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1. Introduction.

The definition of Sobolev spaces used nowadays in literature reads as
follows. If @ € R"(n > 1) isanopen set,if m e Nandif 1 < p < o©
then

WP(Q) 1= {u e LP(Q):3DucL’(Q) for |a| < m}

is called a Sobolev space (all functions we consider are assumed to be real

31y o
valued). Here D“u = PP aa——— denotes the weak (distributional)
X e 0Xp"
derivative of u corresponding to the multi-index o = («y, ..., o0y) and |&| :=

o) + ...+ «a, denotes its order. By

lullwnry = | D IDulfpg | if 1<p<+oo,

loe|<m
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for u € W™ P(2) a norm is defined on W™ ?(2). By means of the definition
of weak derivative and of the completeness of L”-spaces it is readily seen
that (W™ P(L2), ||.||lwnro) is a Banach space and in case of p = 2 a Hilbert
space with suitable inner product. This definition fits perfectly with the weak
formulation of many boundary value problems for partial differential equations
in bounded domains. But as soon as unbounded domains are considered it turns
out that the spaces W™ ?(Q2) are too “narrow”. As an example consider for
n > 2 the exterior domain

(1.1) Q= {xeR”:|x|>1},

and the functions

oy 2-n -
T T A A
Then h € C™®(Q),
helLl.
h ¢ L°(R2) forall 1 <s <o0, but
Vhe LP(Q)" forall -5 <p <o0

0;0jhe LP(Q) forall 1<p<oo,i,j=1,...,n

(2) for 1<g<o

(1.3)

Therefore h ¢ W'P(Q) and h ¢ W2>P(Q) forall 1 < p < co. On the other
hand, Ah =0 1in Q and |y = 0.

A functional analytical setting of the Dirichlet problem for the Laplacian in the
sense of weak or strong L”-solutions in exterior domains has clearly to cover
such an example. But this is obviously not possible within the framework of
WP (2)-spaces (compare [14]).

Another example arises from the Hilbert space setting of the weak Neumann
problem. Let @ C R”" be a domain and let f := (fi,..., f,) € L*(Q)" be

given. We would call any u € W!%(Q) satisfying
(1.4) <Vu, VO >g=< f,V® >o forall ®eW"¥Q)

(Here < Vu,V® >q:= / Zaiuaid)dx)
Qi

a weak L2-solution of the Neumann problem

ou

Au =divf in Q,

loo= fn | €2
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(where N should denote the exterior normal of Q (if it exists), %

Yo %iu(x)N;(x) |repq and Sy = Yoy fix)N;i(x) |rese). To solve the
functional equation (1.4) it would suffice to consider a suitable Hilbert space so
that < V., V. > becomes an inner product on it. In case thate.g. |2| < oo to
rule out the constants it would suffice to consider the subspace

(1.5) WhAH(Q) = {u e Wh(Q): / udy = 0} :
Q

Then < V., V. >q is clearly an inner product on the space defined by (1.5) (see
Theorem A below). But the question arises whether W;Z’Z(Q) equipped with
this inner product is complete. This question will be studied systematically in
Section 4.

The difficulties arising in both examples above we can avoid if we remember
Sobolev’s original definition given in his pioneering works [15], [16] from
1936-1938 and in his monography [17] from 1950. For 2 C R" a domain,
meNand 1 < p < oo Sobolev defines

(1.6) L") = fuel,

loc

(Q):3D% e LP(Q) forall @ with |o| = m}

He assumes for €2 in addition that

1) Q ist bounded;

ii) €2 is a finite union of domains each of which is starshaped with respect to

a ball (see also [2], [8], [17]).

In 1964 it was proved by Groger [5] that assumption i) can be dropped, but
assumption ii) seems to be essential (see [2], [7] too). Last assumption is
needed because of the use of Sobolev’s ingenious, but rather difficult method
of spherical projection operators. The definition (1.6) is slightly more general
then Sobolev’s original definition [15], [16], [17], where he used functions
u € L'(Q) in place of L] (€2). We should mention that the letters W and L for
the notation of the above spaces in [17] are changed in contemporary literature.
Our definition coincides with that given in [7], [8]. If Q@ C R” is defined by
(1.1) and h by (1.2) then we see by (1.3), (1.6): h € L"?(Q) for £~ < p < 00
and h e L>P(Q) for 1 < p < oo.
To define a norm on L™ 7(2), we choose an arbitrary but fixed G CC 2 (here
and in the sequel we always assume for those sets G # ¥ ) and we define

1.7 lwllm, p:2,6 = lullLi) + lttlm, p: s

where

<=

il pr2 = ( > ||D“u||'zp(m>

la|=m
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(note that ||ull,, p;0,¢ = O implies in particular |ul,, .o = 0, hence u = P
(= polynomial of degree < m — 1; cf. Theorem B below) a.e. on 2, and
0 =llullLic) = IPllLic) gives P = 0).

The following problems occur while studying the spaces L™ ?(£2):

1. existence of intermediate derivatives DPu € Lf;c(Q) (18] < m —1) for any
ue L™P(Q);

2. completeness of L™ P(2) with respect to the norm | - ||n, p:2,65
3. equivalence of the norms || - ||, p;0,c, for arbitrary G, CC Q (k =1,2);

4. possible other choice of equivalent norms more adopted to a “natural”
decomposition of L™ P (Q2) (see (3.4) below).

The first aim of this paper is to give report on recent joint work with
Naumann [10], where we presented an entirely different and quite elementary
method to solve problems 1-4 avoiding at the same moment the above men-
tioned restrictions i) and ii) concerning €2. This method is essentially based on
Poincaré’s inequality for balls or cubes (compare Appendix 2), which can be
proved by elementary calculus arguments. The second aim of our paper is to
study very weak conditions on € so that L''?(Q) = WhP(Q).

2. Notations. Ingredients.

For m € Ny := N U {0} we put

P(m) : = P:P(x):P(x):Zaax“,:xER", a, €R

loe|<m
= vector space of real polynomials of degree < m in R".

For G C R" and x € G let

1 . )

d, = Zdlst(x,aG) if G #R",

1 if G =R".
We putfor xpe R" and R > 0

Br(xp) :={xeR": |x — xo| < R}.

