LE MATEMATICHE
Vol. LIV (1999) — Fasc. 11, pp. 319-341

POISSON KERNEL FOR A PARABOLIC PROBLEM

NUNZIA A. D’AURIA - ORNELLA FIODO

In this paper we obtain a representation for the solution of a parabolic
mixed problem.

Introduction.

In this work we obtain a representation for the Poisson kernel ®(z, z, 7’; p)
of the following mixed problem, with real parameter p:

dou=@@—Pu  (r.0€ RF x RY
@ 0, —2p)u(r,00=0 te RS
u(0,z2) =g(z) ze R

with g(z) € LZ(Rj).

We construct O(z, z, 7’; p) using the parabolic cilinder functions D,(z), z € R.
The problem (I) arises when we apply the process used in [2] to an oblique
derivative problem for the operator L = 9, — 8}2, — yzaf where (¢, y,x) €
10, +00[x]0, +00o[x R.

The main result can be stated as follows:

Theorem 1. For every p € R there is a sequence of real numbers {vk(p)} KeNy?

positively diverging such that {ka(p)(z)}keNo is orthogonal system in LZ(Rj).
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Moreover, put

) iz p) = {Dv(x/z_z>/||Dv<«/2_z>||Lz<R;>} 2> 0, ke Ny

v=vi(p)

+00

(11D O(t,2,7;p) = Ze—@vk(mﬂ)r(pk(z; ou(d: p)
k=0

>0, z,7 €[0, +o0l,

it results ®(t, z,7; p) € C°(R} x ﬁj X ﬁ;) ~ Co(ﬁj X ﬁ:, D’(R;f)), and

(0; — 024+ 2)P(1, 2,73 p) =0 (1,2,7)€R x RF x R}
av) (3, — 2p)®@(7,0,2; p) =0 (t.Z)e R} x R}

1in% O(r, 2,75 0) =8z —2) (t,2) € R} x R}

T—

The elements of the sequence {vk(,o)}keN0 are zeros for the function

+ %V%)Z), where T' is the Eulero function; it follows that v (0), k € Ny,

are even natural numbers and ¢ (z; 0), k € Ny, are the Hermite functions ¢, (z).
Then, the result in [2] is obtained for p — oo.

This paper is organized as follows: in section 1 we study the sequence
{vk(p)} KN in section 2 we establish estimates for the functions D, (z), using
well-known integral and asymptotic representations (see. [6], [3]); in section
3 we construct and study the resolvent set of the operator A = 822 - 22,
with domain D(A,p) € H Z(RZJr ) formed by the functions w(z) such that
@' (0) = 2pw(0). In section 4 we prove that A is the generator of a holomorphic
semigroup, so we obtain, among other things, the completeness of the system
{¢k(z; ,0)} keNo in Lz(Rj). Finally in Section 5 we introduce the Poisson kernel
®(t, z, Z'; p) and we complete the proof of Theorem 1.

1. Auxiliary functions.

If I'(v), v € C, is the Eulero function, we consider the following analytic
function

(1 —v)/2
(1.1) a(u):(lE(T%)
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For this function the values v = 2k, k € Ny, are zeros of order 1, while the
values v = 2k 4 1, k € Ny, are poles of order 1. Moreover, if v € R we have:

(1.2) v<0=al) >0,
(1.3) ve 2k, 2k +1[, ke No = a(v) <0,
(1.4) ve]2k —1,2k[, ke N = a(v) > 0.

Proposition 1.1. Ifve R and v # 2k + 1, k € Ny, then results:

(1.5) a'(v) <0.

Proof Since the values v = 2k, k € Ny, are simple zeros for a(v), we have
a’'(2k) # 0, Yk € Ny. Then it is sufficient to prove (1.5) for v ¢ Njy. That being
stated we have

(1.6)

Ol/(v) . _l {1 - v)/2) F’((l — V)/Z) B F/(—V/Z)
T2 T [T -w2) T2

= —% a()B(v).

