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ON QUADRISECANT LINES OF THREEFOLDS IN P5

EMILIA MEZZETTI

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We study smooth threefolds of P
5 whose quadrisecant lines don�t �ll

up the space. We give a complete classi�cation of those threefolds X whose
only quadrisecant lines are the lines contained in X . Then we prove that, if
X admits �true� quadrisecant lines, but they don�t �ll up P

5 , then either X
is contained in a cubic hypersurface, or it contains a family of dimension at
least two of plane curves of degree at least four.

Introduction.

The classical theorem of general projection for surfaces says that a general
projection in P

3 of a smooth complex projective surface S of P
5 is a surface F

with ordinary singularities i.e. its singular locus is either empty or is a curve γ

such that:

(i) γ is either non singular or has at most a �nite number of ordinary triple
points;

(ii) every smooth point of γ is either a nodal point or a pinch-point of F ;
(iii) the general point of γ is a nodal point for F ;
(iv) every triple point of γ is an ordinary triple point of F .

(see [6], [11])
Moreover γ is empty if and only if S is already contained in a P3.
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Note that the projection to P3 can be split in two steps: in the �rst step
from P5 to P4 S acquires only double points, while triple points appear only in
the second step from P

4 to P
3.

The problem of classifying the surfaces S such that F does not have any
triple point is equivalent to the problem of classifying the intermediate surfaces
S � of P

4 whose trisecant lines don�t �ll up P
4, or �without apparent triple points�

in the old fashioned terminology. This problem had been tackled by Severi
in [17]. His approach was based on the description of hypersurfaces of P

4

containing a 3�dimensional family of lines: they are quadrics and hypersurfaces
birationally �bered by planes. By consequence his theorem says that a surface
S � without apparent triple points either is contained in a quadric or is birationally
�bered by plane curves of degree at least 3. Recently Aure ([1]) made this result
precise under smoothness assumption, proving that, if a surface S � as above is
not contained in a quadric, then it is an elliptic normal scroll.

In the study of threefolds, several analogous questions appear, not all
completely answered yet. Here we are concerned mainly with smooth threefolds
of P5 and their projections to P4. We want to study their 4-secant lines, trying
in particular to describe threefolds whose 4-secant lines don�t �ll up the space.
We �rst study threefolds X whose only 4-secant lines are the lines contained in
X : we give a complete description of them (Theorem 2.1). Then we consider
the threefolds with a 5-dimensional family of 4-secant lines (or more generally
k-secant lines, with k ≥ 4): we �nd that these lines cannot �ll up P4 and that
X is birationally ruled by surfaces of P

3 of degree k (Theorem 2.3). There are
no examples of this situation and it seems sensible to guess that in fact it cannot
happen.

The general situation is that of 3-folds whose 4-secant lines form a family
of dimension four, i.e. a congruence of lines. To understand the case of a
congruence of order 0, i.e. of lines not �lling up P

5, we imitate the approach of
Severi: we have to look at hypersurfaces Y of P

4 covered by a 4-dimensional
family of lines. We �nd that a priori there are many possibilities for such
hypersurfaces. More precisely, if we consider a general hyperplane section V
of such a Y , this is a threefold of P4 covered by a 2-dimensional family of lines.
The threefolds like that are studied in [12], where the following result is proved:

Theorem 0.1. Let V ⊂ P4 be a projective, integral hypersurface over an
algebraically closed �eld of characteristic zero, covered by lines. Let � ⊂

G(1, 4) denote the Fano scheme of the lines on V . Assume that � is generically
reduced of dimension 2. Let µ denote the number of lines of � passing through
a general point of V and g the sectional genus of V , i.e. the geometric genus of
a plane section of V . Then µ ≤ 6 and one of the following happens:
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(i) µ = 1, i.e. V is birationally a scroll over a surface;

(ii) V is birationally ruled by smooth quadric surfaces over a curve (µ = 2);

(iii) V is a cubic hypersurface with singular locus of dimension at most one; if
V is smooth, then � is irreducible and µ = 6;

(iv) V has degree d ≤ 6, g = 1, 2 ≤ µ ≤ 4 and V is a projection in P
4 of one

of the following:

- a complete intersection of two hyperquadrics in P5, d = 4;

- a section of G(1, 4) with a P
6, d = 5;

- a hyperplane section of P
2 × P

2 , d = 6;

- P
1 × P

1 × P
1 , d ≤ 6.

