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APPROXIMATION THEOREMS FOR

MODIFIED SZASZ-MIRAKJAN OPERATORS

IN POLYNOMIAL WEIGHT SPACES

MONIKA HERZOG

In this paper we will study properties of Szasz-Mirakjan type operators
Aν

n , Bν
n de�ned by modi�ed Bessel function Iν . We shall present theorems

giving a degree of approximation for these operators.

1. Introduction.

Let us denote a set of all real-valued function continuous in R0 := [0, +∞)

by C(R0) and let N0 := N ∪ {0}. Similary as in [2], de�ne a polynomial weight
function

(1) wp(x) =






1 p = 0,

1

1+ x p
p ∈ N

for x ∈ R0, and denote a polynomial weight space by Cp

(2) Cp := { f ∈ C(R0) : wp f is uniformly continuous and bounded in R0}.
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It can be proved that the formula

(3) � f �Cp
:= sup

x∈R0

wp(x)| f (x)|

for f ∈ Cp is a well-de�ne norm in the space Cp . Let ω( f,Cp ; t) be the
modulus of continuity, de�ned by the formula

(4) ω( f,Cp ; t) := sup
h∈[0,t ]

��h f �Cp
,

where f ∈ Cp , t ∈ R0 and

�h f (x) := f (x + h) − f (x)

for x , h ∈ R0.
The approximation problem conected with Szasz-Mirakjan operators was

studied in [1], [2], [3]. In papers [1], [3] the following Szasz-Mirakjan operators
were investigated

Sn( f ; x) = e−nx
∞�

k=0

(nx)k

k!
f (

k

n
),

Kn( f ; x) = e−nx
∞�

k=0

(nx)k

k!
n

� k+1
n

k
n

f (t) dt,

n ∈ N, x ∈ R0 for functions f ∈ Cp .
Note [2] was inspired by the results given in [1], [3] and operators of Szasz-
Mirakjan type were de�ned

An ( f ; x) :=
1

1 + sh(nx)

�
f (0) +

∞�

k=0

(nx)2k+1

(2k + 1)!
f (
2k + 1

n
)

�
,(5)

Bn( f ; x) :=
1

1 + sh(nx)

�
f (0) +

∞�

k=0

(nx)2k+1

(2k + 1)!

n

2

� 2k+3
n

2k+1
n

f (t) dt
�

(6)

for f ∈ Cp (p ∈ N0), n ∈ N and x ∈ R0 where sh is the elementary hyperbolic
function.

In this note we introduce in the space Cp (p ∈ N0) a new modi�cation of
Szasz-Mirakjan operators as follows

(7) Aν
n ( f ; x) :=






1

Iν (nx)

∞�

k=0

( nx
2

)2k+ν

�(k + 1)�(k + ν + 1)
f (
2k

n
), x > 0,

f (0), x = 0,
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(8) Bν
n ( f ; x) :=






1

Iν (nx)

∞�

k=0

( nx
2

)2k+ν

�(k + 1)�(k + ν + 1)

n

2

� 2k+2
n

2k
n

f (t) dt,

x > 0

n

2

� 2
n

0

f (t) dt, x = 0,

for f ∈ Cp (p ∈ N0), n ∈ N, ν ∈ R0, x ∈ R0 where � is the �-Euler function
and Iν a modi�ed Bessel function de�ned by the formula ([4], p. 77)

(9) Iν (z) :=

∞�

k=0

( z
2
)2k+ν

�(k + 1)�(k + ν + 1)
.

Among other thingswe shall prove that Aν
n , B

ν
n are well-de�ned, linear and

positive operators for all f ∈ Cp with every p ∈ N0. Moreover, we shall prove
that these operators are bounded and transform the space Cp into Cp .

2. Auxiliary results.

In this section we show some preliminary properties of the operators Aν
n ,

Bν
n .