In particular, we let denote B;, = By (x) forx € G € R".
First we start with two standard arguments, whose proof can e.g. be found in
[10] or [14].
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Theorem A. Let G C R” be a bounded open set. Then for any u € W™ ?(G)
there exists a uniquely determined polynomial P, € (m — 1) such that

2.1 /D“(u—Pu)dx=0 Vie| <m—1,
G

(2.2) I Pullwn-1.rGy < Cllullwn-1.0G),

where the constant C > 0 depends only on m, n, p and |G|.

Theorem B. Let G C R” be a domain. Let u € L™ P(G) satisfy D*u = 0 a.e.
in G for all \«| = m. Then there exists exactly one P € P(m — 1) such that

u="~P aeinG.

In addition we need

Theorem C. (Poincaré’s inequality). Let Bg = Bg(xo) be any fixed ball. Then
there exists a constant C(R) > 0 (depending on m, n, p too) such that

|l wm—1.0(Bg) < C(R)|Ulm, p; Bg

2.3) Vu e W™P(Bg) with fDﬂudx =0 V[gl<m—1.
Br
An elementary proof of this theorem for m = 1 which is based on

potential estimates, may be found in [4]. The proof for m > 2 follows
by induction. For x € R" we may replace the Euclidean norm |x| =

n 2
x|, = <Z xlz) by the equivalent norm |x|y := max{|x;|, i =1,...,n}.
i=1

Then a “ball” Bgr(xg) with respect to | - |o-norm is the cube Wg(xy) =
{x eR": |x; —x0;]| < R,i =1, ..., n}. With this change all our arguments re-
main valid. But for Wg(xp) Poincaré’s inequality admits a very simple proof by
induction on n (see Appendix 2).
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3. The spaces L™ ?(R2) and their properties.

The proof of the following statements rests only Theorems A—C and is
given in detail in [10].

Theorem 3.1. Let u € L™ P(R2). Then there exist the weak derivatives

DPuel?

loc

() Vi|pl=m—1

Let now G CC 2. Because of Theorem 3.1 we may define for u € L™ ?P(2)

fDﬂ’udx

G

3.1) luln-ri6 ==Y

|Bl<m—1

and

(32) Iulm,p;Q,G = Iulm—l;G + |M|m,p;§2-

Both expressions are semi-norms on L™?(Q). If P € £(m —1) and |P|,,—1.¢ =
0, then it is readily seen P = O. Therefore by (3.1) a norm is defined on
P(m — 1). Suppose now that u € L™ P(2) and |ul,y, p.o,¢ = 0. Then |ul,, p.q0 =
0 and by Theorem B we see u = P € P(m—1). Since 0 = |u|y—1.6 = |Plm-1:¢
we conclude u = P = 0. Therefore by (3.2) a norm is defined on L™ ?(2) (all
other properties of a norm are obvious). Let us now define

(3.3) L "(Q) = {MEL’””’(Q) )fDﬂudxzo VIBl <m—15%.
G

For u € L™ ?(Q2), by Theorem A there exists a uniquely determined P, €
P(m — 1) such that

/Dﬂ(u —P)dx=0 V|8l <m—1.
G

Then ug := (u — P,) € L;"(Q) and u = ug + P,.
Ifve L'g’p(Q) N Pm — 1)|q, ie. ve P(m — 1) and fD’Sv dx = 0 for all
G

|B] < m — 1, it follows that v = 0. Therefore we see the direct decomposition
L"P(Q) = L; () @ P(m — D

3.4
u=uy+ P,.
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With that decomposition we have

(35) Iulm,p;Q,G = |u0|m,p;§2 + IPulm—l;G-

Furthermore | - |,y .o is a norm on L7 (). The most important tool of this
section is the following Theorem 3.2 whose proof (see [10], Theorem 4.2) rests
solely on Theorems A—C. This result is a straight forward generalization of
an argument, we used a couple of years ago in our proof of the Helmholtz-
decompositon (see [13], Lemma 2.2).

Theorem 3.2. Let (uy) be a sequence of functions in L™ P(2) such that
lug — uilm,po —> 0 ask,l — oo.

Let xy € Q be arbitrary, but fixed, and let P,, = bef’) € P(m—1) the polynomial
according to Theorem A:

/Dﬁ(uk—Puk)dxzo Vil <m—1 (k=1,2,..).
Bd"O

Then there exists a u € L™ ?(Q2) such that

—0 ask— o0, VQ cC Q,

(3.6) ”u — (ux — Py,) Wm-Lo@)

3.7 | — tg|m,po — 0 ask — oo.
If we put G := By, then with our notation (ux — P,,) € Ly (2). Clearly
XO
|(uk - Puk) - (M] - Pul)lm,p;Q == |Mk - Mllm,p;Q —-0 as kal — 0

If we choose for (3.6) Q' := deo then ||lu — (u; — Puk)||Wm71,p(de0) — 0 as
k — oo and therefore

/ DPudx = lim Df(uy — P,)dx =0 for|B] <m— 1.
Bay, koo Jp dxy

Therefore u € Lrgd’p (2) and we derived as a first consequence
X(]
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Corollary 3.3. Let (u;) C Lg;j (2) be Cauchy with respect to the norm |-, p. o
(coinciding with | - Im,p;g,gdxo on L'g;j (2)). Then there exists u € L'g;;; (2) such
that

lu— upllwn-rr@y =0 ask— oo, VQ CCL,

[ — ug|m,po—> 0 ask — oo.

Based on this result, using Theorem A and the fact, that any two norms on
the finite dimensional vector space $(m — 1) are equivalent, we readily derive
Theorem 3.4. Let G CC Q. Let (uy) C L"G”’ () be Cauchy with respect to the
norm | - |, p.q. Then there exists u € L"G”’(Q) such that
(3.8) lu — ullwn-rry > 0 ask — oo, VQ CC Q,

lu — uglm,poo = 0 ask — oo.

Due to the direct decomposition (3.4) and using the fact that dim P(m —
1) < oo it follows from Theorem 3.4

Theorem 3.5. Let G CC Q. Then L™ P(Q) is a Banach space with respect to
the norm | - |,y p.q.G-

A further trivial consequence of (3.8) is the following Poincaré - type
inequality which is of its own interest. We observe that in next theorem it ist not
assumed that G C Q" or G N Q' # (.

Theorem 3.6. Let G CC Q2. Then for every Q' CC 2 there exists a constant
Cq > 0, such that

(3.9 lullwn-1r@y < Corlttlm pio Yu € Lg" ().

Based on (3.9) and the decomposition (3.4), we readily prove that our
norms (3.2), depending on the choice of the sets G, are equivalent one to the
other. Moreover they are equivalent with Sobolev’s norm (1.7).