To apply this result to a fourfold Y generated by the 4-secant lines of a
threefold, it is necessary �rst of all to understand the meaning of the assumption
of generic reducedness on � . We prove that this hypothesis is equivalent to the
non-existence of a �xed tangent plane to V along a general line of � . Threefolds
V not satisfying this assumption are then described in Proposition 3.4.

So it is possible to perform an analysis of the possible cases for the fourfold
Y . This leads to a result very similar to the theorem of Severi for surfaces quoted
above:

Theorem 0.2. Let X be a smooth non-degenerate threefold of P
5 not contained

in a quadric. Let � be an irreducible component of dimension 4 of �4(X ) such
that a general line of � is k-secant X (k ≥ 4). Assume that the union of the
lines of � is a hypersurface Y . Then either Y is a cubic or Y contains a family
of planes of dimension 2 which cut on X a family of plane curves of degree k.

Recently, a different approach to the study of multisecant lines of smooth
threefolds of P5 has been considered by Sijong Kwak ([8]). It is based on the
well-known monoidal construction. He proves that, if the 4-secant lines of X
don�t �ll up P5, then either h2(OX ) �= 0 or h1(OX (1)) �= 0. Moreover he gives
an explicit formula for q4(X ), the number of 4-secant lines through a general
point of P5, depending on deg X , on the sectional genus and on the two Euler
characteristics χ(OX) and χ(OS), where S is a general hyperplane section. It
is interesting to note that, testing this formula on all known smooth threefolds
of P5, one gets q4(X ) = 0 only for those contained in a cubic hypersurface.

Aknowledgment. I warmly thank Silvio Greco and Dario Portelli for several
dicussions on the topic of this paper and for encouragement. I would like to
thank Prof. Sijong Kwak for inviting me to KIAS of Seoul. There I bene�tted
also from interesting conversations with Prof. Fjodor Zak, whom I gratefully
thank.
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1. Multisecants lines of threefolds in P5.

Let X be an integral smooth threefold of P
5 not contained in a hyperplane.

To de�ne the multisecant lines of X , we follow the approach of Le Barz ([9]).
Let k ≥ 2 be an integer number. Let HilbkP5 be the Hilbert scheme of
subschemes of length k of P

5, and HilbkcP
5 be its smooth open subvariety

parametrizing curvilinear subschemes, i.e. subschemes which are contained
in a smooth curve. Let AlkP5 denote the subscheme of HilbkcP

5 of length k
subschemes lying on a line and Hilbkc X that of subschemes contained in X .
The following cartesian diagram de�nes Alk X , the scheme of aligned k-tuples
of points of X :

Alk X −→ AlkP5

↓ ↓

Hilbkc X −→ HilbkcP
5.

We have: dim HilbkcP
5 = 5k, dim AlkP5 = 10 + (k − 2) = 8 + k,

dim Hilbkc X = 3k; so, if Alk X is non�empty, then any irreducible component
of its has dimension at least (8 + k) + (3k) − (5k) = 8 − k.

Let now
a : AlkP5 −→ G(1, 5)

be the natural map (axe) to the Grassmannian of lines of P5. Note that all �bers
of a have dimension k.

The image scheme �k(X ) := a(Alk (X )) is by de�nition the family of
k-secant lines of X . Clearly all lines contained in X belong to �k(X ). If
Alk X = ∅, then obviously also �k(X ) = ∅: in this case no line cuts X in
at least k points or is contained in X .