So we must prove that Vv € R — Ny, B(v) is not zero and it has the sign of «(v).
From the well known representation of the logarithmic derivatives of I'(v) (see
[6]) we obtain:

+00

(1.7) B =23 o

n=0

1
—2n)(v —2n+1))

Now we observe that if v € |2k — 1, 2k[, k € N, or v < O, the terms of series
in (1.7) are all positive; it follows that 8(v) > 0 and so for (1.2), (1.4) and (1.6)
we have (1.5) for these values of v.

If v e ]2k, 2k+1[, k € Ny, in (1.7) the only negative term has index k, moreover

we have
1

<-4
-2k —-Q2k+1) —
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1 1
W—2m0—Qn+1)  an—k-1p
1 1
W—2m—Qn+1)  ak—n—1p
and then

+o00 2
(1.8) ,B(v)§2|:—4+22hizi|:2|:—4+%i|<0;
h=1

from (1.3) the thesis follows. U

k<n, neN

n <k, neNg,

Let p € R, we consider the equation
(1.9) ax(w)+p=0 vVER.

From (1.2), (1.3), (1.4) and from Proposition 1.1, as well as from Dini Theorem,
we have the following

Proposition 1.2. The solutions of the equation (1.9) form a sequence
{vk(p)}keNO positively diverging such that vi(p) € C*°(R) Yk € Ny, and

{vk(O)}keNO = {Zk}keN0 ; moreover
0 >0=v(p)el2k,2k+1[ VkeN,,
p<0=vy(p) <0, wppel2k—1,2k[ VYkeN,

lim w(p)=2k+1 VkeN,, lim vw(p)=2k—1 VkeN,
p—>+00 p——00
lim vy(p) = —o0, —wo(p) < 6p% if p <O.
p—>—00

We observe that we obtain the estimate of —vy(p) for p < 0 by (1.9) and
(1.1) using the asyimptotic expansion (see [4]):

Fx)=e " x*1202m)12 % 0<6 <1 xeR™.
Afterwards it will be usefull

Proposition 1.3. For every p € R 3§ > 0 depending of p such that, if
Rev=2n+1,ne Nyand|Imv| < § results:

I'(—v)
a)+p

c
<
~ 2n+ 1)

(1.10)

where c is an absolute constant.
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Proof. Putv =2n+ 1+ iy, using recurrence formulae of I, we have

ITd —iyl _ 1

(11D PEIN= @Dl = @or Dl
and for [y| < 1

L1 —iy/2) || 1+iy| D =iy/2)] _ 2
1.12 clyl’
(L1 W= v | Jabl

2 A —iy/2)]
where — = min —————.

c sl Jr

Putting § = min {1, 1/¢|p|} for p # 0 and § = 1 for p = 0, the thesis follows
from (1.11) and (1.12). ([l

2. Estimates for the functions D, (z).

We remember that the parabolic cilinder function D,(z), v € C, is solution
of (see [6], [4], [3]):

2.1 & D ! 2D,(2) = ! D C
(2.1) P} V(Z)_ZZ v(2) = — V+5 w(2) z€
moreover

JT 2 ) V2 2V
2.2 D, 0)= —— D 0)=——.
(22) © L1 -v)/2) » ©) ['(—=v/2)

The functions D, (z) are susceptible of many formulas of representation, we will
use the following:

(2.3) Dy11(2) —zD, (1) +vDy—1(2) =0 Vv, z€C,

271 L N (V2o
_ —z°/4 N VeSS _
@4 D)= € 1?_0 o L(k=v/2) Vv.zeC.

By (1.7) (see [3]) we have:

+00
(2.5) f |D,(2)* dz = /7 27328(v)/T(=v) veC, véN,,
0
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+oo

(2.6) / |D,(2)|>dz = V27 n! neN,.
0

We recall that for n € Ny it results
@.7) D, (2) = e <1 Hy(2),

where H,(z) is the Hermite polynomial of degree n.
Now we prove the following

Proposition 2.1. If ve R — Ny, it results

(2.8) sup |D,(2)] = O(|"HID, |,
R,
where || - || denotes the usual norm in LZ(R;F).