Theorem 3.7. Let G;, CC Q (i = 1,2). Then there exists a constant
K = Kg, ¢, > 0 such that

Iulm,p;Q,Gl =< Klulm,p;Q,Gz Vue LmP(Q)
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Theorem 3.8. Let G CC Q2. Then there exist constants K; > 0 (i = 1, 2) such
that

Kl ”u”m,p;Q,G =< Iulm,p;Q,G =< KZ”””m,p;Q,G Yue Lm’p(Q)-

Besides the compatibility (3.5) of our norm (3.2) with the direct decompo-
sition (3.4) another advantage may be seen if we consider the quotient space

L"™P(Q)/Pm — 1) :={[u] : ue L"™P(Q)}.

where as usual [u] :={ve L™P(RQ) :u —ve Pm — 1)}, [u] + [v] := [u + v]
and Alu] := [Au] for A € R. The norm is given by (where G CC 2 is fixed)

”[u]”m,p;Q,G = inf{”U”m,p;Q,G tve [u]}
For u € L™?(Q) let P, € £(m — 1) be the (by Theorem A even unique)
polynomial so that ug := (u — P,) € L', (). Then [u] = [uo].
If vy € Ly 7() satisfies vy € [ug], then vy = ug + g with g € P(m — 1). Then
Iglm-1.6 = lvo — uolm—1.¢ = 0, therefore g = 0 and vy = uy. Therefore
[ugl ={ug + P : P € P(m — 1)}.
Then by (3.5)
”MO + Pllm,p;Q,G = |M0|m,p;§2 + IPIm—l;G = |M0|m,p;$2 VPe j)(m - 1)
Then ||[M0]||m,p;Q,G = |M0|m,p;§2-

If ue L™P(Q),uo € Ly (), Py € P(m — 1) and u = ug + P,, then, as we
have seen above, an isometric isomorphic map is defined by

J:L"P(Q)/P(m — 1) —> LEP(Q)

[u] — Ju] := uo.

In case p = 2 we can define an inner product on L™?(Q2). Let again G CC Q.
We set

(3.10) <U,V >p0i= Z < D%, D% >q foru, ve L™*(Q),

la|=m
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where < f, g >q:= [ f(x)g(x)dx for f, g € L*(), and
Q

(3.11) < U,V >pci= Z (/D’Sudx)-</D’3vdx).
G

|Bl<m—1 G
Then by
(3.12) << UV >>p0 G =< U,V >puq+ <UV>pc

an inner product is defined on L™2(Q). If u = ug + P,,v = vy + P, with
up, vo € L™%(Q) and P,, P, € P(m — 1) then

(3.13) << UV >>p0.6=< U, V) >ma + < Py, Py, >nc -
Further for ug, vy € L"é’2(52) we see
<< Uy, Vo >>m:Q.6=< Uy, V0 >m:Q
Clearly (3.4) holds in the sense of an orthogonal decomposition. By
el 20,6 5= (<< 4 >>ma.6)?  forue L")

a norm is defined. Let us denote by c(n, m) the number of multi-indices
B =(B1,...B,) with || <m — 1. Since

(3.14) ulllm, 20,6 = (1 + @, m)ulm 20,6

and by Schwarz’s inequality

L
(3.15) |l 2:2.6 < (14 e, m))? || |ulllm 0.6

we have equivalence of norms and hence (L™%(RQ), << .,. >>..0.6) 18 a
Hilbert space. Finally, by Theorem 3.7, for any two G; CC Qi = 1,2) the
corresponding inner products (3.12) are equivalent. Clearly, if G CC 2 and
Q C R”" is any domain, then L'C";’Z(Q) C L™2%(Q) is a closed subspace. We
regard now the case m = 1 and the functional equation (1.4) considered in the
introduction. Since for ug, @ € Léz(Q) by (3.13)

<< Ug, @0 >>1.Q,6=< Up, CDO >1,0=< VM(), VCDO >Q
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we see by the Riesz-representation-theorem applied to the Hilbert space
(LG (), < V., V. >q)

that for any i € L2(Q)" there exists a unique ug € LEZ(Q) such that

(3.16) < Vi, VO, >g=< f,Vd, >q Vo, e Lg% (Q).

If ce R = £0) Cc L"“*(), then Ve = 0 and (3.16) holds even for all
® e L'*(Q). Incase 1 < p < oo instead of (3.1), (3.2) for u € L™P(R)

we could introduce
1

(3.17) etl i pi == | ul? o+ D |fDﬁudx K

|Bl<m—1 G
defining again a norm on L™ ”(2). We see similarly to (3.14), (3.15) that the
norms defined by (3.2) and (3.17) are equivalent. For our purposes the choice

of (3.2) seemed to be simpler. But if we observe that in case 1 < p < oo,

p = ;—L1 the right hand side of (3.10) is well defined for u € L™ ?(Q2) and

ve L™P(Q), then << u, v >>,.0:¢ 1s defined. Hence by Holder’s inequality
| << U,V >>n;Q,G | = |||M|||m,p;Q,G|||U|||m.p’;Q,G

for all u € L™?(G), ve L™ (G).

A further problem is the density of a suitable subspace of smooth functions. In

case of the spaces W™ P(2) a positive answer was given by the famous “H =

W”-paper by Meyers and Serrin [9]. If we carry over carefully their proof to the

underlying situation, we see

Theorem 3.9. For a domain Q CR", meN, 1< p < oo, we put
C"P(Q):={peC™®(Q): D*p € LP(Q) for |a| = m}.
Then C™P(Q2) C L™P(). In addition for any G CC L,

Cm,[?(Q) |.|m,p;Q,G — Lmﬂp(Q)’
Moreover, given u € L™ P(Q2) and ¢ > 0. Then there exists ¢ € C"™P(2) such
that
(3.18) [lu — @llwnrq) < €.

Estimate (3.18) is a surprise, since neither u nor ¢ need to belong to
W™P(2). But the method of proof developed in [9] is so powerful that the
approximation ¢ of u even satisfies (u — ¢) € W™ P(Q2) and the estimate. This
result is stronger than that of [7], Chapter 1, Section 1.1.5.
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4. Necessary and sufficient conditions for L1'7() = W1 7(Q).