Let us consider now the restriction ā of a to an irreducible component �

of Alk X :
ā : � −→ ā(�) ⊂ G(1, 5).

We have : dim ā(�) = dim� − dim�l , where �l := ā−1(l) is the �bre over
l , a general line of ā(�). There are two possibilities, i.e. either dim�l = k if
l ⊂ X , or dim �l = 0 if l ∩ X is a scheme of �nite length. By consequence,
either dim ā(�) = dim� − k, if any line of ā(�) is contained in X , or else
dim ā(�) = dim� if a general line of ā(�) is not contained in X .
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Some rather precise information on the families of k-secant lines of three-
folds for particular k come from the classical theorems of �general projection�.
For smooth curves in P

3 and smooth surfaces in P
4 there are very precise theo-

rems, describing the singular locus of the projected variety (see [7], [11], [1]).

From these results, passing to general sections with linear spaces of dimen-
sion 3 and 4, it follows that a general projection X � in P

4 of a smooth threefold
X of P5 acquires a double surface D, i.e. a surface whose points have multi-
plicity at least two on X �, and a triple curve T ⊂ D, i.e. a curve whose points
have multiplicity at least three on X �. Moreover, D is non-empty unless X is
degenerate and T is non-empty unless X is contained in a quadric. In terms
of multisecant lines, this means that, through a general point P of P5, there
passes a 2-dimensional family of 2-secant lines of X : we have that �2(X ) is
irreducible of dimension 6. If moreover X is not contained in a quadric, then
the trisecant lines through P form a family of dimension 1, so �3(X ) has di-
mension 5 and its lines �ll up P5. I would like to emphasize that D is truly
double and T is truly triple for X �, or, in other words, a general secant line of X
is not trisecant and a general trisecant line is not quadrisecant.

On the other hand, it has been proved that X � does not have any point of
multiplicity 5 or more (see [15], [10]). Hence the 5-secant lines of X never �ll
up P5.

Remark 1.1. It is interesting to note that no smooth threefold X in P5 has
Al3(X ) = ∅. Indeed, if so, a general curve section C of X would be a smooth
curve of P3 without trisecant lines. It is well known that such a curve C is either
a skew cubic or an elliptic quartic. So X could be either P

1 × P
2 or a complete

intersection of two quadrics: in both cases, X is an intersection of quadrics, so
the trisecant lines are necessarily contained in X . But both threefolds contain
lines: they form a family of dimension 3 in the �rst case and of dimension 2 in
the second one.

2. Quadrisecant lines: special cases.

The �rst case we consider is that of threefolds without �true� quadrisecant
lines.

Theorem 2.1. Let X be a smooth threefold of P5 . Then Al4(X ) �= ∅. If its
quadrisecant lines are all contained in X , then σ4 := dim�4(X ) ≤ 4 and one
of the following possibilities occurs:

σ4 = 4, X is a P3;
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σ4 = 3, X is a quadric hypersurface (contained in a hyperplane of P5), or
P1 × P2;

σ4 = 2, X is a cubic hypersurface (contained in a hyperplane of P
5), or

a complete intersection of type (2, 2), or a Castelnuovo threefold, or a
Bordiga scroll;

σ4 = 1, X is a complete intersection of type (2, 3), or an inner projection
of a complete intersection of type (2, 2, 2) in P6;

σ4 = 0, X is a complete intersection of type (3, 3).

Proof. By [16], the maximal dimension of a family of lines contained in a
threefold X is 4, and the maximum is attained only by linear spaces. Moreover,
if the dimension is 3, then either X is a quadric or it is birationally a scroll over
a curve. Being X smooth, in the last case X is P1 × P2 (see [14]).

