LE MATEMATICHE Vol. LIV (1999) - Fasc. I, pp. 77-90

APPROXIMATION THEOREMS FOR MODIFIED SZASZ-MIRAKJAN OPERATORS IN POLYNOMIAL WEIGHT SPACES

MONIKA HERZOG

In this paper we will study properties of Szasz-Mirakjan type operators A_n^{ν} , B_n^{ν} defined by modified Bessel function I_{ν} . We shall present theorems giving a degree of approximation for these operators.

1. Introduction.

Let us denote a set of all real-valued function continuous in $\mathbb{R}_0 := [0, +\infty)$ by $C(\mathbb{R}_0)$ and let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Similary as in [2], define a polynomial weight function

(1)
$$
w_p(x) = \begin{cases} 1 & p = 0, \\ \frac{1}{1 + x^p} & p \in \mathbb{N} \end{cases}
$$

for $x \in \mathbb{R}_0$, and denote a polynomial weight space by C_p

(2) $C_p := \{ f \in C(\mathbb{R}_0) : w_p f \text{ is uniformly continuous and bounded in } \mathbb{R}_0 \}.$

Entrato in Redazione il 21 dicembre 1998.

¹⁹⁹¹ Mathematics Subject classi�cation: 41A36.

Key words and phrases: Linear positive operators, Degree of approximation, Bessel function.

It can be proved that the formula

(3)
$$
||f||_{C_p} := \sup_{x \in \mathbb{R}_0} w_p(x) |f(x)|
$$

for $f \in C_p$ is a well-define norm in the space C_p . Let $\omega(f, C_p; t)$ be the modulus of continuity, defined by the formula

(4)
$$
\omega(f, C_p; t) := \sup_{h \in [0,t]} \|\Delta_h f\|_{C_p},
$$

where $f \in C_p$, $t \in \mathbb{R}_0$ and

$$
\Delta_h f(x) := f(x+h) - f(x)
$$

for $x, h \in \mathbb{R}_0$.

The approximation problem conected with Szasz-Mirakjan operators was studied in [1], [2], [3]. In papers [1], [3] the following Szasz-Mirakjan operators were investigated

$$
S_n(f; x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f(\frac{k}{n}),
$$

$$
K_n(f; x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt,
$$

 $n \in \mathbb{N}, x \in \mathbb{R}_0$ for functions $f \in C_p$.

Note [2] was inspired by the results given in [1], [3] and operators of Szasz-Mirakjan type were defined

(5)
$$
A_n(f;x) := \frac{1}{1 + sh(nx)} \Big\{ f(0) + \sum_{k=0}^{\infty} \frac{(nx)^{2k+1}}{(2k+1)!} f(\frac{2k+1}{n}) \Big\},
$$

(6)
$$
B_n(f;x) := \frac{1}{1 + sh(nx)} \Big\{ f(0) + \sum_{k=0}^{\infty} \frac{(nx)^{2k+1}}{(2k+1)!} \frac{n}{2} \int_{\frac{2k+1}{n}}^{\frac{2k+3}{n}} f(t) dt \Big\}
$$

for $f \in C_p$ ($p \in \mathbb{N}_0$), $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$ where *sh* is the elementary hyperbolic function.

In this note we introduce in the space C_p ($p \in \mathbb{N}_0$) a new modification of Szasz-Mirakjan operators as follows

(7)
$$
A_n^{\nu}(f; x) := \begin{cases} \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} f(\frac{2k}{n}), & x > 0, \\ f(0), & x = 0, \end{cases}
$$

APPROXIMATION THEOREMS FOR... 79

(8)
$$
B_n^{\nu}(f;x) := \begin{cases} \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} \frac{n}{2} \int_{\frac{2k}{n}}^{\frac{2k+2}{n}} f(t) dt, \\ \frac{n}{2} \int_0^{\frac{2}{n}} f(t) dt, \quad x = 0, \end{cases}
$$

for $f \in C_p$ ($p \in \mathbb{N}_0$), $n \in \mathbb{N}$, $v \in \mathbb{R}_0$, $x \in \mathbb{R}_0$ where Γ is the Γ -Euler function and I_ν a modified Bessel function defined by the formula ([4], p. 77)

(9)
$$
I_{\nu}(z) := \sum_{k=0}^{\infty} \frac{(\frac{z}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)}.
$$

Among other things we shall prove that A_n^v , B_n^v are well-defined, linear and positive operators for all $f \in C_p$ with every $p \in \mathbb{N}_0$. Moreover, we shall prove that these operators are bounded and transform the space C_p into C_p .