Proof. Multiplying (2.1) by D,(z) and integrating on R, we obtain

2 1 2 1 2
D, 0Dy ©0) + [IDv@II" + 712Dy @I = v + DIDu NI

then from (2.2) and by duplication formula of Legendre (see [4]) we get

/ 2 | 2 1 2 T -1
I D, + lezDv(z)ll =W+ E)IIDV(Z)II + E(F(_v)) .
From (2.5), for v e R — Ny, we deduce
1D, < (] +27" + 21BW)I~HID,IP,
from which
(2.9) IDI> = O(vDIIDylI>.
because the function |8(v)|~! is bounded (see Prop. 1.1).
Being D,(z) € S(ﬁj), it results
p —+
|D,(2)I* <2||D, |l IID,]| VZ€ER,
s0, by (2.9), we have the thesis. U

Remark. If n € Ny, from (2.7) and from well known properties of the Hermite
function, follows

(2.10) sup | D,(2)| = O(1)Vn! = 0(1)[|D,|.

—+
Z€R,
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Now we need some estimates for functions D, (z) when v € C and Rev =
2n—1,neN.

Proposition 2.2. - There is a real and continuous function C(z) such that if
Rev=neNand|Imv| <1:

2.11) ID,(2)| < C@)1 +12))"2"T(n/2) ¥V zeC.

Proof. First of all we prove (2.11) when n = 1. Using (2.4) we have Vz € C:

e—Rez,2/4 +oo |ﬁzlk
— i !
|IT(1 —iy)| o k!

(2.12) ID_14iy(2)] < I((k + 1)/2)

—ReZ’ /4 k
(2.13) 1Dyy(2)] < l‘;( 3 (|F( zy/2>|+2'fz' F(k/2>).
By Legendre duplication formula it results
. 27
2.14 Diy(z)| < e R —————— ¢
@19 byl = e (IF((l—iy)/Z)l
1 +00 |\/§Z|k
+ r'k/2)).
=P (/)>

Series in (2.12), (2.13) and (2.14) have radius of convergence infinite; so put

1 2 1
M:ma)i{ ﬁ }
yI=

IC(1 —iy)|” T —iy)/2)" T(—iy)
and

|f 2z|*

Co(z) = M e Re? /4<1 +T(1/2) + Z (T(k/2) +T((k + 1)/2)))

we have

(2.15) ID_11iy(@] = Co(z) . |Diy(2)] = Co(z2)  Vyel[-1, 1]
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Utilizing (2.3) with v = 1 4 iy, we find

|D1+iy(2)| < |z| [Diy(2)] + [iy] [ D-14iy(2)]
and so, by (2.15), we have the assert in the case n = 1, with C(z) = Cy(2).

If n = 2, reasoning as above with v = 2 4 iy, |y| < 1, and using (2.11) for
n = 1, we obtain

(2.16) |Da4iy(2)] < 2Co(2)(1 + |2])°T'(1/2).

From (2.16) it is clear that the proposition is true if n = 2, with C(z) = 2Cy(2).
By (2.16) and (2.11) with n = 1, by similar arguments one can prove that the
proposition is true even if n = 3, with C(z) = 2Cy(2).

Now we suppose that (2.11) holds untill n = Rev > 3. Then from (2.3) it
follows

@17y [IDy1(@)] = C(Z){ |2I(1 + [z))"2"T (n/2) +

+ I+ iy (L + [z 2" T ((n — 1)/2)} VzeC.
Since
T((n —1)/2) = 2T((n + 1)/2)/(n — 1), T(n/2) < T((n +1)/2) n >3

we have for |y| <1

|Dy41(2)] < C(Z){ |2I(1 + [2D)"2"T((n + 1)/2) +

(14 122" ((n + 1)/2)(n + 1)/ (n — 1)}
so the thesis follows. O

We observe that if Rev = 2n+ 1, n € N and |Imv| < 1, then (2.11)
entails

(2.18) |D,(2)| < C(x) + |z])*"2*"'n!  V zeC.

