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REMARKS ON Q-OSCILLATORS REPRESENTATIONS

OF HOPF-TYPE BOSON ALGEBRAS

ANNA MARIA PAOLUCCI - IOANNIS TSOHANTJIS

We present a method of constructing known deformed or undeformed
oscillators as quotients of certain models of Hopf-type oscillator algebras,
using similar techniques to those of determining �x point sets of the adjoint
action of a Hopf algebra. Moreover we give a characterization of these models
in terms of these quotients coupled to Euclidean Clifford algebra. A theorem
is proved which provides representations of the models, induced from those
of a certain type of quotient algebra.

1. Introduction.

Recently there has been an extensive interest in deformations of the original
oscillator algebras mainly because of their signi�cance in quantum algebras
and superalgebras and their wide range of application in mathematics and
physics [1]�[5]. Such deformations �rst appeared in [6], [7], [8] and [9], [10],
[11], to be followed by other generalizations [12]�[17], while their consistency
interrelation and representations have also been analysed [18]�[28]. Moreover
extensive investigations of simplest deformations of Heisenberg algebras [29]�
[33] have revealed an important role played by the Cuntz algebra [34] and in
obtaining and classifying representations of deformed oscillator algebras [35].

On the other hand a possible quasitriangular Hopf algebra structure, in
accordance with appropriately de�ned deformed or undeformed boson algebras,
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has recently been addressed [36]�[43]. In particular in [43] certain models
of deformed and undeformed boson algebras (denoted as Bζ (α, β), B+

ζ (α, β)

and B
q
ζ (α, β), B

q+
ζ (α, β) respectively, where ζ = 1, −1, α, β ∈ R) have

been proposed and shown to admit the above algebraic structure together with
their relation to already known oscillator models such as the Calogero-Vasiliev
algebra and its deformation, very important in physical models such as the
Calogero-Sutherland, anyonic systems [44]�[48].

In this article �rstly we shall introduce the basic ingredients of the Hopf-
type boson algebras B+

−1(α, β) and B
q+
−1 (α, β). In section three it is shown how

one can obtain already known undeformed and deformed oscillators as quotients
of the above algebras using appropriately the adjoint action of a Hopf algebra.
In section four and �ve we characterize B

q+
−1 (α, β) and B+

−1(α, β) respectively,
in relation with the above quotients coupled with 1 − dim Euclidean Clifford
algebra. Using smash product techniques [51] we provide theorems which give
representations of the above algebras induced from those of their quotients.
In what follows we shall set B−1(α, β) = B(α, β), B+

−1(α, β) = B+(α, β),

B
q
−1(α, β) = Bq(α, β), B

q+
−1 (α, β) = B+

q (α, β).

2. The boson algebras B(α, β), B+(α, β), Bq(α, β), B+

q (α, β).

We �rst state certain generalities on quasitriangular Hopf algebras needed
in what will follow. Consider a unital associative algebra, over a �eld F , with
multiplication m : A ⊗ A → A (i.e. m(a ⊗ b) = ab, ∀a and ∀b ∈ A) and
unit u : F → A (i.e. u(1) = I , the identity on A) endowed with a Hopf
algebra structure (c.f.[50]), that is, having a copruduct � : A → A ⊗ A, a
counit ε : A → F (which is a homomorphism) and an antipode S : A → A
(which is an antihomomorphism i.e. S(ab) = S(b)S(a), and we shall assume
that it has an inverse S−1) subject to the following consistency condition:

(1)

(id ⊗ �)�(a) = (� ⊗ id)�(a)

(id ⊗ ε)�(a) = (ε ⊗ id)�(a) = a

m(id ⊗ S)�(a) = m(S ⊗ id)�(a) = ε(a)I ∀a ∈ A

where, following Sweedler [50], we shall adopt the notation�(a) =
�

(a) a
(1)⊗

a(2). Let T be the twist map on A⊗ A de�ned by T (a⊗b) = b⊗a. Then there
also exists an opposite Hopf algebra structure on A with coproduct T� = �T ,
antipode S−1 and counit as before. According to Drinfeld [1] a Hopf algebra
A is called quasitriangular if there exists an invertible element R ∈ A ⊗ A such
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that

(2)
�T (a)R = R�(a), ∀a ∈ A

R13R23 = (� ⊗ I)R, R13R12 = (I ⊗ �)R

with usual meaning of R12, R13, R23 as embeddings of R in A ⊗ A ⊗ A. The
inverse R−1 is then given by R−1 = (S ⊗ I)R and it is easily shown that R
satis�es the Yang-Baxter equation, R12R13R23 = R23R13R12. We say that A is
a Hopf ∗-algebra if there exists an involutive antilinear mapping ∗ : A −→ A,
a −→ a∗ , such that the comultiplication and the counit are ∗-homomorphisms
and S◦∗ is involutive, i.e. S ◦∗ ◦S◦∗ = I .