All proofs of properties for Aν
n and Bν

n are analogous so we prove only for
the operator Aν

n . By de�nitions (7) and (8) we obtain the following

Lemma 1. For each n ∈ N, ν ∈ R0 and x ∈ R0

Aν
n(1; x) = 1, Bν

n (1; x) = 1,

Aν
n (t; x) = x

Iν+1(nx)

Iν (nx)
, Bν

n (t; x) = Aν
n(t; x) +

1

n
= x

Iν+1(nx)

Iν (nx)
+

1

n
,

Aν
n (t

2; x) = x 2 Iν+2(nx)

Iν (nx)
+ x

2

n

Iν+1(nx)

Iν (nx)
,

Bν
n (t2; x) = Aν

n (t
2; x) +

2

n
Aν

n(t; x) +
1

3
(
2

n
)2 =

x 2 Iν+2(nx)

Iν (nx)
+ x

4

n

Iν+1(nx)

Iν (nx)
+

1

3
(
2

n
)2.
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Remark. In Lemma 1 as well as in the rest part of this paper the equalities for
x = 0 are to be understood in the asymptotic meaning with help of the equality

lim
z→0

Iν (z)

( z
2
)ν

=
1

�(ν + 1)
.

Using Lemma 1 and basic properties of Aν
n and Bν

n we have

Lemma 2. For each n ∈ N, ν ∈ R0 and x ∈ R0

Aν
n (t − x; x) = x(

Iν+1(nx)

Iν (nx)
− 1), Bν

n (t − x; x) = x(
Iν+1(nx)

Iν (nx)
− 1) +

1

n
,

Aν
n ((t − x)2; x) = x 2(

Iν+2(nx)

Iν (nx)
− 2

Iν+1(nx)

Iν (nx)
+ 1) + x

2

n

Iν+1(nx)

Iν (nx)
,

Bν
n ((t−x)2; x) = x 2(

Iν+2(nx)

Iν (nx)
−2

Iν+1(nx)

Iν (nx)
+1)+x

2

n
(2

Iν+1(nx)

Iν (nx)
−1)+

1

3
(
2

n
)2.

Lemma 3. For all ν ∈ R0 there exists a positive constant Mν depending only
on ν such that

(10)
�
�
�
Iν+1(z)

Iν (z)

�
�
� ≤ Mν ,

(11) z
�
�
�
Iν+1(z)

Iν (z)
− 1

�
�
� ≤ Mν

for all z ∈ R0.

Proof. First we will prove inequality (10). For z ∈ (0; 1) by de�nition (9) there
exist C1(ν), C2(ν) positive constants such that

(12) C1(ν)zν ≤ Iν (z) ≤ C2(ν)zν .

From these we obtain

Aν z ≤
Iν+1(z)

Iν (z)
≤ Bνz, z ∈ (0; 1)

where Aν =
C1(ν+1)
C2 (ν)

, Bν =
C2(ν+1)
C1 (ν)

. For that reason the quotient Iν+1(z)
Iν (z)

is
bounded for z ∈ (0; 1).
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Let z ∈ (1; +∞). According to paper [4], p. 203, we have the following
property for modi�ed Bessel function

lim
z→+∞

Iν (z)
ez

(2π z)
1
2

= 1, ν ∈ R0.

Hence

lim
z→+∞

Iν+1(z)

Iν (z)
= 1.

So, there exists a number a > 1 such that

�
�
�
Iν+1(z)

Iν (z)
− 1

�
�
� < 1, z > a.

Therefore, the quotient Iν+1(z)
Iν(z)

is bounded in the interval (a, +∞).
For z ∈ [1; a] the existence of constant Mν such that (10) holds is obvious.

The proof of (10) is completed.
The proof of inequality (11) is similiar to that of (10). If z ∈ (0; 1) we have

estimations (12) and from these we obtain

z(Aν z − 1) ≤ z(
Iν+1 (z)

Iν (z)
− 1) ≤ z(Bν z − 1), z ∈ (0; 1).

Concluding we have

z
�
�
�
Iν+1(z)

Iν (z)
− 1

�
�
� ≤ Mν, z ∈ (0; 1).

Let z ∈ (1; +∞). According to paper [4], p. 203, we obtain an approximation
of modi�ed Bessel function

(13) Iν (z) =
ez

(2π z)
1
2

(

n�

k=0

(−1)k(ν, k)

(2z)k
+ O(

1

zn+1
))

for n ∈ N0, ν ∈ R0 and z > 0 where






(ν, 0) := 1,

(ν, k) :=
�(ν + 1

2
+ k)

k!�(ν + 1
2

− k)
, k = 1, 2, 3... .
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If we use formula (13) for n = 0 and z > 1 we get

z
�
�
�
Iν+1(z)

Iν (z)
− 1

�
�
� =

|h(z) − g(z)|

|1+
g(z)
z

|

where h, g are bounded functions. Hence, there exist constants C1 , C2 such that

|h(z)| < C1, |g(z)| < C2, z > 1.