2. Auxiliary results.

In this section we show some preliminary properties of the operators A_n^v , B_n^{ν} .

All proofs of properties for A_n^{ν} and B_n^{ν} are analogous so we prove only for the operator A_n^{ν} . By definitions (7) and (8) we obtain the following

Lemma 1. *For each* $n \in \mathbb{N}$, $\nu \in \mathbb{R}_0$ *and* $x \in \mathbb{R}_0$

$$
A_n^{\nu}(1; x) = 1, \quad B_n^{\nu}(1; x) = 1,
$$

\n
$$
A_n^{\nu}(t; x) = x \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}, \quad B_n^{\nu}(t; x) = A_n^{\nu}(t; x) + \frac{1}{n} = x \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + \frac{1}{n},
$$

\n
$$
A_n^{\nu}(t^2; x) = x^2 \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)},
$$

\n
$$
B_n^{\nu}(t^2; x) = A_n^{\nu}(t^2; x) + \frac{2}{n} A_n^{\nu}(t; x) + \frac{1}{3} (\frac{2}{n})^2 =
$$

\n
$$
x^2 \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{4}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + \frac{1}{3} (\frac{2}{n})^2.
$$

Remark. In Lemma 1 as well as in the rest part of this paper the equalities for $x = 0$ are to be understood in the asymptotic meaning with help of the equality

$$
\lim_{z \to 0} \frac{I_{\nu}(z)}{\left(\frac{z}{2}\right)^{\nu}} = \frac{1}{\Gamma(\nu+1)}.
$$

Using Lemma 1 and basic properties of A_n^v and B_n^v we have **Lemma 2.** *For each* $n \in \mathbb{N}$, $v \in \mathbb{R}_0$ *and* $x \in \mathbb{R}_0$

$$
A_n^{\nu}(t - x; x) = x\left(\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1\right), \quad B_n^{\nu}(t - x; x) = x\left(\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1\right) + \frac{1}{n},
$$

$$
A_n^{\nu}((t - x)^2; x) = x^2\left(\frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} - 2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + 1\right) + x\frac{2}{n}\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)},
$$

$$
B_n^{\nu}((t - x)^2; x) = x^2\left(\frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} - 2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + 1\right) + x\frac{2}{n}\left(2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1\right) + \frac{1}{3}\left(\frac{2}{n}\right)^2
$$

.

Lemma 3. For all $v \in \mathbb{R}_0$ there exists a positive constant M_v depending only *on* ν *such that*

$$
(10) \qquad \qquad \left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}\right| \leq M_{\nu},
$$

$$
(11) \t\t\t\t\t z\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right|\leq M_{\nu}
$$

for all $z \in \mathbb{R}_0$ *.*

Proof. First we will prove inequality (10). For $z \in (0, 1)$ by definition (9) there exist $C_1(v)$, $C_2(v)$ positive constants such that

(12)
$$
C_1(\nu)z^{\nu} \le I_{\nu}(z) \le C_2(\nu)z^{\nu}
$$
.

From these we obtain

$$
A_{\nu}z \leq \frac{I_{\nu+1}(z)}{I_{\nu}(z)} \leq B_{\nu}z, \qquad z \in (0;1)
$$

where $A_v = \frac{C_1(v+1)}{C_2(v)}$, $B_v = \frac{C_2(v+1)}{C_1(v)}$. For that reason the quotient $\frac{I_{v+1}(z)}{I_v(z)}$ is bounded for $z \in (0, 1)$.