Finally for any Hopf algebra we can de�ne the adjoint operation ad given
by

(3) ada(b) =
�

(a)

a(1)bS(a(2)).

Let us now present the following undeformed Hopf type boson algebras
B(α, β), B+(α, β) considered in [43] and generated by a, a� and N subject to
the following relations:

(4)

{a, a�} = αN + β I,

[N, a] = −a,

[N, a�] = a�

where α, β ∈ R and where here and in the rest of the paper {x , y} = xy + yx .
B(α, β) has to be enlarged to become a Hopf algebra by adding an invertible
element (−1)N which will be treated as a supplementary generator satisfying
the following relations:

(5)
�
(−1)N , a

�
= 0 =

�
(−1)N , a�

�
,

�
(−1)N , N

�
= 0.

Similar considerationswere used in [42] and in that paper�s context our enlarged
algebra B(α, β) can be thought of as a spectrum generating algebra for the

ordinary harmonic oscillator, while the element g of [42] will be g = (−1)Ñ

provided that we impose the condition g2 = (−1)2Ñ = I where �N = N + β

α
.

We shall denote by B+(α, β) and U (B+(α, β)) this enlarged algebra and its
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universal enveloping algebras respectively. The coproduct counit and antipode
of B(α, β) satisfying (1) are given by:

(6)

�(N) = N ⊗ I + I ⊗ N +
β

α
I ⊗ I,

�(a) = a ⊗ I + (−1)Ñ ⊗ a,

�(a�) = a� ⊗ I + (−1)−Ñ ⊗ a�,

ε(N) = −
β

α
, ε(a) = ε(a�) = 0, ε(I) = 1

S(N) = −N −
2β

α
, S(a) = −(−1)−Ñ a, S(a�) = −a�(−1)Ñ+1,

(7)

�
�
(−1)±Ñ

�
= (−1)±Ñ ⊗ (−1)±Ñ ,

ε
�
(−1)±Ñ

�
= I , S

�
(−1)±Ñ

�
= (−1)∓Ñ ,

provided that α �= 0. Moreover an opposite Hopf algebra structure also exists
for B(α, β) with coproduct �T and antipode the inverse S−1 of S which can be
immediately deduced from S given in (6), (7).

A Fock-type representation B(α, β), with a|0 >= 0, N |n >= n|n >,
n ∈ Z+ and < 0|0 >= 1, exists such that, when α > 0, β > 0 it is unitary and
it is provided by:

�
�n >=

1

([n]!)
1
2

(a�)n
�
�0 >,

a
�
�n >= [n]

1
2

�
�n − 1 >, a�

�
�n >= [n + 1]

1
2

�
�n + 1 >,

where

(8)

[n] =
�αn

2
+
2β − α

4
(1+ (−1)n+1)

�
,

[n]! =

n�

l=1

[l] and < n
�
�n� >= δnn� .

With the de�nition (−1)±N
�
�n >= (−1)±n

�
�n > this Fock space provides also a

representation of B+(α, β).
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We shall now turn to the presentation of the q -deformation of the above
algebras. Bq(α, β) is generated by aq , a

�
q and N subject to the following

relations:

(9)

aqa
�
q + a�qaq = [αN + β]q,

[N, aq ] = −aq,

[N, a�q ] = a�q

where α, β ∈ R and [x ]q = (qx −q−x)/(q −q−1). Similarly to the undeformed
case, in order to obtain a Hopf algebra structure for Bq (α, β), we have to

enlarge it by adding an invertible element (−1)Ñ which will be treated as a
supplementary generator satisfying relations (5) (with aq and a

�
q in the place

of a and a� respectively) and (7). We shall denote this extended algebra (its
universal enveloping algebra) as B+

q (α, β) (U (B+
q (α, β))). The coproduct,

counit and antipode satisfy

(10)