Let a > max(1, 2C2) be a �xed real number. For z > a we have

|g(z)|

z
<

1

2
.

Now we will consider z ∈ (a; +∞). By the above remark we can write

z
�
�
�
Iν+1(z)

Iν (z)
− 1

�
�
� ≤ 2(C1 + C2) = M.

For z ∈ [1; a] inequality (11) is obvious. Therefore, the proof of inequality (11)
is completed. �

Lemma 4. For all ν ∈ R0 there exists a positive constant Mν depending only
on ν such that

(14) |Aν
n (t − x; x)| ≤

Mν

n
, |Bν

n (t − x; x)| ≤
Mν

n
,

(15) |Aν
n ((t − x)2; x)| ≤ Mν

x + 1

n
, |Bν

n ((t − x)2; x)| ≤ Mν

x + 1

n
,

for all x ∈ R0 and n ∈ N.

Proof. By Lemma 2 we have

|Aν
n (t − x; x)| = x

�
�
�
Iν+1(nx)

Iν (nx)
− 1

�
�
�, n ∈ N, x ∈ R0.

We will try to prove that there exists a positive constant Mν such that

(16) nx
�
�
�
Iν+1(nx)

Iν (nx)
− 1

�
�
� ≤ Mν.
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Let us substitute nx = z, z > 0. Hence inequality (11) in Lemma 3 implies
(16), so the proof of (14) is ended.

Using the �rst part of the proof we get

(nx)2
�
�
�
Iν+2(nx)

Iν+1(nx)
− 1

�
�
� ≤ nxMν+1,

(nx)2
�
�
�
Iν+1(nx)

Iν (nx)
− 1

�
�
� ≤ nxMν, x ∈ R0, n ∈ N.

Above inequalities, Lemma 2 and (10) imply the following estimation

|Aν
n ((t − x)2; x)| =

�
�
�x 2 Iν+2(nx)

Iν (nx)
+ x

2

n

Iν+1(nx)

Iν (nx)
− 2x 2 Iν+1(nx)

Iν (nx)
+ x 2

�
�
�

≤ x 2
�
�
�
Iν+2(nx)

Iν+1(nx)
− 1

�
�
�
Iν+1(nx)

Iν (nx)
+ x 2

�
�
�
Iν+1(nx)

Iν (nx)
− 1

�
�
� + x

2

n

Iν+1(nx)

Iν (nx)

≤ Mν

x

n
≤ Mν

x + 1

n

for x ∈ R0, n ∈ N. Lemma 4 has been proved. �

Lemma 5. For every �xed p ∈ N there exist positive numbers ap,i , bp,i depend-
ing only on p, i , 0 ≤ i ≤ p such that ap,p = 1, bp,p = 1, bp,0 = 1

p+1
and for

all n ∈ N, x ∈ R0, ν ∈ R0

Aν
n(t

p; x) =
1

Iν (nx)
(
2

n
)p

p�

i=1

ap,i(
nx

2
)i Iν+i (nx),(17)

Bν
n (t

p; x) =
1

Iν (nx)
(
2

n
)p

p�

i=0

bp,i(
nx

2
)i Iν+i (nx)(18)

hold.

Proof. In order to prove conection (17) we use the mathematical induction for
p ∈ N. If p = 1, 2 it is Lemma 1. Assuming (17) for f (t) = t j , j ∈ N and
j ≤ p, we get from de�nition (7)

Aν
n (t

p+1; x) =
1

Iν (nx)

+∞�

k=0

( nx
2

)2k+ν

�(k + 1)�(k + ν + 1)
(
2k

n
)p+1

=
1

Iν (nx)
(
2

n
)p+1

∞�

k=1

( nx
2

)2k+ν

�(k)�(k + ν + 1)
k p
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=
1

Iν (nx)
(
2

n
)p+1

∞�

k=0

( nx
2

)2k+ν+2

�(k + 1)�(k + ν + 2)
(k + 1)p

=
1

Iν (nx)
(
2

n
)p+1

p�

s=0

�
p

s

� ∞�

k=0

( nx
2

)2k+ν+2

�(k + 1)�(k + ν + 2)
ks

=
1

Iν (nx)
(
2

n
)p+1 nx

2
Iν+1(nx)

+
1

Iν (nx)
(
2

n
)p+1 nx

2

p�

s=1

�
p

s

� ∞�

k=0

( nx
2

)2k+ν+1

�(k + 1)�(k + ν + 2)
ks .