If σ4 ≤ 2, then a general hyperplane section S of X contains only a
�nite number of lines and does not possess any other 4-secant line. In [3]
one proves that there is a �nite explicit list of such surfaces S . They have all
degree at most 9 and are all arithmetically Cohen-Macaulay, except the elliptic
scroll. The smooth threefolds X having them as general hyperplane sections
are all described (see for instance [5]) and are precisely those appearing in
the list above. More precisely, a Castelnuovo threefold has degree 5, its ideal
is generated by the maximal minors of a 2 × 3 matrix of forms: in the �rst
two columns the entries are linear while in the third one they are quadratic,
X is �bered by quadrics over P1. The Bordiga scroll has degree 6, its ideal
is generated by the maximal minors of a 3 × 4 matrix of linear forms, it is a
scroll over P

2. Finally, the computation of the dimension of the family of lines
contained in a smooth complete intersection as above is classical. Note that in
all cases X contains lines, so Al4(X ) �= ∅.

Remark 2.2. Note that all threefolds whose only quadrisecant lines are the lines
contained in them are cut out by quadrics and cubics.

From now on we will consider only smooth non-degenerate threefolds in
P5 such that the general line of at least one irreducible component of �4(X )

is not contained in X . Hence the dimension of such a component � is at
least 4. On the other hand dim � < 6, otherwise every secant line would
be quadrisecant, which is excluded by general projection theorems. If the
dimension of such a component is 5, then we have the following result.

Theorem 2.3. Let X be a smooth non-degenerate threefold of P5 , let � be an
irreducible component of �4(X ) of dimension 5. Then the lines of � don�t �ll
up P5 . More precisely either their union is a quadric or it is a hypersurface
birationally ruled by P3�s over a curve.
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Proof. Let H be a general hyperplane and let S := X ∩H , �� := �∩G(1, H ).
S is a smooth surface of P4 and �� is a family of dimension 3 of quadrisecant
lines of S . From the general projection result for surfaces, it follows that the
lines of �� don�t �ll up H , so their union is a hypersurface V in H . By [16],
either V is a quadric or it is birationally �bered by planes. In the �rst case, V
lifts to a quadric containg X and all its quadrisecant lines.

In the second case, the planes of V cut on S a one-dimensional family of
plane curves of degree, say, a: since the lines of these planes have to be 4-
secant S , then a ≥ 4. Coming back to P

5, X contains a family of dimension at
least 4 of plane curves of degree at least 4. Let W be the subvariety of G(2, 5)

parametrizing those planes. We consider the focal locus of the family W on a
�xed plane π (see [4] for generalities about the theory of foci): it must contain
the plane curve of X lying on π . But the matrix representing the characteristic
map of W restricted to π is a 3 × 4 matrix of linear forms on π , so it cannot
degenerate along a curve of degree strictly bigger than 3, unless it degenerates
everywhere on π . So all planes of the family are focal planes. Let f be the
projection from the incidence correspondence of W to P5: the differential of
f has always a kernel of dimension two and image of dimension 4. By the
analogous of Sard�s theorem, it follows that the union of the planes of W is a
variety Y of dimension 4. By [16], we conclude that Y is birationally ruled by
P3�s over a curve.

Remark 2.4. Under the assumption of Theorem 2.3, if X is not contained in
a quadric, then it is covered by a one-dimensional family of surfaces of P

3 of
degree at least 4, whose hyperplane sections are the plane curves covering S .
So the plane curves on X are cut by the planes of the P

3�s of Y .

3. Quadrisecant lines not �lling up the spaces.

We assume now that X is a non-degenerate smooth threefold in P5,
such that all irreducible components of �4(X ), corresponding to lines not all
contained in X , have dimension 4. A subscheme of dimension 4 of G(1, 5)

is called a congruence of lines. To a congruence of lines � one associates an
integer number, its order: the number of lines of � passing through a general
point of P

5. More formally, it is the intersection number of � with the Schubert
cycle of lines through a point. The order of �4(X ) will be denoted by q4(X ). It
is clear that if X is contained in a quadric or in a cubic hypersurface, then this
hypersurface contains also the quadrisecant lines of X , hence q4(X ) = 0. It is
natural to try to reverse this implication, so one can consider the following
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Question . Do there exist smooth threefolds X in P5 , not contained in a cubic,
but such that the 4-secant lines of X form a congruence with q4(X ) = 0 ?