�(N) = N ⊗ I + I ⊗ N +
β

α
I ⊗ I,

�(a) = aq ⊗ q
α Ñ
2 + (−1)Ñ q− α Ñ

2 ⊗ aq ,

�(a�q) = a�q ⊗ q
α Ñ
2 + (−1)−Ñ q− α Ñ

2 ⊗ a�q ,

ε(N) = −
β

α
, ε(aq) = ε(a�q) = 0, ε(I) = 1,

S(N) = −N −
2β

α
,

S(aq) = −(−1)−Ñ q− α
2 a , S(a�q) = −a�q (−1)

Ñ+1q
α
2

provided that α �= 0. An opposite Hopf algebra structure also exists with
coproduct �T and antipode the inverse S−1 of S , which can be immediately
deduced from S given in (10).

A Fock-type representation of Bq(α, β), and B+
q (α, β) with aq |0 >q= 0,

N |n >q= n|n >q , n ∈ Z+ and q < 0|0 >q= 1, exists such that with
α �= 0, β �= 0

|n >q=
1

√
(n)q!

(a�q )
n|0 >q ,

aq |n >q=
�

(n)q |n − 1 >q , a
�
q |n >q=

�
(n + 1)q |n + 1 >q ,
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where

(11)

(n)q =
1

q − q−1

�
q

α(n−1)
2

+β (q
αn
2 − (−1)nq− αn

2 )

(q
α
2 + q− α

2 )
−

− q− α(n−1)
2

−β (q− αn
2 − (−1)nq

αn
2 )

(q
−α
2 + q

α
2 )

�

(n)q! =

n�

m=1

(m)q, q < n|n� >q= δnn�

and (−1)±N |n >= (−1)±n |n >. In the limit q → 1 we get the Fock space of
the undeformed algebra B(α, β) (and B+(α, β)).

Finally an R-matrix for B+
q (α, β) exists and is given by

R = R0q
αÑ⊗Ñ

∞�

l=0

(q − q−1)lq− α
4 l(l+1)

(−1)
l
4 (l−1)

[l]x !
q

α
2 l Ñ ·(12)

·(−1)l Ñ (a�q)
l ⊗ q− α

2
l Ñ alq

where �N = N + β/α, x = (−q−α)1/2 and

(13) R0 =
1

2
(I ⊗ I + I ⊗ (−1)Ñ + (−1)Ñ ⊗ I − (−1)Ñ ⊗ (−1)Ñ )

provided that we demand that (−1)2Ñ = I . In [43] it was also shown that
similarly to [42], B+

q (α, β) is the spectrum generating quantum group for

the ordinary q -deformed harmonic oscillator de�ned by the relations aqa
�
q −

q±1a�qaq = q∓N and the last two of (9). The R-matrices for the undeformed
Hopf algebra can now be read off from (12), (13) at the limit q → 1, where
R → R0.

3. Quotients of B+(α, β) and B+

q (α, β).

Consider an element C ∈U (B+(α, β)) and the two-sided, not necessarily
Hopf ideal, I generated by Ix = adxC − ε(x)C for x being each one of the
generators of B+(α, β). The quotient algebra B � = B+(α, β)/I , which will not
be a Hopf algebra in general, will have C as central. In the special case where C
is such that Ix is identically zero (for all x ), C belongs to the �xed points of the
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adjoint action. The aim here is to show that appropriately chosen C �s can lead
together with the use of the equation adxC − ε(x)C = 0 to known oscillator
models as quotients B �. It is very important to state what the word equation
means: we do not regard adxC − ε(x)C = 0 in the usual way in the context
of �xed points and centralizers, but rather as an algebraic equation which helps
deducing the de�ning relations that will hold in B � . We shall demonstrate the
above considerations with examples. Assume that C has the form

(14) C = a�a f (N) + l(N)

for some functions f (N) and l(N) of N . Then it can be easily seen that IN and
I(−1)N are identically zero, while

(15)

Ia = −a�a2( f (N) + f (N − 1)) + a[α(N − 1) + β] f (N) +

+ a(l(N) − l(N − 1))

Ia� = (a�)2a( f (N) + f (N + 1)) − a�[αN + β] f (N + 1) +

+ a�(−l(N + 1) + l(N)).