Definition 4.1. Let ¥ # 2 C R" and 9€2 # . We say that 92 € CY if for each
xo € 952 there exists an orthogonal matrix § so that with the map § : R" — R”,
Sx := S(x — x,) the following conditions are satisfied:

(Fora > 0let Q) := {y' e R"" : |y;| < @,i = 1,.,n— 1}). There exist
o, B > 0 and a continuous map a : Q,, — R so that with

Mg - =1{0',a(y)+1): ¥y € Q) |t| < B}
ST M) N2 =S""({(',a(y")) : Y € Q,}) C I
ST Mpyn=8S"({0",a()+1):y' €0, 0<t<1})CQ
ST (Map) N(RMN\Q) = 57 ({0 a() =0 1y € Q. —Tt <t <0}) C
C R"\Q.

Roughly speaking this condition means that after shifting the origin to xo € 92
and performing a suitable rotation of coordinates (), the intersection of a
neighborhood of xy with 9€2 can be represented as the graph of a continuous
function. Using a suitable representation in local coordinates (compare e.g.
[11], Chap. 2, Théoréme 7.6) and a standard covering argument one proves
easily

Lemma 4.2. Let Q C R” be a domain with 3Q2 € C°. For R > 0 let
Qg := QN Bg (where Bg := Bg(0)). Suppose that Qr # ¥ and R’ > R.
Ifue L]’Z)C(Q)(l < p < o0) and Vu € LP(Qp)" then u € LP(Q2g) and there

exist ' = Q(R, R, 0Q) CC Qp ,Cig =Ci(R,R,9,2) >0 ({=1,2),
independently of u, so that

p p p
4.1) lul%gy < CrllVulllg, + Corllullfg

Theorem 4.3. Let Q@ C R" be a domain with 3Q € C°, let 1 < p < oo and
meN. Let R > 0 with Qg := QN Bg # 0. Then u |q, € W™P(Qg) for
ueL™P(Q). If G CC 2, then there is a constant Cgp = C(R, 2, G, p) > 0 so
that

4.2) ullwm-rr@ng) < Crltlm, p;0,¢6 Yue L™P(Q).
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Proof. i) We choose R’ > R andfor ke Ny, 0 <k <m — 1, let

(R'—R)
m

Rk ‘=R + k-
and let € := Q N Bg,. Let v e L™ ?(£2) and assume in addition that
D%v e LP(Qp,.,) Vie| =k+1.

Let || = k. Then by Lemma 4.2 we see D?v e LP(Q;) and with a suitable
Q) CC Q41,and with C;, > 0 we get

IDPol|P o < CLallVDPll) ., 4 CaxlIDPoll)

P21 P’

With a constant C;, := C(n, k) > 0 we have

By P P
Z ”VD U||p§9k+] S Ck|U|k+l,p;Qk+]'
|Bl=k

Summation over |B| = k yields with Dy := Cj; - Cy

p p p
4.3) |U|k’p;Qk =< Dl,k|U|k+1’p;Qk+] + C2,k|U|k’p;Q;(-

By (3.4) we write v = vy + P, with vy € L, ”(Q2) and P, € P(m — 1). Because
of equivalence of norms on P(m — 1) there is K; = K(2,, k) > 0 so that

|Pli,p:2, < KilPln—1;6 VPePm—1).
By Theorem 3.6 there is My = M;(2,, m, p) > O so that
lvolk, p;, < Mi|volm, p;e-
With D, ; = max(Ky, My)? because of
Uk pie, = [Volk,pie, + [Polk,pig, <
=< Mi|volm, p.2 + Kil Polm—1.6 < DQ];’kIUIm,p;Q,G
we get from (4.3)

P
(4.4) |U|,I;p;9k = D1kt pray., T D2l pio:c
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ii) We put £k := m — j and we prove by induction on j = 1,...,m that
DPue LP(Q,_;) form — j <|B| <m and

m—1
4.5) Yol g, < Ml Lo g
ol

with Mjp > 0. For j = 1, DPu € LP(R,_;) by Lemma 4.2 and since

llm i < el pi2. estimate (4.5) follows with M; = (Dy s + Dy )7, If
the assertion is true for some 1 < j < m — 1, then by part i) we see
DPu e LP(Qy— 1) for |B] =m —j— 1 and (4.4) holds withk =m — j — 1.
By 4.5) lulm—j-1.pi0, ;- < M; |u| . pi0.G" Last estimate we put in (4.4) (with
k=m—j—1) to derive (4.5) w1th j replaced by (j + 1). For j = m we get
(4.2) with Cg = . O

Corollary 4.4. Let Q C R" be a bounded domain with 9Q € C° and let
G CC Q then L"™P(QQ) = W"™P(Q) form e N, 1 < p < oo and there exists a
constant C = C(n, m, p, G, Q) > 0 such that

(4.6) [luollwm-1ry < Clug|m, p; Yug e Ly ()
and
4.7) [ul|lwnr)y < Cluln,p;e,6 YueL™P(Q).

Proof. We choose R > 0 so big that 2 C Bg. Then (4.6) follows immediately
from (4.2) and (3.5) for up € L;"(Q). (4.7) follows from (4.2) with C =
€2+ 17 O

Estimate (4.6) is a Poincaré inequality for the whole bounded domain 2.
We should compare this with (3.9). By (3.4) u € L™”(2) may be written
u = ug + P, with ug € L7"(Q) and P, € P(m — 1). We write & := L1
for 1 < p < oco. By (3.1) and Hélder’s inequality (in case 1 < p < 00) using
(2.2) we see

L
|Puln-1.c < > 1D’ PullpclGI7 <
|Bl<m—1

<=

1
<cn.mIGI7 [ D IDPPIL G| <

|Bl=m—1

i
< c(n, m)|G|7 Cllullwn-1.rG) =2 K||ullwn-1.06.
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where c¢(n, m) denotes the number of all multi-indices 8 = (B4, ..., B,) With
|B] <m — 1. Then

Iulm,p;Q,G = |u0|m,p;§2 + IPulm—l,G =

= |ulm, p:2 + 1Pulm-1,6 < (A + K)l|ullwnrq)-

Together with (4.7) this proves equivalence of norms on W"?(2) in the case
of a bounded domain Q with 9Q € C°. This result we find e.g. in Necas [11],
Chap. 2, Théoreme 7.6. Contrary to that case, for general unbounded domains
Q with 3Q e CY, the result of Theorem 4.3 seems to be best possible because
of P(m — 1) C L™P(RQ). Clearly the function u(x) := 1 for x € Q satisfies
uePm—1)forallm > 1,but u € W"P(Q) if and only if |2] < oco. Therefore
Wm-P(Q) g L™P(Q) if |Q2] = oo.