Now we conclude with the following
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Proposition 2.3. - If Rev =2n+ 1, ne€ N and |Imv| < 1, there is a positive
constant c independent of n such that

—n

2
= <(1 + |z|2)"e“> VzeC.

(2.19) |T(=)e?*[Dy(2) + Dy(-2)]| <
Proof. Putv =2n+1+iy, by (2.4) we deduce
220)  |T(=v)e" 4[Dy(2) + Du(=2)]| <

<2 E:‘Qm,lﬂh—n—ﬂ+4WQn

Now, for h < n, by recurrence formulae of I', being (24)! > 2"(h!)> we have

c c _h(n)
< < —2
-~ (m—n)'2h)! T n! h

where ¢ = ‘m‘ax 2I°((1 — iy)/2)/(1 + iy)|; whereas, for h > n + 1,

D(=(n—h) — (1 +iy)/2)
2h)!

L((h—n) - +iy)/2)

C(h—n+1) (h—m! _ Jmw
) <V ——=7

2h)! 2h)! — 2hn'h'

Because of these inequalities we can increase the sum of series in (2.20) as
follows:

2h |Z|2h < 2\n |2[?
— }: 2| +—§: < <A1+ .
n: h=0 h=n+1 ! n:

This completes the proof. (]

3. A differential problem with parameter.

Let f € S(Ej), reC, p € R, and we consider the following problem:

ro—o' +ZPo=f
G-b Lﬂmzzpwm
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Our goal is to construct a solution belonging to S(E;).
Putting w(z) = w(\/i z) in (3.1), by sostitutions 7 — V2 zand v + 1/2 =
—A/2, we have

" 1 ZZ _ 1 \/E
w +<v+§—z)w——§f(2/ )

w'(0) =2 p w0) peR.

(3.2)

The homogeneous equation associated to (3.2) coincides with (2.1), so, for
v ¢ Ny, it admits two independent solutions D, (z) and D,(—z), and their
Wronskiano is

W(v) = =2D,(0)D,(0);

consequently, for (2.2) and Legendre duplication formula, we have:

V2
T(—v)

(3.3) W) =

That being stated, the general solution of equation in (3.2), always for v ¢ N,
is

(34 w(z) = c1(v)Dy(2) + e2(v)D,(=2) +

- o [Dy(s)Dy(—2) — Dv(—S)Du(z)]f(s/ﬁ) ds.
0

Computing w(0) and w'(0), and imposing that the function (3.4) is solution of
(3.2), we obtain

3.5) q@%D“m—w6p>=qw%D“m+w6p)

D,(0) D,(0)

From (2.2), by (1.1), we have

DO
D) = V2

and so

_a(w)—p

(3.6) ci(v) = %)+ p

c(v).
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On the other hand, imposing that function w is rapidly decreasing in E;, we
have

+00

1
(3.7) cr(v) = W D.(s) (s /~/2) ds.
0

so, if (v) + p # 0 and w(z) € S(E;) is solution of (3.2), it results

, ren [ Jew=p
B8) w() = wy(zp. f) = Du(5)| 5L D) + D)
0

227 a(v

f(s/¥2)ds — / [Dv(s)Dv(—@ —Dv(—s)DU(z)]f(S/«/E)ds}-

0

The function w,(z; p, f), defined in (3.8), is an analytic function of v for every
ZE€ Ej and p € R. Its singular points are the only zeros of «(v)+ p (see section
1). The integer and not negative values of v seem zeros when p # 0. Since
these zeros are eigenvalues for the adjoint problem (3.2), such zeros are all real
and so they form the sequence {vk(,o)} KeN, (see section 1).