Let $z \in (1; +\infty)$. According to paper [4], p. 203, we have the following property for modified Bessel function

$$
\lim_{z \to +\infty} \frac{I_{\nu}(z)}{\frac{e^z}{(2\pi z)^{\frac{1}{2}}}} = 1, \qquad \nu \in \mathbb{R}_0.
$$

Hence

$$
\lim_{z \to +\infty} \frac{I_{\nu+1}(z)}{I_{\nu}(z)} = 1.
$$

So, there exists a number $a > 1$ such that

$$
\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right|<1,\qquad z>a.
$$

Therefore, the quotient $\frac{I_{\nu+1}(z)}{I_{\nu}(z)}$ is bounded in the interval $(a, +\infty)$.

For $z \in [1; a]$ the existence of constant M_{ν} such that (10) holds is obvious. The proof of (10) is completed.

The proof of inequality (11) is similiar to that of (10). If $z \in (0, 1)$ we have estimations (12) and from these we obtain

$$
z(A_v z - 1) \le z(\frac{I_{v+1}(z)}{I_v(z)} - 1) \le z(B_v z - 1), \qquad z \in (0; 1).
$$

Concluding we have

$$
z\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right|\leq M_{\nu}, \qquad z\in(0;1).
$$

Let $z \in (1; +\infty)$. According to paper [4], p. 203, we obtain an approximation of modified Bessel function

(13)
$$
I_{\nu}(z) = \frac{e^{z}}{(2\pi z)^{\frac{1}{2}}} \left(\sum_{k=0}^{n} \frac{(-1)^{k} (\nu, k)}{(2z)^{k}} + O(\frac{1}{z^{n+1}}) \right)
$$

for $n \in \mathbb{N}_0$, $v \in \mathbb{R}_0$ and $z > 0$ where

$$
\begin{cases} (v, 0) := 1, \\ (v, k) := \frac{\Gamma(v + \frac{1}{2} + k)}{k! \Gamma(v + \frac{1}{2} - k)}, \quad k = 1, 2, 3... \end{cases}
$$

If we use formula (13) for $n = 0$ and $z > 1$ we get

$$
z\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right|=\frac{|h(z)-g(z)|}{|1+\frac{g(z)}{z}|}
$$

where h, g are bounded functions. Hence, there exist constants C_1 , C_2 such that

$$
|h(z)| < C_1, \quad |g(z)| < C_2, \quad z > 1.
$$

Let $a > \max(1, 2C_2)$ be a fixed real number. For $z > a$ we have

$$
\frac{|g(z)|}{z} < \frac{1}{2}.
$$

Now we will consider $z \in (a; +\infty)$. By the above remark we can write

$$
z\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right|\leq 2(C_1+C_2)=M.
$$

For $z \in [1; a]$ inequality (11) is obvious. Therefore, the proof of inequality (11) is completed. \Box

Lemma 4. For all $v \in \mathbb{R}_0$ there exists a positive constant M_v depending only *on* ν *such that*

(14)
$$
|A_n^{\nu}(t-x; x)| \leq \frac{M_{\nu}}{n}, \quad |B_n^{\nu}(t-x; x)| \leq \frac{M_{\nu}}{n},
$$

(15)
$$
|A_n^{\nu}((t-x)^2; x)| \le M_{\nu} \frac{x+1}{n}, \quad |B_n^{\nu}((t-x)^2; x)| \le M_{\nu} \frac{x+1}{n},
$$

for all $x \in \mathbb{R}_0$ *and* $n \in \mathbb{N}$ *.*

Proof. By Lemma 2 we have

$$
|A_n^{\nu}(t-x;x)|=x\left|\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}-1\right|,\qquad n\in\mathbb{N},\quad x\in\mathbb{R}_0.
$$

We will try to prove that there exists a positive constant M_{ν} such that

(16)
$$
nx\left|\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}-1\right| \le M_{\nu}.
$$

Let us substitute $nx = z$, $z > 0$. Hence inequality (11) in Lemma 3 implies (16), so the proof of (14) is ended.