From now on, we assume that H 0(IX (3)) = (0), dim�4(X ) = 4 and
q4(X ) = 0. Let Y be the hypersurface of P

5 union of the 4-secant lines of
X . Let � be the Fano scheme of lines contained in Y : �4(X ) is a union of
one or more irreducible components of � . Let now H be a general hyperplane,
S := X ∩ H and V := Y ∩ H . So �� := � ∩ G(1, H ) is the Fano scheme
of lines contained in V and �4(S) = �4(X ) ∩ G(1, H ) parametrizes 4-secant
lines of S .

In order to apply Theorem 0.1 to our situation, we want to give some
characterization of threefolds covered by lines with non-reduced associated
Fano scheme. First of all we recall a result from [12].

Let V be a threefold of P
4 covered by a two dimensional family of lines and

let �̄ be an irreducible component of dimension two of its Fano scheme of lines.
Let r be a line on V which is a general point of �̄ , let P be a general point of
r and let P(TPV ) be the projective plane obtained by projectivization from the
tangent space to V at P , its points correspond to tangent lines to V at P . Choose
homogeneous coordinates in P

4 such that P = [1, 0, . . . , 0] and TPV has
equation x4 = 0. In the af�ne chart x0 �= 0 with non-homogeneous coordinates
yi = xi/x0, i = 1, . . . , 4, V has an equation G = G1+G2+G3+. . .+Gd = 0,
where the Gi are the homogeneous components of G and G1 = x4. It is
convenient to write Gi = Fi + y4Hi , where the Fi are polynomials in y1, y2, y3.
The equations y4 = F2 = 0 (resp. y4 = F2 = F3 = 0) represent lines in
P(TPV ) which are at least 3-tangent (resp. 4-tangent) to V at P .

Proposition 3.1. With the notations just introduced, �̄ is reduced at r if and
only if in P(TPV ) the intersection of the conic F2 = 0 with the cubic F3 = 0 is
reduced at the point corresponding to r .

Proof. [12], Proposition 1.3.

In the following characterization, we need again the notion of focal scheme
of a family of lines (see [4]).

Proposition 3.2. Let V be a threefold of P
4 covered by a two dimensional

family of lines. Let �̄ be an irreducible component of dimension two of the
Fano scheme of lines on V . Then the following are equivalent:

(1) �̄ is non-reduced;
(2) V has a �xed tangent space of dimension at least two along a general line

of �̄;
(3) on each general line of the family �̄ there is at least one focal point.
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Proof. (1) ⇔ (2). One implication is Proposition 1.5 of [12]. This implication
and the inverse one, which is similar, follow from a local computation and from
Proposition 3.1.

(2) ⇔ (3). Let the line r be a smooth, general point of �̄ and let
[x0, . . . , x4] be homogeneous coordinates in P

4 such that r has equations
x2 = x3 = x4 = 0. We consider the restriction to r of the global characteristic
map relative to the family of lines �̄:

χ(r) : Tr�̄ ⊗ Or → Nr/P4 .

Since Tr�̄ ⊗ Or � O
2
r and Nr/P4 � Or (1)3, the map χ(r) can be represented

by a suitable 3 × 2 matrix M, with linear entries li j (x0, x1). If there is a �xed
tangent plane Mr to V along r , it gives a (�xed) normal direction to r in P

4. If
� ⊂ K 5 is the vector space of dimension two corresponding to r , this normal
direction can be represented by a vector v ∈ K 5/�, with v �= 0. Moreover, for
any P ∈ r , the columns of M evaluated at P are elements of K 5/�.

