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PROJECTIVELY COHEN-MACAULY SURFACES

OF SMALL DEGREE IN P5

MARINA MANCINI

In this paper we consider the nondegenerate projectively Cohen-Ma-
caulay (p.C.M.) surfaces of small degree in P

5. We determine those of degree
d ≤ 9 and all candidate rational surfaces as p.C.M. surfaces.

Introduction.

The problem of describing smooth embedded surfaces having particular
properties, such as, for example, being projectively normal or projectively
Cohen-Macaulay (p.C.M. for short), has been considered by many authors in
the past (recall that such surface is p.C.M. if its homogeneous coordinate ring is
Cohen-Macaulay).

Our aim in this paper is to determine all the nondegenerate p.C.M. surfaces
of degree d ≤ 9 in P

5
C

= P5.
From our previous work (see [16]), we know that, if g(H ) = g is the

sectional genus of a nondegenerate p.C.M. surface X ⊂ PN , then N =

d − g + 1 + pa − h2(OX (1)) = d − g + 1 + h1(OH (1)), where pa denotes
the arithmetic genus of X , and that for the degree d of X we have the bounds

N − 1 ≤ d ≤

�
N

2

�

+ h1(OH (1)).
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In particular, when pa = 0, we have h1(OH (1)) = pa − h2(OX (1)) = 0,
hence

N − 1 ≤ d = N − g + 1 ≤

�
N

2

�

.

We also recall that the irregularity q(X ) = pg − pa , of any p.C.M. surface
is zero (e.g. see[16]).

So, in P
5, we only have to consider surfaces of degree d ≤ 10+h1(OH (1))

and sectional genus g = d − 4 + h1(OH (1)).

All the nondegenerate p.C.M. surfaces X ⊂ P
5 of degree d ≤ 9 can be

determined. Our results are summarized in Table 1.

TABLE 1. Projectively C.M. surfaces in P
5 of degree ≤ 9

d g pa Structure of X OX (H ) = OX (1)

4 0 0 Veronese Surface

0 0 Rational Normal Scroll

5 1 0 Del Pezzo Surface, X4 OX (3E0 − E1 − . . . − E4 )

6 2 0 Castelnuovo Surface, X7 OX (4E0 − 2E1 − E2 − . . . − E7 )

7 3 0 Bordiga-White Surface, X10 OX (5E0 − 3E1 − E2 − . . . − E10)

3 0 F9
e , e = 2, 3 OX (2C0 + (4 + e) f − E1 − . . . − E9 )

3 0 Veronesean Surface, X9 OX (4E0 − E1 − . . . − E9 )

3 0 X8 OX (6E0 − 2E1 − . . . − 2E7 − E8 )

8 5 1 K3 Surface

4 0 X9 OX (9E0 − 3E1 − . . . − 2E10)

4 0 Bordiga-White Surface, X11 OX (5E0 − 2E1 − 2E2 − E3 − . . . − E11)

4 0 X10 OX (6E0 − 2E1 − . . . − 2E6 − E7 − . . . − E10)

9 5 0 X10 OX (7E0 − 2E1 − . . . − E10)

5 0 X12 OX (6E0 − 2E1 − . . . − 2E5 − E6 − . . . − E12)

5 0 F10
e , 0 ≤ e ≤ 2 OX (4C0 + (2e + 5) f − 2E1 − . . . − 2E7 − E8 − . . . − E10)

6 1 Y1

7 2 Elliptic Surface
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We use the following notations:

−d = degX, g(H )= g sectional genus of X

−Xs : blowing-up of P2 at s generic points

−Fs
e : blowing-up of the rational ruled surface Fe at s generic points

−Ys : blowing-up a K3 surface Y at s generic points.

Since the maximum degree of a rational p.C.M. surface X in P
N is

d =
�

N
2

�
, in order to complete the description of the rational p.C.M. surfaces

in P
5 it remains to consider the case d = 10.
Table 2, in Section 6, shows all the possible candidates as rational p.C.M.

surfaces of degree d = 10; it still an open problem to check if all of them
actually exist and which of them are p.C.M.

I am grateful to Prof. A. Gimigliano for some helpful talks.