If Q c R" is a bounded domain, m e N and 1 < p < o0, then it is called
e.g. by Necas ([11], Chapt. 2, Sect. 7.3) a (m, p) - Nikodym-domain, if
WP() = L™P(2) (due to our Theorem 3.1 we see that the spaces V'(€2)
defined in [11] satisfy V{"(Q) = L"™7(R)). By the remark above, a (m, p)
- Nikodym-domain satisfies necessarily |2| < oco. Even in case m = 1 and
p = 2 there exist bounded domains Q C R” so that W!2(Q) g LY2(Q), as was

proved by Nykodym [12] (see e.g. [7], Sect 1.1.4. Similar examples had been
given later by Courant-Hilbert [3], p. 521. Compare our Appendix 1). With
respect to Corollary 4.4, those domains must have a “bad” boundary 9€2.

For our next considerations we restrict ourselves to the case m = 1 and
1 < p < oo. If Q C R” is an arbitrary domain then for u € W P(Q) by
(compare (1.8))

1

n ’
(4.8) luli,p:2 = [IVullpo = (Z II&MII,’,’)

i=1

a semi-norm is defined. In case |2|] < oo the constant functions belong to
WLP(Q). We rule them out if we choose an open @ # G €  and consider

4.9) WiP(Q) = {u e WhP(Q): /u(x)dx = 0}.
G

This linear space is even well defined for an arbitrary domain 2 < R” if
|G| < oo. Because of Theorem B by |[.|;, . €ven a norm is defined on Wcl;’p(Q).
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If |Q| = oo and if u € WP(Q) satisfies Vu = 0, then u(x) = c € R a.e. and
because of u € LP(2) we see ¢ = 0. Therefore in case [Q2| = o0 by |.|; p.0 @
norm is defined on W' ?(Q). In both cases we study the question whether these
normed spaces are complete or not.

Theorem 4.5. Let Q2 C R" be a domain, let G C Q2 be an open set with
0< |G| <ooandletl < p < oco. Then, (Wé’p(Q), .11, p;) is complete if and
only if there exists a constant C > 0 so that

(4.10) lullpg < Cluli o Yue W5P(RQ)

(Poincaré’s inequality).
Proof. a) Assume (4.10) to hold. Then

1
(4.11) lullwingy < 1+ CP7 [ul g Yue WEP(Q).
If (u;) € WSP(Q) with |u; — ugly pg — O (j,k — 00), then by (4.11)

and because of completeness of W!7(Q) there exists u € WP(Q) with ||lu —
ujllwir@ — 0. Since |G| < 0o we see

/udx = lim | ujdx =0 and therefore u€ W5"(Q), lu—u;|1 g — 0.

J—>00

G G

b) i) Assume that (Wl’p, .11, p;2) is complete. Let
JWEN(Q) - L),  Ju:=u,

(where LZ(Q):={veLP(Q): / vdx = 0)).
G

Let () C W5P(2), u € WiP(2) so that |u — u;]; .o — 0 and let v € LE(S)

with [|[v—u;||,.e = llv—Jujl|p.o — 0. Thenforp e C*(Q)andi =1,...,n
we see
/Uai(p = lim /ujai(p = — lim /aimp.
J—)OO J—)OO
Q Q Q
Therefore v has the weak 0;-derivative o;u € LP(2), i = 1,...,n.

ii) Since v € L{(2) we get v € Wcl;’p(Q). Because of |u — vlj 0 = 0 we
conclude v = u and the closedness of J. By means of Banach’s closed graph
theorem the operator J is bounded and (4.10) holds with C > 0. [l
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Remark 4.6. Let 2, G and p be as in Theorem 4.5. Let m € N and let
Wg "P(Q) be defined analogously to (3.3). By means of a conclusion completely
analogous to part b) of proof of Theorem 4.5, we see directly that completeness
of (WP (), |.Im. p:2) 1s equivalent to (C,, > 0)

(4.12) ullwn-1r@) < Culttln, o Yu e Wg ()

Clearly, if (4.10) holds, then (4.12) follows by iterated application of
(4.10). But we didn’t succeed to prove conversely that the validity of (4.12) for
some m > 2 implies (4.10). Similiarly if (4.10) holds fora p with 1 < p < oo,
we could not prove that it holds for other 1 < s < oo too.

Theorem 4.7. Let 2 C R" be a domain and let G C Q2 be an open set with
0 < |G| < oco. If with a constant C > 0 the Poincaré-inequality (4.10) holds
for all u € W(l;’p(Q), then for every open G' C Q with 0 < |G'| < oo there
exists a constant Cg' > 0 so that

1,
llullpe < Corluli o Yue W (Q).

Proof. Suppose that § £ G’ € Q is open, |G’| < oo and that the Poincaré-
inequality does not apply to wh? (R2). Then there is a sequence (uy) C wh? ()
so that [|ux|lp.o = 1 and |ugli p.o — 0. Since @ # G is open, there is
aball B = B,(xg) C G (xo € G, ¢ > 0)and 0 < ¢ € CX(B) with
A= [@(y)dy > 0. We set ¢, := %fukdy and v := u; — cx@. Then

B G

/dey:/ukdy—ck/(pdy:/ukdy—ckA:0.
G G G G

Therefore vy, € Wcl;’p (). Further,

B B
lek] < AT |G| |upllp,e < A7 |G

Then there exists a subsequence (again denoted by ¢;) and ¢ € R such that

¢ = lim c. Further
k— 00

vk — vl pre = |lug —uj + (ck — )@l pia <

< lux —ujly po + ek — ¢jl @l po — 0
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as k, j — oo. By completeness of Wé’p (2) (Theorem 4.5) there exists v €

Wé’p(Q) with |[u — vi]y, ;0 — 0. Because of (4.10) we see |[[v — vil| .0 — 0.
We set u := v 4 cg. Then u € WHP(Q) and

lu — urllp.e < llv — vkllpie + le — clll@llpe = 0 (k — 00).
Then ||ullp.e = lim |lugll,.e = 1. Further, [udx = lim [wudx = 0,
k— 00 G’ k—00

therefore u € Wé’,p(Q). If pe CX(Q) thenfori =1,...,n

/Mai(p = lim /ukaigo = — lim /Biuk(p =0
k—o00 k—o00
Q Q Q

Therefore Vu = 0 a. e., u e Wé’,p () and so u = 0 a. e., contradicting

lullpe = 1. O
A first application of last theorem is the proof of

Lemma 4.8. Let Q C R" be a domain, let  # G C Q2 be an open set with

|G| < oo and assume that (4.10) holds for some 1 < p < co. Then |2| < 0.