Using the inductive assumption, we obtain

Aν
n (t

p+1; x) =
1

Iν (nx)
(
2

n
)p+1nx

2
Iν+1(nx)

+
1

Iν (nx)
(
2

n
)p+1 nx

2

p�

s=1

�
p

s

� s�

i=1

as,i (
nx

2
)i Iν+1+i (nx)

=
1

Iν (nx)
(
2

n
)p+1{

nx

2
Iν+1(nx) +

p�

s=1

�
p

s

� s+1�

k=2

as,k−1(
nx

2
)k Iν+k(nx)},

where as,s = 1.
Hence we have

Aν
n (t

p+1; x) =
1

Iν (nx)
(
2

n
)p+1

p+1�

i=1

ap+1,i(
nx

2
)i Iν+i (nx)

and ap+1,p+1 = 1 for p ∈ N.
Thus, by the mathematical induction, Lemma 5 is proved. �

Lemma 6. For every �xed p ∈ N0 and ν ∈ R0 there exists a positive constant
Mp,ν such that

(19)
�
�
�Aν

n (
1

wp(t)
; .)

�
�
�
Cp

≤ Mp,ν,

(20)
�
�
�Bν

n (
1

wp(t)
; .)

�
�
�

Cp

≤ Mp,ν

for all n ∈ N.
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Proof. From (1), (3) and Lemma 1 we immediately obtain (19) for p = 0 and
p = 1. Let 2 ≤ p ∈ N be a �xed integer. Then, by (1) and Lemma 5, we have
for all x ∈ R0 and n ∈ N

wp(x)Aν
n(

1

wp(t)
; x) = wp(x){Aν

n(1; x) + Aν
n (t

p; x)}

=
1

1+ x p
+

p�

i=1

ap,i(
2

n
)p(

n

2
)i

x i

1 + x p

Iν+i (nx)

Iν (nx)
.

By Lemma 3 the quotient Iν+i (nx)
Iν (nx)

is bounded for all x ∈ R0 and n ∈ N so we get

0 ≤ wp(x)Aν
n(

1

wp(t)
; x) ≤ Mp,ν,

where Mp,ν is a positive constant depending on p and ν . From these and by (3)
we obtain (19). �

Theorem 1. For every �xed p ∈ N0 and ν ∈ R0 there exists a positive constant
Mp,ν such that for every f ∈ Cp and n ∈ N

(21) �Aν
n( f ; .)�Cp

≤ Mp,ν� f �Cp
,

(22) �Bν
n ( f ; .)�Cp

≤ Mp,ν� f �Cp

hold.

Proof. By (1), (3) and (7) we can get

wp(x)|Aν
n( f (t); x)| ≤ wp(x)Aν

n(| f (t)|; x)

= wp(x)Aν
n(wp(t)| f (t)|

1

wp(t)
; x) ≤ � f �Cp

wp(x)Aν
n(

1

wp(t)
; x)

for all x ∈ R0 and n ∈ N.

Using Lemma 6 we obtain (21). �

Corollary 1. The operators Aν
n , Bν

n are linear and bounded from Cp into Cp .
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Lemma 7. For every �xed p ∈ N0 and ν ∈ R0 there exists a positive constant
Mp,ν such that for all x ∈ R0 and n ∈ N

(23) wp(x)Aν
n(

(t − x)2

wp(t)
; x) ≤ Mp,ν

x + 1

n
,

(24) wp(x)Bν
n (

(t − x)2

wp(t)
; x) ≤ Mp,ν

x + 1

n

hold.

Proof. Inequalities (23) and (24) for p = 0 are proved in Lemma 4. For p ≥ 1
from (1) and the linearity of the operator Aν

n it follows that

(25) Aν
n(

(t − x)2

wp(t)
; x) = Aν

n ((t − x)2; x) + Aν
n (t

p(t − x)2; x),

Aν
n(t

p(t − x)2; x) = Aν
n (t

p+2; x) − 2x Aν
n(t

p+1; x) + x 2Aν
n (t

p; x).