Using the first part of the proof we get

$$
(nx)^{2} \Big| \frac{I_{\nu+2}(nx)}{I_{\nu+1}(nx)} - 1 \Big| \le nx M_{\nu+1},
$$

$$
(nx)^{2} \Big| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \Big| \le nx M_{\nu}, \qquad x \in \mathbb{R}_{0}, \quad n \in \mathbb{N}.
$$

Above inequalities, Lemma 2 and (10) imply the following estimation

$$
|A_n^{\nu}((t-x)^2; x)| = \left| x^2 \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 2x^2 \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + x^2 \right|
$$

$$
\leq x^2 \left| \frac{I_{\nu+2}(nx)}{I_{\nu+1}(nx)} - 1 \right| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + x^2 \left| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \right| + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}
$$

$$
\leq M_{\nu} \frac{x}{n} \leq M_{\nu} \frac{x+1}{n}
$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$. Lemma 4 has been proved. \Box

Lemma 5. For every fixed $p \in \mathbb{N}$ there exist positive numbers $a_{p,i}$, $b_{p,i}$ depend*ing only on* $p, i, 0 \le i \le p$ *such that* $a_{p,p} = 1, b_{p,p} = 1, b_{p,0} = \frac{1}{p+1}$ *and for all* $n \in \mathbb{N}$, $x \in \mathbb{R}_0$, $v \in \mathbb{R}_0$

(17)
$$
A_n^{\nu}(t^p; x) = \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^p \sum_{i=1}^p a_{p,i} \left(\frac{nx}{2}\right)^i I_{\nu+i}(nx),
$$

(18)
$$
B_n^{\nu}(t^p; x) = \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^p \sum_{i=0}^p b_{p,i} \left(\frac{nx}{2}\right)^i I_{\nu+i}(nx)
$$

hold.

Proof. In order to prove conection (17) we use the mathematical induction for *p* ∈ N. If *p* = 1, 2 it is Lemma 1. Assuming (17) for *f* (*t*) = *t*^{*j*}, *j* ∈ N and $j \leq p$, we get from definition (7)

$$
A_n^{\nu}(t^{p+1}; x) = \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{+\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} \left(\frac{2k}{n}\right)^{p+1}
$$

$$
= \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \sum_{k=1}^{\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu}}{\Gamma(k)\Gamma(k+\nu+1)} k^p
$$

84 MONIKA HERZOG

$$
= \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \sum_{k=0}^{\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu+2}}{\Gamma(k+1)\Gamma(k+\nu+2)} (k+1)^p
$$

$$
= \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \sum_{s=0}^{p} \binom{p}{s} \sum_{k=0}^{\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu+2}}{\Gamma(k+1)\Gamma(k+\nu+2)} k^s
$$

$$
= \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} I_{\nu+1}(nx)
$$

$$
+ \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} \sum_{s=1}^{p} \binom{p}{s} \sum_{k=0}^{\infty} \frac{\left(\frac{nx}{2}\right)^{2k+\nu+1}}{\Gamma(k+1)\Gamma(k+\nu+2)} k^s.
$$

Using the inductive assumption, we obtain

$$
A_n^{\nu}(t^{p+1}; x) = \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} I_{\nu+1}(nx)
$$

+
$$
\frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} \sum_{s=1}^p {p \choose s} \sum_{i=1}^s a_{s,i} \left(\frac{nx}{2}\right)^i I_{\nu+1+i}(nx)
$$

=
$$
\frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \left\{\frac{nx}{2} I_{\nu+1}(nx) + \sum_{s=1}^p {p \choose s} \sum_{k=2}^{s+1} a_{s,k-1} \left(\frac{nx}{2}\right)^k I_{\nu+k}(nx) \right\},
$$

where $a_{s,s} = 1$.

Hence we have

$$
A_n^{\nu}(t^{p+1}; x) = \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \sum_{i=1}^{p+1} a_{p+1,i} \left(\frac{nx}{2}\right)^{i} I_{\nu+i}(nx)
$$

and $a_{p+1, p+1} = 1$ for $p \in \mathbb{N}$.