The following proposition holds

Proposition 3.1. Ler X C R} a compact set and f € C§° (ﬁj). Then there is
a positive number |, depending of p, X and supp f, and there is a positive
number &, such that if Rev =2n+ 1 and | Imv| < &, results

(3.9) | wy(z p, )l < p"max|f]  VzeX.
R,
Proof. We rewrite (3.8) as follows

wy(z; 0, f) =

J_{ — Dy(~2) O/ T(—0)[Dy(s) + Du(=5)] f(s/v/2) ds+

: 2
+ T(=v)[Du(2) + Du(—2)] / Dy(—5)f(s/v2) ds — —L—T (=)D, (2)
a()+p

0
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+00 +00
/ D,(s)f(s/~/2)ds + T(—v)[D,(2) + Du(=2)] f Dv(s>f(s/f2>ds} =

0 0

{41 + 4 + A3(2) + )}

1
227
Put X(f) = supp f and o = 2(1 + Xm}z}é) |z|), from Propositions 2.2 and 2.3

U
we draw that there is § > O such thatif Rev =2n + 1 and |Imv| < §

|A;(@)] <ca™max|f|  Vie{l, 2,4}
uniformly with respect to Imv € | — §,5[ and to z € X, with ¢ constant
independent of 7.
Likewise, from Propositions 1.3 and 2.2 we draw

|A3(2)| < clpla® max |f],

hence the thesis. O

Now we return to problem (3.1). From arguments above follows that
eigenvalues of this problem are:

(3.10) M(p) = —Qu(p)+1)  keNy

and respective normalized eigensolutions belonging to S(ﬁ:) are

Gl gz p) = [mﬁz)/ |Du(v22) LZ(R;)} k € No.

v=1c(p)

If X is not an eigenvalue for the problem (3.1), the function
(3.12) w(z; p, f) = w_%(ﬁz; o, f)

is solution of (3.1); moreover if this problem admits a solution in S(ﬁj), it is
(25 P, f)

From (3.8) and (3.12) one deduces that the elements of sequence {Ak(p)} KN,
are the only singular points of w,(z; p, f) and they are poles of first order.
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Called Ri(z; p) the residue of w;(z; p, f) in Ax(p), by simple calculations one
proves

+00
(3.13) Ri(z; p) = oi(z; P)/‘Pk(S;P)f(S)dS k € Np.
0

It is easy to prove that from (3.8) and (3.12) follows that if f € Cg° (ﬁ:) the

function w;(z; p, f) belongs to S(Ej) for every A € C such that A is not an
eigenvalue for (3.1).
Now fixed p € R and put

_]0 ifp >0
(3.14) Mo _{16,02 ifp <0

we prove the following

Theorem 3.2. - Let f € CZ(R,). If

(3.15) Rek > m,
we have

) fllfll
(3.16) lwi(z; o, O < 2 ZW.

Proof. If A € C verifies (3.15), the function w; (z; p, f) is well defined because
by Proposition 1.2 we have A¢(p) < 0if p > 0and Ag(p) < 120 if p < 0.
That being said, because wy(z; p, f) € S(ﬁj) is solution of the problem (3.1),
we obtain

+00
(3.17) Marll* 4 2pl0x0)) + |} |I” + llz0; 1> = / f(@)®;(2)dz
0

If |Arg A| > /4, equalizing the imaginary parts in (3.17) we have (3.16).
Now we suppose 0 < |ArgA| < /4. If p > 0, we obtain (3.16) equalizing the
real parts in (3.17). If p < 0O, being

1

(3.18) A (O < 2l lo}ll < 4lp] llwxl® + mllw’kll2
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from (3.17) we have

1 /
(3.19) (Re h — 8pH)llwall* + Enwknz + lzes I < I1L£ 1 Nlewnll.
By (3.14) and (3.15) we have

1 1
Rer—8p2> Reh— 2L > —Rep > ——|a|
2 =2 2

2V2
and so (3.16). O
Now we put
p —+
(3.20) llwll = llwll + llzwll + lw]| YweS(R,)

and prove the following

Theorem 3.3. If L € C—] — 00, m,] there is a constant ¢ = c(A, p) such that
oo 5t
(3.21) llws(z; o, O < cll f] VieCy(R,).