According to Lemma 5 we get

wp(x)Aν
n(t

p(t − x)2; x) =
x p+2

1 + x p

� Iν+p+2(nx)

Iν (nx)
− 2

Iν+p+1(nx)

Iν (nx)
+

Iν+p(nx)

Iν (nx)

�

+
x p+1

1 + x p

2

n

�
ap+2,p+1

Iν+p+1(nx)

Iν (nx)
− 2ap+1,p

Iν+p(nx)

Iν (nx)
+ ap,p−1

Iν+p−1(nx)

Iν (nx)

�

+

p�

i=1

ap+2,i(
n

2
)i−(p+2) x i

1 + x p

Iν+i (nx)

Iν (nx)

−

p−1�

i=1

2ap+1,i(
n

2
)i−(p+1) x i+1

1 + x p

Iν+i (nx)

Iν (nx)
+

p−2�

i=1

ap,i(
n

2
)i−p x i+2

1 + x p

Iν+i (nx)

Iν (nx)

≤
x p

1+ x p
x 2

�
�
�
Iν+p+2(nx)

Iν+p+1(nx)
− 1

�
�
�
Iν+p+1(nx)

Iν (nx)

+
x p

1 + x p
x 2

�
�
�1 −

Iν+p+1(nx)

Iν+p(nx)

�
�
�
Iν+p(nx)

Iν (nx)

+
x p

1 + x p

2

n
x Ap

�
�
�
Iν+p+1(nx)

Iν+p(nx)
− 1

�
�
�
Iν+p(nx)

Iν (nx)
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+
x p

1 + x p

2

n
x Bp

�
�
�1 −

Iν+p(nx)

Iν+p−1(nx)

�
�
�
Iν+p−1(nx)

Iν (nx)

+ (
2

n
)2

p�

i=1

ap+2,i(
n

2
)i−p x i

1+ x p

Iν+i (nx)

Iν (nx)

− (
2

n
)2

p�

i=2

2ap+1,i−1(
n

2
)i−p x i

1 + x p

Iν+i−1(nx)

Iν (nx)

+ (
2

n
)2

p�

i=3

ap,i−2(
n

2
)i−p x i

1 + x p

Iν+i−2(nx)

Iν (nx)

for x ∈ R0, n ∈ N, where ar,k , Ap , Bp are positive numbers. The quotient Iν+i

Iν
is

bounded for all x ∈ R0, n ∈ N and i ∈ N0 so, by Lemma 3 we have

wp(x)Aν
n(t

p(t − x)2; x) ≤ Mp,ν

x + 1

n
, x ∈ R0, n ∈ N

which proves Lemma 7. �

3. Approximation theorems.

Theorem 2. Suppose that p ∈ N0, ν ∈ R0 are �xed numbers and g ∈ C1
p , where

C1
p := { f ∈ Cp : f � ∈ Cp}. Then there exists a positive constant M∗

p,ν such that

(26) wp(x)|Aν
n(g; x) − g(x)| ≤ M∗

p,ν�g
��Cp

(
x + 1

n
)
1
2 ,

(27) wp(x)|Bν
n (g; x) − g(x)| ≤ M∗

p,ν�g
��Cp

(
x + 1

n
)
1
2

for all x ∈ R0 and n ∈ N.

Proof. Let us x ∈ R0 be �xed. For t ∈ R0 we have

g(t) − g(x) =

� t

x

g�(u) du.

By (7) and Lemma 1 we get

(28) Aν
n (g(t); x) − g(x) = Aν

n (

� t

x

g�(u) du; x), n ∈ N.
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Since

�
�
�

� t

x

g�(u) du
�
�
� ≤ �g��Cp

|

� t

x

du

wp(u)
| ≤ �g��Cp

(
1

wp(x)
+

1

wp(t)
)|t − x |

we get from (28)

wp(x)|Aν
n (g; x) − g(x)| ≤ �g��Cp

{Aν
n(|t − x |; x) + wp(x)Aν

n(
|t − x |

wp(t)
; x)}.

But (7) and Cauchy�s inequality imply

Aν
n (|t − x |; x) ≤ {Aν

n((t − x)2; x)}
1
2 ,

Aν
n(

|t − x |

wp(t)
; x) ≤ {Aν

n(
1

wp(t)
; x)}

1
2 {Aν

n (
(t − x)2

wp(t)
; x)}

1
2 .

From (15), Lemma 6 and Lemma 7 it follows that

Aν
n(|t − x |; x) ≤ (Mν

x + 1

n
)
1
2 ,

wp(x)Aν
n (

|t − x |

wp(t)
; x) ≤ Mp,ν(

x + 1

n
)
1
2

for x ∈ R0, n ∈ N, p ∈ N0, ν ∈ R0.

