

regln =2

Bound 1: degk[A] =2

Bound 2: not applicable—A not connected in codimension 1
Bound 3: dimk[A]l+1=n+2

Bound 2 is the best even in the generalized version:

X3 »
X1 X2 Y3

X4 Y1
In = (V1X1, ooy Y1Xng2s oo o5 Y1 Xnt 2, X1 Xn42)
degk[A] =3

codimk[A]l=n+2
dim Hy(A, k) = 1
dimk[A]l=n+1
regly =2
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Bound 1: degk[A] =3 _
Bound 2: deg k[A] — codimk[A] + 1 4+ dim Hy(A, k) - dim A =2
Bound 3: dimk[A]l+1=n+2

. Bound 3 is the best

X1 X3

X3

X2 X4

In = (X1X3, X2X4, X1X2X5, X2X3X5, X3X4X5, X]X4X5)

degk[A] =8

codimk[A] =3

dimk[A] =2

reglpn =3

Bound 1: deg k[A] = 8

Bound 2: deg k[A] — codimk[A] 4+ 1 =16

Bound 3: dimk[A]+1 =3

This situation appears whenever there is a great number of cycles in the
simplicial complex.

. A situation where regularity, degree and codimension coincide

degk[A] =3
codimk[A] =3
regla =3

This situation can be reproduced by any accumulation of (n + 1) n-
simplices such that we have a hollow n-simplex in the middle.
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