Proof. i) For « € R and x # 0 we consider ¢(x) := ™. Then ¢ €

C*°(R™\{0}) and

(4.13) 19;0(x)| < |ale®™, i=1,... n.

ii) Because of Theorem 4.7 without any restriction we may assume ¥ = G CC

Q. We choose G’ cC Qsothat G CC G’ CC 2, and n € C*°(R") with the
properties 1 |o\g'= 1 and 1 |g= 0. Then supp|Vn| C G'.

iii) Let now o < 0 and assume without loss of generality that 0 € G. We
set u(x) := n(x)e*™ for x € R". Then u € C*°MR"), u € L?(R") and
Vu € LP(R")". Therefore the restriction of u to €2 (again denoted by u) satisfies
u € W5P(Q). By (4.10), (4.13)

el pa < Clalllne®||,.q + Clle®"' V|0 <

< Clalllne®lp. + ClIVIlloorr €M |10

since supp|Vn| C G’. We choose o < 0 with |a| < % Then we see

176 sy < — || Vllooer |G|

e’ . _— Ton P
n P = 1— C|Ot| Niloo;R
If we pass to the limit « — 0 wee see by Levi’s theorem (or by Fatou’s lemma)
1 . L
nllp:2 < ClIVilloore |G'|? < 00. Since |[n]p.0 = [Inllpo6 = 1Q\G'|7 we
finally derive
1Q| = [2\G'| + |G'| < (CP||Vn||Z.pn + DIG'| < o0. U

From the proofs of Theorem 4.4 and Lemma 4.7 we easily deduce
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Theorem 4.9. Let Q@ C R" be a domain with || = oo. Then (WHP(Q),
[.11,p;2) is a normed linear space for 1 < p < 00, but it is not complete.

Furthermore, there is no constant ¢ > 0 so that estimate (4.10) holds for all
ueWwhr(Q).

Proof. As we mentioned above, |.|; ;.o is @ norm on Whr(Q) if || = oo.
Suppose now that (W!7(), |.|;. p:2) would be complete. We proceed as in part
b. i) of the proof of Theorem 4.5 (replacing Wé”’(Q) by W!P(Q) and LZ()
by LP(R2)). Then we find v € W'?(Q) with |Vu — Vul; ,.q = 0 and therefore
v = u. Again by the closed graph theorem with a constant C > 0 estimate
(4.10) would hold for all u € W'P(Q). With literally the same arguments used
in the proof of Lemma 4.8 we would see |Q2] < oo. ([l

Theorem 4.10. Let Q2 C R" be a domain, let @ +# G C Q be an open set
with |G| < oo and let 1 < p < o0. If(Wé’p(Q), [.11, p;) is complete (or
equivalently, if (4.10) holds), then there exists By > 0 so that e®!"l € LP(Q) and
in addition there is D > 0 so that

(4.14) QN R"\Bg)| < D-e PPR  for R >R,

Proof. Because of Theorem 4.7 we may assume G CC €2. Like in part ii) of
proof of Lemma 4.8 we choose G’ with G CC G’ CC Q2 and n € C*°(R"). For
r >0and g > 0 we set

ePI! for |x|<r

), - |

ePr for |x|>r

and u, := n - (efl),. By Lemma 4.8 we know |Q] < oo and therefore
u, € LP(Q) for 1 < p < oo. As is readily seen, u, has weak derivatives
oiu, e LP(Q) (i =1, ...,n) given by

Blx| Xi ;
@15 Bdue(x) = @)™, +n(x) { AR
0 else
L7 - Bix . :
Then u, € W5 (). Let dg := ||Vl sup {1 : x € G'}.

Since supp|Vn| C G’ we see [|Vn(ef), ||, o < dg|G'|7. Then, by (4.10),
(4.15) we get

1
e’ N 1,0 < CBIINe™™ I, ans, + CdglG'|7.
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Clearly,
1€ 1,008, < 1IN, 11,.0.

We choose 8 = By := % Then

1N, 1.0 < 2Cds|G'|7  forall r > 0.

By Levi’s theorem we may pass to the limit » — oo to see nefol! € LP(Q) and
therefore e/l € LP(2). Then

DP = ”e}SOHHz’Q > / e[’ﬁo‘x‘ dx > el’ﬁOng N (Rn\BR)|- O
QN(R"\Bg)

Remark 4.11. The result of Theorem 4.10 is best possible in the sense that
needs not to be bounded. Let o« > 0 and consider (n > 2)

Q:= {0, x)eR": x| < e, 1<x, <00},

It is easy to see that 2 supports the Poincaré-estimate (4.10) for 1 < p < oo
and that (4.14) holds: If G CcC Q and u € Wé’p (2) one has only to write
ulx', x,) = uo(x’, x,) + h(x,) where

1 / ’
h(xn) = |B’ | fu(y ’ xn)dy
Xn 5

(where B, := {y' e R"' : |y/| < e®"})and uy := u — h. For every
X, uo has vanishing mean value over the cross-section B)’C". Since for any fixed
1 < x, < oo the (n — 1) dimensional Poincaré inequality holds, the desired
estimate for uo follows by means of Fubini’s theorem. For 4 one has to apply a
Hardy-typed estimate. U

Theorem 4.12. Let @ C R" be a domain, let ) #+ G CC Q2 and let
1 < p < o0o. Suppose that the Poincaré inequality (4.10) holds with some
C > 0 forall u € Wi"(Q). Then L7 () = Wi ().

Proof. Clearly, Wcl;’p(Q) C Lé” () and it remains to prove the converse
inclusion. For k e Nlet &, : R — R,

t for || <k

Dp(x) := kﬁ for || > k.
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Then ®; is Lipschitz and even &, € C*(R\{—k, k}). By Lemma 4.8 we
know || < oo. If u € Li"(), then ®y(u) := ®; o u is measurable,
®p(u) € L*(R2) and therefore ®;(u) € LP(2). Since for any Q' CC Q2 we
have u |or € W"P(Q), by the chain rule for the spaces W"7(Q) (see e.g. [4],
Section 7.4) we see O (u) |or € WHP(Q') and for x € Q'

diu(x) for |ux)| <k
0 for |u(x)| >k

i=1,...,n.

4.16) (0 Pr(u)) (x) =

The functions at the right hand side belong (for every k € N) even to L?(S).