1. Background on the p.C.M. embeddings of blowing-ups of P
2 at a �nite

set of distinct points.

Let Z = (P1, . . . , Ps; m1, . . . , ms ) be, with m1 ≥ . . . ≥ ms , the 0-
dimensional subscheme of P

2
C

= P
2 associated to the homogeneous ideal

IZ = p
m1

1 ∩ . . . ∩ pms
s ⊂ C[x0, x1, x2], where each pi is a homogeneous prime

ideal which corresponds to a point Pi of P
2, i = 1, . . . , s .

If Xs is the blowing-up P
2 at the distinct points P1, . . . , Ps of the support

of Z , we denote by E1, . . . , Es the divisor classes on Xs which contain the
exceptional divisor and by E0 the divisor class on Xs of the strict transform of
generic line of P2. It is well known that Pic Xs

∼= Zs+1 is freely generated by
E0, E1, . . . , Es and that, if C is a plane curve of degree t with a singularity at
Pi of multiplicity= mi , i = 1, . . . , s , then the strict transform of C on Xs is an
effective divisor in the divisor class of t E0 −m1E1 − . . .−ms Es (e.g. see [11]).

Now, let HZ (t) be the Hilbert function of Z ; let σ (Z ) = min{t/�HZ (t) =

0}, where �HZ(t) = HZ (t)− HZ (t −1) is the �rst difference of HZ (t), then we
have:

σ (Z ) − 1 = τ (Z ) = min{t/h0(IZ (t)) · h1(IZ (t)) = 0},

where IZ ⊆ OP2 denotes the ideal sheaf of Z . Namely, τ (Z ) is the smallest
integer t for which the linear system of all the plane curves of degree t passing
through each Pi, i = 1, . . . , s , with multiplicity al least mi is regular (e.g. see
[7]).

If Dt = t E0 − m1E1 − . . . − ms Es is a divisor on Xs associated to the
scheme Z ⊂ P2, then we have the following results (see [6]):
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Proposition 1.1. Dt is very ample on Xs for every t ≥ σ (Z ) if, and only if, no
line of P2 has intersection of degree ≥ σ (Z ) with Z .

Proposition 1.2. The very ample linear system |Dt | embeds Xs as a projec-
tively Cohen-Macaulay surface for every t ≥ σ (Z ).

We also know (e.g. see [16]) that a necessary condition so that |Dt | embeds
Xs as a projectively Cohen-Macaulay surface is that h1(OXs

(Dt )) = 0 and so
that t ≥ τ (Z ).

When Dt is very ample, we denote by Vt ,Z the image of the embedding
ϕt ,Z : Xs → PN , where N + 1 = h0(OXs

(Dt )) =
�

t+2
2

�
− degZ (e.g. see[6]),

which is determined by |Dt | on Xs .
On the homogeneous ideal of the surface Vt ,Z ⊆ PN know what follows:

Proposition 1.3. (See [6]). Let t ≥ σ (Z ) + 1, then the homogeneous ideal of
Vt ,Z ⊆ PN is generated by forms of degree ≤ 3.

Proposition 1.4. (See [5]). Let t ≥ σ (Z ) + 1, then the homogeneous ideal of
Vt ,Z ⊆ PN is generated by quadrics.

On the de�ning ideal of certain surfaces Vt ,Z ⊆ PN we have more detailed
information, namely we know that their generators can be given as minors of
suitable matrices. In particular:

a) t = d, Z = (P1, . . . , Ps), s =
�

d+1
2

�
: for every d ≥ 3, the surface Vd,Z is

called a White Surface in P
d . It has degree

�
d
2

�
, sectional genus

�
d−1
2

�
and

its ideal is generated by the 3× 3 minors of a 3× d matrix of linear forms
(see [8]);

b) t = d, Z = (P1, . . . , Ps), s =
�

d+1
2

�
: for every d ≥ 3, the surface Vd+1,Z

is called a Room Surface in P
2d+2. It has degree

�
d+2
2

�
and sectional genus

�
d
2

�
. Its ideal is generated by the 2 × 2 minors of a 3 × (d + 1) matrix of

linear forms (see [5]);

c) t = d +1, Z = (P1, . . . , Ps), s =
�

d+1
2

�
+k, with 0 < k < d +1: for every

d ≥ 3, the surface Vd+1,Z is called a Veronesean Surface in P2d−k+2 . It has
degree