With this set-up we can rephrase the condition that the tangent spaces to V
at the points of r all contain the plane Mr as follows, where v = (v1, v2, v3):

(∗) det

�
v1 l11(P) l12(P)

v2 l21(P) l22(P)

v3 l31(P) l32(P)

�

= 0

for every P ∈ r . The development of the above determinant is a quadratic
form in x0, x1, whose three coef�cients linearly depend on v1, v2, v3. Since
the determinant vanishes for each choice of x0, x1, these coef�cients have to
be identically zero. This can be interpreted as a homogeneous linear system
of three equations which admits the non-trivial solution (v1, v2, v3). The
determinant of the matrix of the coef�cients of the system is therefore zero. It is
a polynomial G , homogeneous of degree 6 in the coef�cients of the linear forms
li j , which can be explicitly written. If ϕ12, ϕ13, ϕ23 are the quadratic forms given
by the 2 × 2 minors of M, it is possible to verify that the resultant of any two
of them is a multiple of G . Being G = 0, it follows that the polynomials ϕi j �s
have a common linear factor. Hence on a general r ∈ �1 there exists a focal
point.

The inverse implication is similar: if the polynomials ϕi j have a common
linear factor L , such that ϕi j = Lψi j , for all i, j , then the (∗) takes the form
v1ψ23 − v2ψ13 + v3ψ12 = 0: this is an equation in v1, v2, v3 which certainly
admits a non-zero solution. This gives a vector v ∈ K 5/�, hence a normal
direction to r that generates the required plane Mr .



478 EMILIA MEZZETTI

Proposition 3.3. If the equivalent conditions of Proposition 3.2 are satis�ed,
let F be the focal scheme on V . Then F is a point or a curve or a surface. In
the �rst case V is a cone, in the second case F is a fundamental curve for the
lines of �̄ and V is a union of cones with vertex on F, in the third case all lines
of �̄ are tangent to F .

Proof. Let I ⊂ �̄ × P
4 be the incidence correspondence, and let f : I → V

and q : I → �̄ be the projections. The focal scheme on V can be seen as the
branch locus of the map f , i. e. the image of the rami�cation locus F , which is
a surface. So dim F ≤ 2.

The �rst two cases are clear. We have to show that, if F is a surface,
then all lines of �̄ are tangent to V . Let P be a focal point on r and assume
that P is a smooth point for F . Let s ⊂ I be the �bre of q over the point
representing r . The tangent space to I at (P, r) contains the tangent space
to F at (P, r), the line s and the kernel of the differential map d f of f at
(P, r). Since F is smooth at P , this latter space is transversal to T(P,r)F , and
the image of d f is d f (T(P,r)F ) = TPF . But also s is transversal to ker(d f ),
hence r = d f (s) ⊂ TPF .

Remark 3.4.
1. One can prove that, if on each line r of �̄ there is also a second focal

point, possibly coinciding with the �rst one, then the tangent space to V is �xed
along r and �̄ is the family of the �bres of the Gauss map of V (see [13]). In
this case, clearly, only one line of �̄ passes through a general point of V .

2. Also in the last case of Proposition 3.3, i.e. if the focal locus on V is a
surface F and on a general line r of �̄ there is only one simple focus, we can
conclude that only one line of �̄ passes through a general point of V . Indeed,
�rst of all let us exclude that there are two lines r and r � of �̄ which are both
tangent to F at a general point P . Otherwise r and r � are both contained in
TPF and the hyperplanes which are tangent to V along r vary in the pencil
containing the �xed plane Mr , which coincides with TPF in this case. So the
pencil would be the same for r and r � , and every hyperplane in the pencil would
be tangent to V at two points, one on r and the other on r � , which is impossible.
So only one line of �̄ passes through a general focal point on V . But then a
fortiori the same conclusion holds true also for a general non-focal point of V .

We are now able to prove Theorem 0.2 stated in the Introduction.