Thus, by the mathematical induction, Lemma 5 is proved. \Box

Lemma 6. For every fixed $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$ there exists a positive constant *Mp*,ν *such that*

(19)
$$
\left\|A_n^{\nu}(\frac{1}{w_p(t)};\cdot)\right\|_{C_p} \le M_{p,\nu},
$$

(20) � � � *B*ν *n* (1 w*^p* (*t*) ;.) � � � *Cp* ≤ *Mp*,ν

for all $n \in \mathbb{N}$ *.*

Proof. From (1), (3) and Lemma 1 we immediately obtain (19) for $p = 0$ and *p* = 1. Let $2 \le p \in \mathbb{N}$ be a fixed integer. Then, by (1) and Lemma 5, we have for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$

$$
w_p(x) A_n^{\nu}(\frac{1}{w_p(t)}; x) = w_p(x) \{A_n^{\nu}(1; x) + A_n^{\nu}(t^p; x)\}
$$

=
$$
\frac{1}{1 + x^p} + \sum_{i=1}^p a_{p,i} (\frac{2}{n})^p (\frac{n}{2})^i \frac{x^i}{1 + x^p} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)}.
$$

By Lemma 3 the quotient $\frac{I_{v+i}(nx)}{I_v(nx)}$ is bounded for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ so we get

$$
0 \leq w_p(x) A_n^{\nu}(\frac{1}{w_p(t)}; x) \leq M_{p,\nu},
$$

where $M_{p,\nu}$ is a positive constant depending on p and ν . From these and by (3) we obtain (19). \Box

Theorem 1. *For every fixed* $p \in \mathbb{N}_0$ *and* $v \in \mathbb{R}_0$ *there exists a positive constant M*_{*p*,*v*} *such that for every* $f \in C_p$ *and* $n \in \mathbb{N}$

(21)
$$
||A_n^{\nu}(f;.)||_{C_p} \le M_{p,\nu} ||f||_{C_p},
$$

(22)
$$
||B_n^{\nu}(f;.)||_{C_p} \le M_{p,\nu} ||f||_{C_p}
$$

hold.

Proof. By (1), (3) and (7) we can get

$$
w_p(x)|A_n^v(f(t);x)| \le w_p(x)A_n^v(|f(t)|;x)
$$

= $w_p(x)A_n^v(w_p(t)|f(t)|\frac{1}{w_p(t)};x) \le ||f||_{C_p}w_p(x)A_n^v(\frac{1}{w_p(t)};x)$

for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$. Using Lemma 6 we obtain (21). \square

Corollary 1. *The operators* A_n^{ν} , B_n^{ν} *are linear and bounded from* C_p *into* C_p *.*

Lemma 7. *For every fixed* $p \in \mathbb{N}_0$ *and* $v \in \mathbb{R}_0$ *there exists a positive constant M*_{*p*,*v*} *such that for all* $x \in \mathbb{R}_0$ *and* $n \in \mathbb{N}$

(23)
$$
w_p(x) A_n^{\nu}(\frac{(t-x)^2}{w_p(t)}; x) \le M_{p,\nu}\frac{x+1}{n},
$$

(24)
$$
w_p(x)B_n^{\nu}(\frac{(t-x)^2}{w_p(t)}; x) \le M_{p,\nu}\frac{x+1}{n}
$$

hold.

Proof. Inequalities (23) and (24) for $p = 0$ are proved in Lemma 4. For $p \ge 1$ from (1) and the linearity of the operator A_n^{ν} it follows that

(25)
$$
A_n^{\nu}(\frac{(t-x)^2}{w_p(t)}; x) = A_n^{\nu}((t-x)^2; x) + A_n^{\nu}(t^p(t-x)^2; x),
$$

$$
A_n^{\nu}(t^p(t-x)^2; x) = A_n^{\nu}(t^{p+2}; x) - 2x A_n^{\nu}(t^{p+1}; x) + x^2 A_n^{\nu}(t^p; x).
$$

According to Lemma 5 we get

$$
w_p(x) A_n^v(t^p(t-x)^2; x) = \frac{x^{p+2}}{1+x^p} \Big\{ \frac{I_{v+p+2}(nx)}{I_v(nx)} - 2\frac{I_{v+p+1}(nx)}{I_v(nx)} + \frac{I_{v+p}(nx)}{I_v(nx)} \Big\}
$$