Since Q' CC Q was arbitrary we finally see ®;(u) € WHP(Q). We see

|®r(u)| < |u| and ®p(u) — u € Q. Since u | € LP(Q') foreach Q' CcC Q

we see

4.17) [lu — Dr)||pr — O (k — 00)

Let ¢t := |G|™' [ ®r(u)dy. Then from (4.17) with Q' = G we derive
G

¢k = |GI™! [udy = 0. Now (®4(u) — ¢x) € We(R) and by (4.10), (4.16)
G

| (D) — ) — (@) — ¢;) |l < ClPxw)— D; W1, pio — Oask, j — 0
Then

1
1@k (1) =@ (W)l s < | (D) — cx)— (D) — ¢;) |tk —c; 127 — 0.
Then there is v € L”(2) so that ||[v — ®x(u)||,;o — 0. On the other hand,
by 4.17) u |g= v | ae. in Q" CC Q. If we use a sequence (2;) with

oo
Q; CcC Q1 cc Qforall jeN, |J Q; = Q then we get finally u = v a. e.
j=1
in  and therefore u € L?(2). Then u € WCI;”’(Q). U
Theorem 4.13. Let Q C R" be a domain. Then the following statements are
equivalent
1. LYP(Q) = WLP(Q) (as vector spaces) (= || < 00).
2. LP(Q) = WSP(Q) forall § # G cC Q.
3. (Wcl;’p(Q), |.|1,p;9) is complete for all @ + G CC Q.
4. The Poincaré-estimate (4.10) holds for all u € Wé’p(Q) and for all § #
G C Q.

5. For every @ # G CC Q the norms ||.||w.r) and |.|1, p.q,c are equivalent
on WhP(Q).
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Proof. 1. = 2. u(x) :=1forx e Q, ue L"?(Q) = W'P(Q), therefore
u € LP(Q) and necessarily || < oo. If u € L};”(Q) C L'P(Q) = Whr(Q),
then clearly u € Wé’p (2). Because trivially Wé’p (Q) C Lg” () 2. follows.

2. = 3. If (u) € WEP(RQ) with |ug — uj]y g — O (as k, j — 00), then
by completeness of Lg” (£2) with respect to |.|;, p.o-norm (Theorem 3.4), there
exists u € LgP(R) = W5P(Q) with [u — ug g — 0.

3. = 4. Theorem4.5.

4. = 1. By Theorem 4.12 Lg"(2) = WS;7(R). Further by Lemma 4.8
|| < co. Then £(0) =R C W"P(R). Because of (3.4)

L'P(Q) = Ly"(Q @R = W, P(Q) @R = W'P(Q).
4. = 5. By Holder’s inequality and (3.2) for u € Wh?(Q)
(4.18) [l p.0.6 = luli, p.o + lulo.c <
< luly g + llull.61GI7 <
< (1+ G [[ullwin)-
By (3.4) we write u = ug + ¢, o € W5”(R), ¢ € R. Then by (4.10)
ullwir) < luollwirq) + llclwirg) <
< (€7 + V7 |luollr, pi + le]117

1 _ 1
=< (C"+ Drlluollr,p:2 + |Gl 1|Q|n|/udx|
G

L _ L
< max {7 + D7, 1611917 | el e
5. = 4. Letwithaconstant D > 0
p
1110y = il + 121} = D (1l pr + i)

for all u € WHP(Q) (see (3.1), (3.2)). If ug Wcl;”’(Q), ug # 0, then we see
D > 1 and

1
luollp,e < (DF — D)7 lugly, p:

for all ug € WP (R).
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Remark 4.14. a) Once we know that either 1. or 2. hold, then because of
|2 < 0o we may allowin 2. —5. even § # G C Q.

b) Suppose that 2 C R" is a domain, that 1 < p < 00, # G CC 2 and
that Lgp (Q) = Wé’p (2) holds, then from (4.10) by iterated application we see
(4.12) for u € W5 ’(Q2) (m € N arbitrary). If m > 2 and u € W '¥(S2), then for
|l = m — 1 we see DPu e Li"(Q2) = WS P(2) and therefore DPu € LP(S2).
Iterating this argument, we see finally u € W '”(Q). By Theorem 4.10 there
is By > O so that efoll € LP(Q). If P € £(m — 1) then there is constant
Kp = K(P, B) > 0 so that

|P(x)| < KpeP forx e Q.

Then we see D? P € L?(R2) for || < m and for all P € P(m — 1). Therefore
P(m — 1) € W™P(G). Then, L"™P(G) = W™ P(G). This proves the inclusion
“LIYP(Q) = WhP(Q) = L™P(Q) = W™P(Q) VmeN”. ([l

Appendix 1: Example of a bounded domain  c R? with Wh?(Q) c
LbP(R). ’
k
For k e Ny = NU {0} let a; := Z 27/, Then a; — a;_; = 27 % for k e N.
Ifl<p<oolet =
Qo :={(x1,x)eR”: x| < 1,i=1,2}
HP = {(x1,200) €R? s ay < x1 < agsr, [x2] <2774} fork € Ny

Qk = {(xl,xz)ERz g1 < X < ayg, |XQ| < 1} fork e N.
Let

oo
ML = H” | J(r U HP)
k=1

MP = [(x), x2) € R : (—x1, xp) € MP)).
+

Then QP := Qo U Mip) U M is a domain with QP C {x e R? : |x| <
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2, |x3] < 1}. Let f : @ — R be defined by

0 in QO
2%+1(x1 —ap) for xe Hé”)
fx):= 3 2%"‘ for xe Qr, keN

@5 — 12255, (xy —ay) +25% for xe HP keN

— f(=x1,x2) for xe M.

For n € N we set
Q,:=QN{xeR?: x| < am).

Then we define

fx) for xeQ,

fn(x) = 2.
2r" sgn f(x) for xeQ\Q,.