Combinig these estimations we obtain (26). �

Theorem 3. Suppose that f ∈ Cp , with �xed p ∈ N0 and ν ∈ R0. Then there
exists a positive constant Mp,ν such that

(29) wp(x)|Aν
n( f ; x) − f (x)| ≤ Mp,νω( f,Cp ; (

x + 1

n
)
1
2 ),

(30) wp(x)|Bν
n ( f ; x) − f (x)| ≤ Mp,νω( f,Cp ; (

x + 1

n
)
1
2 )

for all x ∈ R0, n ∈ N.
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Proof. Let fh be the Stieklov mean of f ∈ Cp , i.e.

fh (x) =
1

h

� h

0

f (x + t) dt, x ∈ R0, h ∈ R+,

where R+ := {x ∈ R : x > 0}. We have

fh (x) − f (x) =
1

h

� h

0

( f (x + t) − f (x)) dt,

f �
h (x) =

1

h
{ f (x + h) − f (x)}

for x ∈ R0, h ∈ R+. It is easy to notice that if f ∈ Cp then fh ∈ C1
p for every

�xed h ∈ R+. Moreover, for h ∈ R+

(31) � fh − f �Cp
≤ sup

x∈R0

{
1

h

� h

0

wp(x)| f (x + t) − f (x)| dt} ≤ ω( f,Cp ; h),

(32) � f �
h�Cp

≤
1

h
ω( f,Cp ; h)

hold. Since Aν
n is a linear operator, we have

wp(x)|Aν
n( f ; x) − f (x)| ≤ wp(x){|Aν

n( f − fh ; x)|

+ |Aν
n ( fh ; x) − fh (x)| + | fh (x) − f (x)|}

for x ∈ R0, n ∈ N and h ∈ R+.
Using Theorem 1 and (31), we get

wp(x)|Aν
n( f − fh ; x)| ≤ Mp,ν� f − fh�Cp

≤ Mp,νω( f,Cp ; h).

From Theorem 2 and (32) it follows that

wp(x)|Aν
n( fh ; x) − fh (x)| ≤ Mp,ν� f �

h�Cp
(
x + 1

n
)
1
2

≤ Mp,νω( f,Cp ; h)
1

h
(
x + 1

n
)
1
2 .

From these and by (31) we obtain

(33) wp(x)|Aν
n( f ; x) − f (x)| ≤ Mp,νω( f,Cp ; h){1+

1

h
(
x + 1

n
)
1
2 }

for x ∈ R0, n ∈ N and h ∈ R+. Setting, for every �xed x ∈ R0 and n ∈ N,

h = ( x+1
n

)
1
2 to (33), we get the desired estimation (29) for x ∈ R0 and n ∈ N.

�

Theorem 3 implies the following corollaries:
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Corollary 2. If f ∈ Cp with some p ∈ N0 and ν ∈ R0, then

(34) lim
n→∞

Aν
n ( f ; x) = f (x),

(35) lim
n→∞

Bν
n ( f ; x) = f (x)

for all x ∈ R0.
Moreover, statements tm (34) and (35) hold uniformly on every interval

[0, a], a > 0.

Corollary 3. If f ∈ Lip(Cp , α) := { f ∈ Cp : ω( f,Cp ; t) = 0(tα), t → 0+}

with some p ∈ N0, 0 < α ≤ 1 and ν ∈ R0 , then there exists a positive constant
Mp,ν,α such that

wp(x)|Aν
n( f ; x) − f (x)| ≤ Mp,ν,α(

x + 1

n
)

α
2 ,

wp(x)|Bν
n ( f ; x) − f (x)| ≤ Mp,ν,α(

x + 1

n
)

α
2

for all x ∈ R0 and n ∈ N.

REFERENCES

[1] M. Becker, Global approximation theorems for Szasz-Mirakjan and Baskakov
operators in polynomial weight spaces, Indiana Univ. Math. J., 27�1 (1978),
pp. 127�142.

[2] L. Rempulska - M. Skorupka, On approximation of functions by some operators
of the Szasz-Mirakjan type, Fasc. Math., 26 (1996), pp. 125�137.

[3] V. Totik, Uniform approximation by Szasz-Mirakjan operators, ActaMath. Hung.,
41�3 (1983), pp. 291�307.

[4] G.N. Watson, Theory of Bessel functions, Cambridge Univ. Press, Cambridge,
1966.

Institute of Mathematics,
Cracow University of Technology,

Warszawska 24,
31-155 Cracow (POLAND)

e-mail: mherzog@usk.pk.edu.pl