At this point we can decide what form the functions f and l must have, then set
Iα = 0 = Ia� and solve to obtain the relations that will hold in B

�. So assuming
that the functions f and l have already been given, then from (15) we obtain
that in B �

a�a( f (N + 1) + f (N)) =(16)

= [αN + β] f (N + 1) + l(N + 1) − l(N).

If we consider for example the choices α = 2, β = 1, f = I/2, l = −N/2, we
obtain from (16) that in the quotient algebra B � the following relations should
hold: a�a = N and aa� = N + 1, together with the last two of (4) which
are easily recognized as the de�ning relations of the well known boson algebra

extended by (−1)a
�a . In a similar way we can proceed to investigate other

choices of C, f, l in relation to B �. In fact it is possible to start with a desired
B � and follow the inverse way which will determine if this B � can indeed be a
quotient of B(α, β).

Finally if in the above method we �rst demand that Ia and Ia� are zero
and try to �nd f, l , we shall obtain the necessary and suf�cient conditions for
C to be in the �xed point set of the adjoint action. Ia = 0 will then imply (after
considering Ia and Ia� as monomials in the generators) that:

(17) f (N) + f (N − 1) = 0
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and we obtain a similar result from Ia� = 0, with N replaced by N + 1 above.
At this point we cannot state anything about the functions l(N) since we cannot
formulate the rest of (15) as appropriate order monomials in the generators.
Relations (17) suggest admissible functions f which in turn will give admissible
l . Here admissibility means choices of functions that do not contradict with
the Hopf algebra structure (or else it would not be possible to implement the
adjoint action). The simpletest solution to (17) is f (N) = (−1)N . Then the
choice l(N) = γ N(−1)N leads to Ia , Ia� being identically zero provided that
α + 2γ = 0 = β − α − γ .

Passing now to the deformed case B+
q (α, β) the analysis goes through in

exactly the same way as above. Let for example

(18) C = a�qaq f (N) + l(N).

Then it can easily be checked by using the de�nition of the adjoint action and
relations (9) that I

q

Ñ
= 0 = I

q

(−1)Ñ
, while

(19)

I
q

a�
= ((a�)2a( f (N) + f (N + 1)) −

− a�[αN + β]q f (N + 1) + a�(l(N) − l(N + 1)))q− α
2 Ñ

I qa = (−a�a2( f (N) + f (N − 1)) +

+ [αN + β]q f (N + 1)a + a(l(N) − l(N − 1))q− α
2 Ñ .

If we now take for simplicity α = 2, β = 1 then the choice f (N) =
−(q + q−1), l(N) = [2N ]q leads to a quotient B

� where the following familiar
q -boson relations hold:

(20) aqa
�
q = [N + 1]q2 a�qaq = [N + 1]q2 ,

and thus
aqa

�
q − q2a�qaq = q−2N

together with the last two of (9) and an invertible element g that will anticom-
mute with aq, a

�
q and squares to I . Similarly with the undeformed case, if we

want the above C to be a �xed point of the adjoint action, say for α = 2, β = 1,
then we obtain a solution where f (N) = −(−1)N , l(N) = (−1)N [N ]q2 .

Generalization of the above considerations to obtain other quotients is
straightforward in both the deformed and undeformed cases, and they can
also involve more that one C . In particular the quotients obtained above
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of the undeformed and q -deformed bosons, will be used in what follows in
characterizing the proposed deformed and undeformed algebras and also in
inducing appropriate representations.

4. Characterization of Bq(2, 1) (and B
+

q (2, 1)).

Let C( f ) be associated to the bilinear forms 1� f, f � = ( f ⊗ f ) so
that the relations between the generators for C( f ) are { f, f } = 2. Similar
considerations hold for a complex Clifford algebra C( f, f �) generated by
f, f � (i.e. { f �, f �} = 2I and { f �, f } = 2I ). We shall construct oscillator
representations of Bq through the action of the Clifford algebras C( f ). The
need of the Clifford algebra comes from the existence of the invertible element
(−1)N in B+

q . Bq had been enlarged by adding (−1)N to obtain an Hopf
algebra. A similar process was called bosonization in [42]. In fact set g =
(−1)N , and demand that g2 = I , then {g, g} = 2I so g is a Clifford element.
Similarly we can considered together with g also g� = g−1. Then {g, g�} = 2I .