+
$$
\frac{x^{p+1}}{1+x^p} \frac{2}{n} \Big\{ a_{p+2,p+1} \frac{I_{v+p+1}(nx)}{I_v(nx)} - 2a_{p+1,p} \frac{I_{v+p}(nx)}{I_v(nx)} + a_{p,p-1} \frac{I_{v+p-1}(nx)}{I_v(nx)} \Big\}
$$

+
$$
\sum_{i=1}^p a_{p+2,i} \frac{n}{2} \Big\{ x^{i-(p+2)} \frac{x^i}{1+x^p} \frac{I_{v+i}(nx)}{I_v(nx)} - \sum_{i=1}^{p-1} 2a_{p+1,i} \frac{n}{2} \Big\} \frac{x^{i+1}}{1+x^p} \frac{I_{v+i}(nx)}{I_v(nx)} + \sum_{i=1}^{p-2} a_{p,i} \frac{n}{2} \Big\{ x^{i-2}} \frac{I_{v+i}(nx)}{1+x^p} \frac{I_{v+i}(nx)}{I_v(nx)}
$$

$$
\leq \frac{x^p}{1+x^p} x^2 \Big\{ \frac{I_{v+p+2}(nx)}{I_{v+p+1}(nx)} - 1 \Big\{ \frac{I_{v+p+1}(nx)}{I_v(nx)}
$$

+
$$
\frac{x^p}{1+x^p} x^2 \Big\{ 1 - \frac{I_{v+p+1}(nx)}{I_{v+p}(nx)} \Big\{ \frac{I_{v+p}(nx)}{I_v(nx)}
$$

+
$$
\frac{x^p}{1+x^p} \frac{2}{n} x A_p \Big\{ \frac{I_{v+p+1}(nx)}{I_{v+p}(nx)} - 1 \Big\{ \frac{I_{v+p}(nx)}{I_v(nx)}
$$

APPROXIMATION THEOREMS FOR... 87

$$
+\frac{x^p}{1+x^p} \frac{2}{n} x B_p \Big| 1 - \frac{I_{\nu+p}(nx)}{I_{\nu+p-1}(nx)} \Big| \frac{I_{\nu+p-1}(nx)}{I_{\nu}(nx)}
$$

+ $(\frac{2}{n})^2 \sum_{i=1}^p a_{p+2,i} (\frac{n}{2})^{i-p} \frac{x^i}{1+x^p} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)}$
- $(\frac{2}{n})^2 \sum_{i=2}^p 2a_{p+1,i-1} (\frac{n}{2})^{i-p} \frac{x^i}{1+x^p} \frac{I_{\nu+i-1}(nx)}{I_{\nu}(nx)}$
+ $(\frac{2}{n})^2 \sum_{i=3}^p a_{p,i-2} (\frac{n}{2})^{i-p} \frac{x^i}{1+x^p} \frac{I_{\nu+i-2}(nx)}{I_{\nu}(nx)}$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$, where $a_{r,k}$, A_p , B_p are positive numbers. The quotient $\frac{I_{v+i}}{I_v}$ is bounded for all $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $i \in \mathbb{N}_0$ so, by Lemma 3 we have

$$
w_p(x)A_n^{\nu}(t^p(t-x)^2; x) \le M_{p,\nu}\frac{x+1}{n}, \qquad x \in \mathbb{R}_0, \quad n \in \mathbb{N}
$$

which proves Lemma 7. \Box

3. Approximation theorems.

Theorem 2. Suppose that $p \in \mathbb{N}_0$, $v \in \mathbb{R}_0$ are fixed numbers and $g \in C_p^1$, where $C_p^1 := \{ f \in C_p : f' \in C_p \}$ *. Then there exists a positive constant* $M_{p,\nu}^*$ *such that*

(26)
$$
w_p(x)|A_n^{\nu}(g;x)-g(x)| \leq M_{p,\nu}^* \|g'\|_{C_p} (\frac{x+1}{n})^{\frac{1}{2}},
$$