�
d+2
2

�
− k and sectional genus

�
d
2

�
. Its ideal is given as follows: its

generators are the entries of the matrix A · B , the 2 × 2 minors of B and
the 3× d minors of A, where B and A are two matrices of linear forms of
order, respectively, 3 × (d − k + 1) and k × 3 (see [10]);

d) t = d, Z = (P1, . . . , Ps; d − 2, 1, . . . , 1), s = 2d : for every d ≥ 4, the
surface Vd,Z is called a Bordiga-White Surface in Pd . It has degree 2d −3,
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sectional genus d − 2 and its ideal is generated by the 2 × 2 minors of a
matrix of type �

y1,1 Y1,2 . . . Y1,d−2 Q1

y2,1 Y2,2 . . . Y2,d−2 Q2

�

,

where the Ya,b are linear forms, while Q1 and Q2 are quadratic forms (see
[6]).

2. Some results on rational p.C.M. surfaces.

Let X be a rational p.C.M. surface in PN of degree d , with n − 1 ≤ d ≤�
N
2

�
; then X has sectional genus g = d + 1− N + h1(OH (1)) = d + 1− N (see

[16]). We recall that, in terms of the coomology of the ideal sheaf of X, IX , the
fact that X is p.C.M. in P

N can be expressed by the condition hi (IX (m)) = 0,
for i = 1, 2 and for all m ≥ 0.

In our previous work (see [16]) we showed that a rational surface X ⊆ P
N

of degree
�

N
2

�
, sectional genus

�
N−1
2

�
and with h1(OX (1)) = 0 is p.C.M. if, and

only if, it is projectively normal.

Now we want to extend this result, namely we have:

Proposition 2.1. Let X ⊆ PN be a smooth surface of degree d = N + g − 1,
sectional genus g and irregularity q = h1(OX = 0. If h1(OX (1)) = 0, then X
is p.C.M. if, and only if, it is projectively normal.

Proof. Let us suppose that X ⊆ PN is projectively normal, hence that
h1(IX (m)) = 0, for all m ≥ 0.

Since hi (OPn (m)) = 0, for all 0 < i < N and m ≥ 0, from the exact
sequence

0 → IX (m) → OPN (m) → OX (m) → 0

we deduce that h1(OX (m)) = h2(IX (m)). We want to show that h1(OX (m)) =

0, ∀m ≥ 0. Consider the exact sequence

0 → OX (m − 1) → OX (m) → OH (m) → 0,

where H is a smooth hyperplane section of X .
Since md = m(N + g − 1) > 2g − 2, ∀m ≥ 2, we have h1(OH (m)) =

0, ∀m ≥ 2. Thus, by the above exact sequence, h1(OX (m − 1)) = 0 implies
h1(OX (m)) = 0 for all m ≥ 2, and so, since h1(OX (1)) = 0 by hypothesis, we
get what wanted. �
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Proposition 2.2. The homogeneous ideal of a rational p.C.M. surface X ⊆ PN

can always be generated by forms of degree ≤ 3 and h0(IX (2)) �= 0 except
when X has maximum degree d =

�
N
2

�
.

Proof. From [16] we know that the ideal IX of a rational p.C.M. surface
X ⊆ PN can always be generated by forms of degree ≤ 3, and tha only
generators are cubics in the case in which X has maximum degree

�
N
2

�
. So it

remains to prove that, when X has not maximum degree
�

N
2

�
, IX always contains

quadratic forms.

Let H be a smooth hyperplane section of X and consider the exact
sequence

0 → OX (1) → OX (2) → OH (2) → 0.

Since

h0(OX (2)) = h0(OX (1)) + h0(OX (2)) = N + 1 + 2d + 1− g = 3N + g,

we have:

0 = h1(IX (2)) = h0(IX (2)) − h0(OPN (2)) + h0(OX (2)) =

= h0(IX (2)) −

�
N − 1

2

�

+ g.