Let Eq(C) be the algebra de�ned by (20) whose annihilation and creation
operators we shall denote by b, b� respectively, to avoid complications in what
will follow. Denote by Af = C( f ) ⊗ Eq(C) the tensor of the oscillator algebra
by the real Clifford algebras. Af is considered as enveloping algebra, generated

by typical elements of the form
�
f̃ , b̃

�
with f̃ ∈ C( f ) and b̃ ∈ Eq(C), where

the multiplication is given as usual by

�
f̃ , b̃

��
f̃ �, b̃�

�
=

�
f̃ f̃ �, b̃b̃�

�
.

The adjoint is
�
f̃ , b̃

��
=

�
f̃ �, b̃�

�
. If we restrict ourselves to the tensor algebra

T (E) generated only by f, f � (and where E is the vector space associated to
C( f, f �)), it is a known fact that the creation and annihilation operators are
seen to generate a Clifford algebra which is isomorphic to an endomorphism
subalgebra of T (E). It is not an algebra isomorphism. The creation operator is

ef (a) = f ⊗ a, ∀a ∈ T (E)

and the annihilation operator is given by the unique linear map i∗f : T (E) →
T (E), f ∗ ∈ E∗

i∗f (1) = 0, i∗f ◦ ef = �x , f ∗�, x ∈ T (E), f ∗ ∈ E∗.



44 ANNAMARIA PAOLUCCI - IOANNIS TSOHANTJIS

We may think of �x , f ∗� as the inner product in the vector space E with
dim E = 2. There exists a natural extension to an antiderivation on the exterior
algebra so that

i∗f (x1 × x2 × . . . × xh) =

h�

j=1

(−1) j+1�xj , f
∗�(x1 × . . . × x̂ j × . . . xh).

Thus there is an action α f : C( f ) → End(Af ) s.t.

α f (x) = f ⊗ x , x ∈ Af .

Consider now the algebra Af and the quotient map φ : Bq → Eq(C) such
that

aq −→ bq

a�q −→ b�q

N −→ logq q
N ,

where bqb
�
q = [N + 1]q2 and b

�
qbq = [N ]q2 . This quotient map is nothing

else but the restriction to the subalgebra Bq of a quotient map of B
+
q to its

quotient (isomorphic to Af ), to which we referred in the previous section. Thus
a�qaq −→ [N ]q2 , and aqa

�
q −→ [N + 1]q2 as it should be. It is a well de�ned

algebra homomorphism. Consider now π ∈ Hom(Af , Eq(C)), de�ned by

π(af ) =
�

f �

� f, af � �â f � , af ∈ Af , af � ∈ Eq(C)

where â f � is the word af in which we delete the part containing f � ∈ C( f ).
Observe that there exists at most one f � ∈ C( f ) in any word af because
f ⊗ f + f ⊗ f = 2, so that π(af ) = � f, af �â f . Thus â f is a word
containing no f �s . Hence π(af ) ∈ Eq(C), for every af ∈ Af . Note that the
map π is uniquely de�ned by the following condition between the creation and
annihilation operators in T (E)

π ◦ α f̃ = � f̃ , f ∗�, f̃ ∈ T (E), ∀ f ∗ ∈ E∗,

thus
π ◦ α f̃ (af ) = � f̃ , [af ] f � �â f

where [af ] f � denotes the part of af containing f � ∈C( f ) since the maps extend
to the algebra Af . Then the following theorem holds.
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Theorem. Let B+
q be the deformed boson algebra de�ned in (9) and let Eq(C)

be the q-oscillator algebra de�ned in (20). There exists a representation φ of
Bq into Eq (C) and a vector space Vφ such that the map

π : Bq × Vφ −→ Vφ

gives a representation of Bq induced from that of Eq(C).

Proof. The existence of the representation φ : Bq −→ Eq(C) follows from
the existence of the element C where the adjoint map acts trivially. Thus there
exists at least one such φ and it is an algebra homomorphism.

Consider α : C( f ) × Eq(C) −→ Eq(C) given by

α f (eq ) = −eq , α1(eq) = eq .

The action α is such that f changes the sign of the element eq ∈ Eq(C) and
1 acts as the identity on Eq(C). This is an action of C( f ) on End(Eq (C)).