(27)
$$
w_p(x)|B_n^{\nu}(g;x)-g(x)| \le M_{p,\nu}^* \|g'\|_{C_p} (\frac{x+1}{n})^{\frac{1}{2}}
$$

for all $x \in \mathbb{R}_0$ *and* $n \in \mathbb{N}$ *.*

Proof. Let us $x \in \mathbb{R}_0$ be fixed. For $t \in \mathbb{R}_0$ we have

$$
g(t) - g(x) = \int_x^t g'(u) du.
$$

By (7) and Lemma 1 we get

(28)
$$
A_n^{\nu}(g(t); x) - g(x) = A_n^{\nu}(\int_x^t g'(u) du; x), \qquad n \in \mathbb{N}.
$$

Since

$$
\Big|\int_{x}^{t} g'(u) du \Big| \leq \|g'\|_{C_p} \Big| \int_{x}^{t} \frac{du}{w_p(u)} \Big| \leq \|g'\|_{C_p} \Big(\frac{1}{w_p(x)} + \frac{1}{w_p(t)} \Big) |t - x|
$$

we get from (28)

$$
w_p(x)|A_n^{\nu}(g;x)-g(x)| \leq ||g'||_{C_p}\{A_n^{\nu}(|t-x|;x)+w_p(x)A_n^{\nu}(\frac{|t-x|}{w_p(t)};x)\}.
$$

But (7) and Cauchy's inequality imply

$$
A_n^{\nu}(t-x|;x) \leq \{A_n^{\nu}(t-x)^2;x)\}^{\frac{1}{2}},
$$

$$
A_n^{\nu}(\frac{|t-x|}{w_p(t)}; x) \leq \{A_n^{\nu}(\frac{1}{w_p(t)}; x)\}^{\frac{1}{2}} \{A_n^{\nu}(\frac{(t-x)^2}{w_p(t)}; x)\}^{\frac{1}{2}}.
$$

From (15), Lemma 6 and Lemma 7 it follows that

$$
A_n^{\nu}(|t - x|; x) \le (M_{\nu} \frac{x + 1}{n})^{\frac{1}{2}},
$$

$$
w_p(x) A_n^{\nu}(\frac{|t - x|}{w_p(t)}; x) \le M_{p,\nu}(\frac{x + 1}{n})^{\frac{1}{2}}
$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$, $p \in \mathbb{N}_0$, $v \in \mathbb{R}_0$.

Combinig these estimations we obtain (26). \Box

Theorem 3. *Suppose that* $f \in C_p$ *, with fixed* $p \in \mathbb{N}_0$ *and* $v \in \mathbb{R}_0$ *. Then there exists a positive constant* $M_{p,\nu}$ *such that*

(29)
$$
w_p(x)|A_n^{\nu}(f;x)-f(x)| \le M_{p,\nu}\omega(f,C_p;(\frac{x+1}{n})^{\frac{1}{2}}),
$$

(30)
$$
w_p(x)|B_n^{\nu}(f;x) - f(x)| \le M_{p,\nu}\omega(f,C_p;(\frac{x+1}{n})^{\frac{1}{2}})
$$

for all $x \in \mathbb{R}_0$ *,* $n \in \mathbb{N}$ *.*

Proof. Let f_h be the Stieklov mean of $f \in C_p$, i.e.

$$
f_h(x) = \frac{1}{h} \int_0^h f(x+t) dt, \qquad x \in \mathbb{R}_0, \quad h \in \mathbb{R}_+,
$$

where $\mathbb{R}_+ := \{x \in \mathbb{R} : x > 0\}$. We have

$$
f_h(x) - f(x) = \frac{1}{h} \int_0^h (f(x+t) - f(x)) dt,
$$

$$
f'_h(x) = \frac{1}{h} \{f(x+h) - f(x)\}
$$

for $x \in \mathbb{R}_0$, $h \in \mathbb{R}_+$. It is easy to notice that if $f \in C_p$ then $f_h \in C_p^1$ for every fixed $h \in \mathbb{R}_+$. Moreover, for $h \in \mathbb{R}_+$

$$
(31) \quad \|f_h - f\|_{C_p} \leq \sup_{x \in \mathbb{R}_0} \{\frac{1}{h} \int_0^h w_p(x) |f(x + t) - f(x)| \, dt\} \leq \omega(f, C_p; h),
$$