Proof. If A € C—] — 00, m,] with Im A # O there is 6 € 0, 7/2[ such that
0o < |ArgA| < 7 — 0.
Equalizing the imaginary parts in (3.17) we have

(3.22) lws| < \Mﬁ%% feCeE®),

and by (3.18) one obtains

4|p| 2 L 0
|0, (0))* < ———— I fII* + — I}l
g |A|2 sin” 6 / 4lp| "

so (3.21) follows from (3.17) in the case Im A #£ 0.
If A = Re A, being A > m,, (3.21) follows directly from (3.19). U

From (3.17) by similar calculations we deduce
Proposition 3.4. For every 6 > 0, if [Im L| > §, then
—+ —+
|lwi(z: p. )] S cUMl+mp)'2IIfIl VzeR., V[feCFE(R,),

where c is a constant depending only of §.
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4. A holomorphic semigroup.

We have recourse to Semigroups Theory to solve the problem (I). In order
to make more simple the reading of this section, we report a theorem which
descends from the mutually equivalent of three conditions proved by Yosida
(see [7]).

Theorem 4.1. - Let {Tr; T > 0} be an equi-continuous semigroup of class (Cy)
and let A be its infinitesimal generator. If

i) a positive constant C exists such that the family of operators
{(CIARG; A))"}

is equi-continuous with respect ton > 0 and to ). with ReA > 1+ ¢, > 0,
then we have also:

1) there exists an angle 6y € 10, 7w /2[ such that the resolvent set of A, p(A),
includes the set

> ={reC:lzm and |Argil <7~ 6|

m,90

with m suitably large;

2) forevery x € X and T > 0 we have

1
T,x = — | ¢""R(x; A)xd A
27
C

where the path of integration C, = Ao), —00 < 0 < +00, is such that
‘ ‘lin}r |L(0)| = +o0o and for some ¢ > 0,

O |—> 100

w/24+e<Arghloc)<m—6y and — (T —6) <Argh(o) < —(m/2+¢)
when 0 — 400 and 0 — —o0 respectively;

3) exists 6y € 10, w/2[ such that T, admits a weakly holomorphic extension
T, for|Arg A| < 6y, that is T is a holomorphic semigroup.

Now we introduce the following operator

— d?
A: a)ES(Rj) — Aw = (d_2 —Zz)w.
Z
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By Theorems of section 3 we can be able to extend A to more general spaces.
Let H(R]) be the subspace of H'(R}) formed by functions @ with [|o|| <

+o0 for which there is a sequence {a),,} - S(E;) such that:

4.1 lim |, — ol =0,

“4.2) {Aa),, }ne No is convergent to an element of Lz(Rj ).

If w € H(RY) then lim Aw, is independent of {w,}, so it is right to put
n
Av =limAw,  in L*(R)).
n

We equip H(R) by the norm:
4.3) lolly = llwll + Aol

so H(RY) is a complete Banach space.
For every p € R, let D(A, p) be a subspace of H(Rj). We say that the
function w belongs to D(A, p) if
+00 +00
“4.4) /(Aa))v dz = / w(Av)dz Yve Cgo(ﬁj) 2 V'(0) =2pv(0).
0 0

It is clear that D(A, p) is a close subspace of H(R]), dense in LZ(Rj),
moreover if w € H*(R) N D(A, p), we have »'(0) = 2pw(0). It is easy to
prove that the operator A, with domain D(A, p) and range in LZ(Rj ), is aclose
operator.

Let wy(z) = w;.(z; p, f) the function defined by (3.12) and (3.8). We prove:

Proposition 4.2. For every p € R, let . € C—] — 0o, m,]. Then, for every
fe Lz(Rj), the function w; belongs to D(A, p).

Proof. Let f € L*(R¥) and f, € C°(R. ), n € N, such that
4.5) fi— f  in LA(R)).