De�ne the algebra Ã f = C( f ) ⊗α Eq(C) to be the smash product of C( f ) by

Eq(C) under the action α. The elements of Ã f can be seen as pairs of the form
( f, eq ). The product of any two such pairs is given by the following rule

( f, eq )( f
�, e�

q) = ( f f �, α f (e
�
q )eq).

In fact, for example when eq = bq or eq = b�q then

( f, 1)(1, eq) = ( f 1, α f (eq)1) = ( f 1, −eq)

and
(1, eq)( f, 1) = (1 f, α1(1)eq) = ( f, eq )

thus ( f, 1) and (1, eq) anticommute in agreement with
�
(−1)N , aq

�
= 0 in B+

q .

Moreover if for example eq = bqb
�
q or N , then with a similar reasoning (1, eq)

commutes with ( f, 1) as it should.
The Clifford algebra C( f ) can be realized as endomorphism subalgebra of

the tensor algebra T (E), E being the vector space associated to C( f ). There
exists a unique linear map

i� : T (E) −→ T (E), � ∈ E∗

such that

(21) i�(1) = 0, i� ◦ ef = �x , ��
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where ef is the creation operator on T (E). De�ne î : C( f ) ⊗ Eq(C) −→
C( f ) ⊗ Eq(C) to be the extension of i ,

(22)
�
î ◦ ef

�
|C( f ) = �x , ��, for every � ∈ E∗, x ∈C( f ) ⊂ T (E).

Then î is uniquely de�ned by the map i via the condition (21). Since C( f )
is a one-dimensional Clifford algebra then î : C( f ) ⊗ Eq(C) −→ Eq(C).

In particular î gives a map from Ã f −→ Eq(C). Ã f is a universal algebra
with respect to the tensor product such that condition (22) is satis�ed. From
the above discussion there exists � : Bq −→ Ã f linear mapping and also an
algebra homomorphism. Let Vφ be the vector space de�ned as the set of linear
mappings

(23) h : Ã f −→ Eq (C) such that h ◦ � = φ.

Observe that Eq(C) is naturally imbedded in Ã f as the pairs (1, eq) for every

eq ∈ Eq(C), eq −→ (1, eq). Thus Eq(C) is a subalgebra of Ã f . The map

î : C( f ) ⊗ Eq(C) −→ Eq(C) is a projection onto Eq(C) of Af , î
2(( f, eq )) =

î(� f, ��eq) = � f, ��eq = i(( f, eq )). It also satis�es

î(af eq) = î(aq)eq .

In fact, î(af eq ) = � f, ��e�
qeq , since eq does not contain any f �s , so that it is

left invariant by î . Thus
î(af eq ) = î(af )eq .

We want to show that Vφ is a Bq -module. Consider Bq ×Vφ −→ Vφ ; the action
is given by

(xqh)(af ) = h(�(xq)af ) ∈ Eq(C).

Now let us prove that (xqh) satis�es (24). In fact

((xq ◦ h) ◦ �)(x �
q ) = (xq ◦ h)�(x �

q ) = h(�(xq )�(x �
q))

= h(�(xq x
�
q))

in view of the fact that xq x
�
q ∈ B+

q , and

h(�(xq x
�
q)) = φ(xq x

�
q)

so that (23) is satis�ed. Thus Vφ is a Bq -module and by its construction it is
easily seen to be an induced module from the representation of Eq(C). �

The discussion of the undeformed case follows along the same line of
argument and the element C is the natural one to give the normal boson algebra
as a quotient.
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5. Characterization of the undeformed boson algebra B(2, 1).

Let B(2, 1) be the boson algebra generated by a, a�, N, (−1)N satisfying
relations (4).

We have the following two classes of *-homomorphisms of B into Af and
Af, f � respectively. Let π f : B −→ End(Af ) as a(b, f ) = b ⊗ f, a�(b, f ) =

b� ⊗ f, (−1)N (b, f ) = f
√
2, N(b, f ) = 1

2
(b�b− 1⊗ 1). Instead of b⊗ f we

write bf and so on.
Thus (aa�)(b, f ) = bb� and (a�a)(b, f ) = b�b so from aa� + a�a =

2N − 1 it follows that

(aa�)(b, f ) = bb� = 1− b�b = 1− a�a

implies [a, a�](b, f ) = 1. The image of π f is just the oscillator algebra E1(C)

enlarged with the element f
√
2 = (−1)N (b, f ). It is a bosonization of the

normal boson algebra.
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