(32)
$$
\|f'_h\|_{C_p} \leq \frac{1}{h}\omega(f, C_p; h)
$$

hold. Since A_n^{ν} is a linear operator, we have

$$
w_p(x)|A_n^{\nu}(f;x) - f(x)| \le w_p(x)\{|A_n^{\nu}(f - f_h;x)| + |A_n^{\nu}(f_h;x) - f_h(x)| + |f_h(x) - f(x)|\}
$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $h \in \mathbb{R}_+$. Using Theorem 1 and (31), we get

$$
w_p(x)|A_n^{\nu}(f - f_h; x)| \le M_{p,\nu} \|f - f_h\|_{C_p} \le M_{p,\nu} \omega(f, C_p; h).
$$

From Theorem 2 and (32) it follows that

$$
w_p(x)|A_n^{\nu}(f_h; x) - f_h(x)| \le M_{p,\nu} \|f_h'\|_{C_p} \left(\frac{x+1}{n}\right)^{\frac{1}{2}}
$$

$$
\le M_{p,\nu} \omega(f, C_p; h) \frac{1}{h} \left(\frac{x+1}{n}\right)^{\frac{1}{2}}.
$$

From these and by (31) we obtain

(33)
$$
w_p(x)|A_n^{\nu}(f;x) - f(x)| \le M_{p,\nu}\omega(f,C_p;h)\{1 + \frac{1}{h}(\frac{x+1}{n})^{\frac{1}{2}}\}
$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $h \in \mathbb{R}_+$. Setting, for every fixed $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$, $h = \left(\frac{x+1}{n}\right)^{\frac{1}{2}}$ to (33), we get the desired estimation (29) for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$. \Box

Theorem 3 implies the following corollaries:

Corollary 2. *If* $f \in C_p$ *with some* $p \in \mathbb{N}_0$ *and* $v \in \mathbb{R}_0$ *, then*

(34)
$$
\lim_{n \to \infty} A_n^{\nu}(f; x) = f(x),
$$

(35)
$$
\lim_{n \to \infty} B_n^{\nu}(f; x) = f(x)
$$

for all $x \in \mathbb{R}_0$ *.*

Moreover, statements tm (34) and (35) *hold uniformly on every interval* $[0, a], a > 0.$

Corollary 3. *If* $f \in Lip(C_p, \alpha) := \{ f \in C_p : \omega(f, C_p; t) = 0(t^{\alpha}), t \to 0^+ \}$ *with some* $p \in \mathbb{N}_0$, $0 < \alpha \leq 1$ *and* $v \in \mathbb{R}_0$ *, then there exists a positive constant Mp*,ν,α *such that*

$$
w_p(x)|A_n^{\nu}(f; x) - f(x)| \le M_{p, \nu, \alpha} (\frac{x+1}{n})^{\frac{\alpha}{2}},
$$

$$
w_p(x)|B_n^{\nu}(f; x) - f(x)| \le M_{p, \nu, \alpha} (\frac{x+1}{n})^{\frac{\alpha}{2}}
$$

for all $x \in \mathbb{R}_0$ *and* $n \in \mathbb{N}$ *.*

REFERENCES

- [1] M. Becker, *Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27-1 (1978),* pp. 127-142.
- [2] L. Rempulska M. Skorupka, *On approximation of functions by some operators of the Szasz-Mirakjan type, Fasc. Math., 26 (1996), pp. 125-137.*
- [3] V. Totik, *Uniform approximation by Szasz-Mirakjan operators,* Acta Math. Hung., 41-3 (1983), pp. 291-307.
- [4] G.N. Watson, *Theory of Bessel functions,* Cambridge Univ. Press, Cambridge, 1966.

Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Cracow (POLAND) e-mail: mherzog@usk.pk.edu.pl