If (wy)n = wi(z; p, f1), Y € N, we have that (w,), is classical solution of
problem (3.1), therefore

(4.6) (@)n € D(A, p) N S(R).
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By Theorem 3.3 and by (4.5) we have that the sequence (w; ), is foundamental
S0 it is convergent in H(Rj). By (3.8) and (3.12) we have

(@)n(2) > 02(2)  VYzeR..

So w; € H(R}) and
“(wk)n — Wy ”H — 0.

Since D(A, p) is a closed subset of H(R") we have the assert. [l

We consider the operator
Ap, : w€SR)) = (A—m,Dw

where 1 is the identity in S(R, ).

By Proposition 4.2 we obtain that C—] — 00, 0] is included in the resolvent set
of A,, in D(A, p) and results

4.7 R A ) f = @3qm, (f) Vfe LZ(Rj).
Now we prove the following

Theorem 4.3. For every p € R the operator A, ,, with domain D(A, p), is the
infinitesimal generator of a contraction semigroup of class (Cy) in LZ(RJ). This
semigroup is also holomorphic.

Proof. We prove that for every p € R, A, and D(A, p) satisfy hypotheses of
Philips and Lumer Theorem (see [7]).

It is obvious that the range of A,,, and D(A, p) are subspaces of LZ(Rj ). The
density of D(A, p) in LZ(Rj ) has been observed. By Proposition 4.2 and by
(4.7) we have that the range of I — A, is LZ(RZJF). We must only verify that A,
is dissipative. In order to do this, let w € D(A, p) and let {a),,} be a sequence of
S(E?) corvenging to w in H(RY).

Since

400
(4.8) f A (02)B, dz = —m ||, ||* — 20|w.(0)]> = [0} * — llzo, |17
0

we have
+00

Re/ A, (wp)w, dz <0,
0
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(this is obvious if p > 0, if p < 0 it follows from (3.18) and (3.16)). Passing to
limit in (4.8), we have that the operator A,,, is dissipative.

We denote by {TL 0 T > 0} the contraction semigroup of class (Cy) generated
by Ap, -

By Theorem 3.2 we have that the condition i) of Theorem 4.1 is verified, so
{Tt, 0 T > 0} is a holomorphic semigroup.

The theorem is proved. ([

Now we are able to prove

Theorem 4.4. For every p € R the operator A, with domain D(A, p), is the
infinitesimal generator of a holomorphic semigroup {Tr, 0 T > 0} and results

(4.9) Trp=e""T,,.

Proof. Since the operator m,/ is bounded by Theorem 4.3 we have that
A = A,, + m,l is the infinitesimal generator of a holomorphic semigroup
{Tt, 0 T > 0} (see [5], chapter 3, section 3.2, Corollary 2.2), and its expression
is given by (4.9). U

Theorem 4.5. For every f € L2(Rj) and for every p € R, results

+00 o
(4.10) Tepf(@ =) oz p)ff(z’)fpk(z’;p)dz’
k=0 0

vVt >0, VzEEJr.

4

Proof. By 2) of Theorem 4.1 and by (4.7) we have

— 1
(4.11) T:pf(2) == /e“wﬁmp(z)dk-
2mi
C

By sostitution A +m, — A, from (4.9) we have

1
@.12) T @ =5~ / ¢ 0,(2) d2
C
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here C; is the path included in ) of the type showed in Picture 1

m,0o

\(\
e

Picture 1

We fix now z € ﬁj. If 7 is large enough and f € ch(Ej), it is possible to
evaluate integral (4.12) by residues method. Fixed n € N, let y, be the path in

Picture 2.
Sn \/
¢ \
—(4m+3) - j

-
}/n/\

Picture 2
By (3.13) we have
1 =
(4.13) ol thoo M w(2)dh = ZekkWRk[z; ol =

Yn k=0
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+00 +00
— Ze“(”)fwk(z; 0) /f(z’)wk(z’; p)dz.
0

k=0

Let s, be the segment of y, belonging to the straight line of equation Re A =
—(4n + 3); let § be a positive number for which the Proposition 3.1 holds. We
have:

—(4n+3)t

($n) / T wi(R)dr| < due max | f |

[Im Al<8

so if T such that
(4.14) e >
results

n—+o00o

lim (s,) f e w, (z)dr = 0.
[ImA|<d

Then by Proposition 3.4 we have

_ 3
< e WITOoMm)| £

(Sn) / e w;(z) d

[ImA|>8

and so
lim (s,) f M w(2)dr = 0.

n—+o00o
[Im A|>§

Then (4.10) follows from (4.13) for f € Cgo(ﬁj) and 7 satisfying (4.14).
Moreover the series

k=0

+00 +oo
Yoz p)/f(z’)fpk(z’;p)dZ’ reC
0

+00
for Re A > a > 0 is increased in absolute value by series M| f|| 3. e~ —Dak
k=0
for (2.8) and (2.10), so it is a holomorphic function with respect to A in the
halfplane ReA > 0. By 3) of Theorem 4.1 and by Principle of identity for
holomorphic functions, we have (4.10) Y > 0. Since Cgo(ﬁj) is dense in
L*(R}) we have the thesis. O

From this theorem we get
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Theorem 4.6. For every p € R, the system {(pk(z; ,0)} keNo is complete in
L*(R}).

We conclude this section with a theorem of representation

Theorem 4.7. Let p € R and A € C. If A # M(p), Yk € Ny, and f €
L*(R}), the function w;(z; p, f) belongs to D(A, p) and it has the following
representation:

+00 oo
@i (25 p) f N /
4.15 o, )= _ ;0)dz7 .
(4.15) (2 P, f) k§=ok—)‘k(p) J F@e(as p)dz

Proof. We fix A # A(p), Yk € Ny, and f € C°(R)). In this case w,(z; p, f) €

S(ﬁj) and we find that its Fourier expansion in terms of the system {(pk(z; p)}
is the series in (4.15).

If A ¢ | — 0o, m,]| results wy(z: p, f) € D(A, p) for every f € L*(R}) (see
Prop. 4.2), and by an approximation argument we arrive at (4.15)V f € LZ(Rj ).

Finally, being w;(z; p, f) weakly holomorphicin C— [ J {Ak(p)}, we have the
keNy
thesis. (]

5. Proof of Theorem 1.
Let g € L*(R]") be, put
u(t, z) = Ty ,8(2);

by results of previous section we deduce that
u(r,z) € C°(RY, LX(R7) NC™(R} x R.)

and u(t, z) is solution of problem (I). If now ®(z, z, Z’; p) is the distribution
defined in (II) and (IIT), by Theorem 4.5 we obtain

+00

u(t,z) = / &(t,z,7; p)g(@)d7 t>0.
0

Now we are able to prove Theorem I.
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Since Ay(p) = —Qui(p) + 1) > —o0, Yp € R, from Proposition 2.1 follows
that series in (III) converges in C*°(R x E? X E;). Moreover, denoting by
<, > the duality pairing between C§°(R) and D'(R]), if g € C{°(R]) we have

+00
<®(r,2.7:p),8@)>=) Mgz T= 0,220,
k=0

where
+0o0

8k=/g(z)¢k(z; p)dz.

0

Being g € C°(RY)),

+00 o0

A" N )
8k = /g(Z)M dz:/Amg(z)Wdz VmeNy YVkeN,
o Ak(p) Ak(P)

follows V ke N
gkl < c||A"g||k™ Vm e Ny,

SO
| < ®(r,2.7:0).8E) > | < c|A"g| V=0

and
< ®(1r,2,75p),8E)> €COR, xR)) VgeCPR).

In this way we have proved that ®(z, z, 7’; p) € CO(E;r X ﬁ:, SO’(R;)).
Straight through one proves (/V); and (/V ),; moreover being

< ®(r,2.7:p).8@) >= T ,g) (.)€ RT xR Vge Coo(RY)

we have
flimo < (P(1,2,7; p), g(2) >= Ty 8 = g(2),

and so (/V)3. This concludes the proof of Theorem. U
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