Proof of Theorem 0.2. Let V = Y ∩ H , where H is a general hyperplane.
Hence V is a hypersurface of P

4 covered by a 2-dimensional family of lines:
this is the situation of Theorem 0.1. If one irreducible component �̄ of the Fano
scheme of lines on V is non-reduced, then it follows from Proposition 3.3 and
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the subsequent Remark 3.4 that V is a cone, or a union of cones with vertices
on a curve C , or a union of lines all tangent to a surface F : in this last case only
one line of �̄ passes through a general point of V . It is easy to check that, in
the �rst two cases, to have such a V as general hyperplane section, Y has to be
a cone over V . In the third case, the lines through a general point of Y form
a surface which intersects the general hyperplane H in one line (Remark 3.4),
so this surface is necessarily a plane. In any event Y contains a 2-dimensional
family of planes, cutting plane curves on X .

Now we assume that all irreducible components �̄ of the Fano scheme of
lines on V are reduced. If V is as in case (i) of Theorem 0.1, i.e. if µ = 1, then
the lines of Y through a general point form a plane, and we are done.

We consider now case (ii): we prove �rst that Y cannot be birationally
�bered by smooth quadric surfaces. Assume, by contradiction, that Y contains
such a family of quadrics and let P be a �xed general point of Y . Then only
one quadric FP of the family passes through P , so the lines contained in Y
and passing through P form a quadric cone QP , the intersection of FP with its
tangent space at P . The linear span P

3
P :=< QP > is the tangent space to FP

at P . We consider the curve CP := X ∩ QP : it is a k-secant curve on the cone
QP , so degCP = 2k and pa(CP ) = (k − 1)2. On the other hand X ∩ P

3
P is

a connected curve of degree d = deg X . If it contains also another curve C �
P

different from CP , then every point of CP ∩C �
P is singular for X ∩P

3
P , so, being

X smooth, P
3
P has to be tangent to X at each point of CP ∩C �

P . But {P3
P}P∈Y is a

family of dimension 4 of 3-spaces and the tangent spaces to X form a family of
dimension 3. Therefore every P

3
P should be tangent to in�nitely many quadrics

of Y , i.e. to all quadrics of Y , which is impossible. So X ∩ P
3
P = CP , d = 2k

and the sectional genus of X is (k−1)2 = ( d
2
−1)2. But this is the Castelnuovo

bound, so every curve section of X with a 3-space is contained in a quadric,
which implies that also X is contained in a quadric hypersurface: this gives the
required contradiction. As a consequence, if V is as in (ii) of Theorem 0.1,
then Y is birationally �bered by quadrics of rank at most 3. So the k-secant
lines of X are necessarily cut by the planes contained in these quadrics.

It remains to analyze the four cases of (iv) in Theorem 0.1, with g = 1.
If V is a projection of a complete intersection of type (2, 2), then also Y is
a projection of a fourfold Z of degree 4 in P

6, complete intersection of two
quadrics. We have the following diagram:

Z ⊂ P6

π ↓

X �→ Y ⊂ P5

where π is the projection from a suitable point P . P /∈ Z , because d = 4,
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hence the singular locus of Y is a threefold D of degree 2, according to the
formula deg D = (d −1)(d −2)/2−g, where d = deg Z and g is the sectional
genus, so D does not contain X . Therefore the restriction of π : π−1(X ) → X
is regular and birational: but X , being smooth, is linearly normal, so π−1(X )

is already contained in a P
5 and the projection is an isomorphism. In this case

deg X < deg Z = 4, but the smooth threefolds of low degree in P5 are all
completely described (see for instance [2]) and this possibility is excluded.

The second possibility for V is being a projection of G(1, 4)∩P6 of degree
5. So Y is a projection from a line � of a fourfold Z of degree 5 in P

7. Arguing
as in the previous case, we get that � ∩ Z = ∅, then either X is contained in
the double locus of Y , which has degree 5, or π−1(X ) is contained in a P

5 and
again deg X < 5. Both possibilities are excluded as before.

The last case is when V is a projection of a threefold of degree 6 and
sectional genus one of P7. If � ∩ Z = ∅, it can be treated in the same way,
observing that in this case the degree of the double locus of Y is 9. So �∩Z �= ∅

and the intersection should contain the whole centre of projection. But then
deg Y = 3.
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