Then f,, f : Q) — R are continuous, f, — f(n — oo) pointwise. It is easy
to see that f is even piecewise continuously differentiable with respect to xi,
therefore weakly differentiable, and that d, f(x) = O for all x € Q2. Further

0 in QO
25+ in HP
01 f(x1,x0) =
1f (x1, x2 in 0,

@7 — 1*HHEE i P

For n € N we see

k=1 k=1

/lf,,(x)l”dx >2% 2% =2 2% = 4n — oo (n > o)
Q

o0

/ Ialfn(x)lpdx <2. 22+[7|H(§[7)| +2. (2% _ 1)[7 Zzp(2k+l)+2k|H]§P)|
Q k=1

oo
<3P 4 21""1(2% — 1P 22_2”" < ooforalln eN.
k=1
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Since | f,(x)| < [f(x)| and [| fullp.0 — o0 we see f ¢ LP(2), but clearly
f e Ll (). Therefore f € L'?(Q) and f, € Wh?(Q) for all n € N. If

loc
we choose any open G CC Qo then we even have f, € Wé’p (2) for all
n € N. But a Poincaré-type inequality cannot hold true for €2 and Wé’p ()
since || fullp;o — oo but ||V fu]l.0 < C < oo for all n € N. In addition, the
embedding J : W'P(Q) — LP(Q) cannot be compact, because otherwise a
Poincaré-type estimate (4.10) has to hold for Wé”’ ().

Appendix 2: A simple proof of Poincaré’s inequality in a cube.

Theorem. Fora > 0letl, ;=] —a,al. Let 1 < p < o0 and# = pT_l Then
forneN

il
(A.1) Nullp;r < an?" ||Vul|p. g

holds for all u € Wl’p(la") with fu(x)dx = 0. (Here, ||Vullp,; =
17

n L
O D)
i=1

Proof. (A)i)Letn =1 and let u € ci(1,) satisfy fu(x)dx = 0. Then for
I

a

_ y
x,y€l, wesee u(y) —u(x) = [u'(t)dt.

ii) Therefore

a [y
(A.2) 2au(y)—/u(x)dx :/ /u’(t)dt dx.
I, o \x
Then
a [y a [ x
2au(y)=/ fu’(t)dt dx—/ /u’(t)dt dx
a4\ y y
and

y

y a x
2alu(y)| 5/ /lu’(t)ldt dx+/ /lu’(t)ldt dx.
X y y

—a
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After a partial integration we see
y a
a3 2l = [@ 0w 1dx+ [@- 0w,
“a 3

For a > 0 fixed we set W(x, y) :=a + x - sgn(y — x). Then
(A4) Yx,y)>a—|x|>0 forx, yel,

and (A.3) may be rewritten as

+a
(A.S5) 2alu(y)| < /\IJ(x, y)lu'(x)| dx.
We observe
+a
(A.6) / W(x, y)dy =2(a* —x?) <2a*> forxel,
+a
(A.7) /lll(x, Vdx =a*+y> <2a®* foryel,.

—a

Integrating (A.5) with respect to y yields after interchanging the order of
integration because of (A.6)

+a +a +a +a
2a/|u(y)|dy §/|u’(x)| /\IJ(x,y)dy dx SZGZ/IM’(X)Idx

and therefore (A.1). In case of 1 < p < oo we see because of (A.4), (A.6,7) by
means of Holder’s inequality

+a
2alu(y)| = f‘l’(x,y)#‘lf(x; W7l ()] dx <

+a ]F
< Qad)? / W, )l ()7 dx

—da
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and
+a +a +a
(2a)” f u(y)|Pdy < (2a>)7 f ' (x)]? f W(x, y)dy | dx

< QY f W) dx.

But thisis (A.1)forn=1,1 < p < o0.

(B) Suppose now that n > 1 and (A.1) holds true for all u € C! (I_a") with

fu(x)dx =0. Letve C'(I"") andletx € I",t € I, and y := (x, 1) € [".
1
Let

(A.8) h(t) == |1;|—1fu(z,, Hdz  fortel,
17
and let u(x,t) := v(x,t) — h(@) for (x,1t) € I_a"“. For fixed ¢ € I, we see

u(., t)e Cl(l_a") and f u(x, t)dx = 0. By induction hypothesis for ¢ € I,
17

/Iu(x; HIP dx < a”n”_lflvxu(x,t)l”dx-
1" 1"

Integrating with respect to ¢ € I, yields

1 1

(A9) ull . i1 < an7||qu||p;,:+1 = an7||VxU||p;,:+1.
Further
(A.10) Hetll . et = M|V, et = 1R, e

Since v € C'(I"™*") we see

h'(t) = |I;’|_1 / ou(z, )dz

"

a
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and therefore (in case 1 < p < oo by Holder’s inequality)

_ €1
(A.11) (O] < 117 118,00, Oy

By means of (A.1) for n = 1 we see with the help of (A.11)

p

||h||1’;]:+, :/ /|h(t)|”dt dx < |Ia"|a”f|h’(t)|”dt <
]a ]a

1

=iz F [ [ oz | ar
]'l

1,

If we combine last estimate with (A.9), (A.10) we derive
1
1Vl < an? Vo0l e + @l ol e

In case p = 1 (thatis pi =0)wesee (A.l)for(n+1). Incase 1 < p < oo we
apply Holder’s inequality (for vectors) to get

1

Z 7 < g
p p
1l < a (nv/ + 1) le 10117 s + 130117 e
1=

5
<a(m+ )7 |[Vap1vll, .

This is (A.1) for n 4+ 1 and smooth functions.

(C) If u € WhP(I") with fu(x)dx = 0, then we choose 0 < a’ < a and for
1

0 < p < a —a’ we regard the mollified function u, (using a standard mollifier

kernel). Then u,|; € C*°(1}) and for x € I/, we see 9;[u,(x)] = (3;u),(x),

i =1,...,n. Therefore

Il —upllpirr, = 0, [|Vu = Vuyllp.n — 0(p — 0).

Let ¢y := |1%|7" [ u(y)dy and

n
Ia,

Capi= |I;’,|_1 / upy(y)dy, thency , = cy(p — 0).
IVI

a



SOBOLEV’S ORIGINAL DEFINITION OF. . . 177

We apply (A.1) to (u, — Cap)lin (0 < p <a-— a’). After passing to the limit
p — 0 we see

1
||Lt - Ca’”p;l", =< a/np’ ”Vu”p;l:,-

a

For a’ — a we get ¢, — 0 and by means of Lebesgue’s theorem in last estimate
we may pass to the limit a’ — a to get (A.1) for u. ([

Remark. Part.A. ii) of proof could be replaced by a much shorter argument,
but for the price of a bigger constant. From (A.2) it follows

a a +a
2alu(y)| 5/ /lu’(t)ldt dx=2af|u’(t)|dt.

This givesfor 1 < p <ocandn =1
Notllp:r, < 2allu'llp:s,

and finally

L
el p:rz < 2an"|[Vullp; 2.

But that constant is twice the constant from (A.1)! [l
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