Clearly, h0(IX (2)) = 0 only when g =
�

N−1
2

�
, and this terminates the

proof. �

3. Projectively p.C.M. surfaces of degree ≤ 8.

THe smooth surfaces of degree d ≤ 8 in P
5 have been completely

described (see [12], [4]). In this section we determine which of them are p.C.M.
(Table 1 in the introduction summarizes our results).

3.1. Sur f aces of degree d = 4. In P
5 the p.C.M. surfaces of degree d = 4

are either Veronese Surfaces or rational scrolls, which are well known to be
p.C.M.

3.2. Sur f aces of degree d = 5. The only p.C.M. surfaces of degree 5 in P5

are the Del Pezzo Surfaces.
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3.3. Sur f aces of degree d = 6. The possibilities for a smooth surface of
degree 6 in P5 are described in [12] and are the following:

(i) An elliptic, scroll white e = 0 and g = 1;

(ii) A Castelnuovo Surface, with g = 2, de�ned by the embedding of X7 in P
5

via the very ample linear system |Dt | = |4E0 − 2E1 − E2 − . . . − E7|.

Since 5 = N �= d − g + 1 + h1(OH (1)) = 6 + H 1(OH (1)) (see [16]), the
unique p.C.M. surface of degree d = 6 in P

5 is the Castelnuovo Surface (see
also [12]).

3.4. Sur f aces of degree d = 7. The smooth surfaces of degree d = 7 in P5

are classi�ed by Ionescu in [12] and they are described as follows.

If X ⊆ P
5 is a smooth surface of degree d = 7, then it has sectional genus

g(H ) = 3 and it is one of the following rational surfaces:

(i) A blowing-up π of Fe, e = 0, 1, 2, 3, with center 9 points; H = π∗(He)−
E1 − . . . − E9, where He = 2C0 + (4 + e) f ;

(ii) A blowing-up π of P2 with center 9 points, H = π∗(4L)− E1 − . . . − E9;

(iii) A blowing-up of a point on a Del Pezzo double plane S, i.e. on a double
covering of P2 rami�ed along a smooth quartic, H = π∗(Hs) − E .

The surface X ⊆ P
5 of the case 3.4 (ii) is a p.C.M. surface, called

(Veronesean Surface (see Section 1). Hence we have to consider the surfaces
of the cases (i) and (iii).

A) The case 3.4 (i).
Let us denote by F

9
e the blowing-up of Fe at 9 generic points and let us consider

the exact sequence

0 → OX → OX (1) → OX (1) → 0.

By [1], Theorem 4.1, the smooth rational surface X ⊆ P5 is projectively
normal. Moreover, since d = 7 > 2g(H ) − 2 = 4, we have h1(OH (1)) = 0
and so h1(OX (1)) = 0. By Proposition 2.1, this is enough to conclude that X is
p.C.M. in P

5.

In particular, when e = 0, 1, another description of the surface X can be
given, using a plane model, as follows.

a) e = 0: F
9
0 is isomorphic to X10, the blowing-up of P

2 at 10 generic points.
In fact, F0 is isomorphic to the Quadric Surface Q ⊆ P3 and Q is obtained

from X2 via the complete (not very ample) linear system |2E0 − E1 − E2|.
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Since the line E0 − E1 − E2 on X2 is contracted to a point P ∈ Q , we have
that to blow-up Q at the point P and at other 8 generic points is equivalent to
blow-up P

2 at 10 generic points, as we said.
Taking C0 = E0 − E1 and f = E0 − E2, to the very ample divisor

H0 = 2C0 + 4 f − E1 − . . . − E9 on F
9
0 corresponds the very ample divisor

D5 = 2(E0 − E1 + 4(E0 − E2) − (E0 − E1 − E2) − E3 − . . . − E10 =

5E0 − E1 − 3E2 − E3 − . . . − E10 on X10.
The embedding of X10 in P5 via the complete linear system |D5| is a

Bordiga-White Surface (see Section 1).

b) e = 1: Since F1 is isomorphic to X1, we have that F
9
1 is isomorphic to X10.

Let us determine the very ample divisor Dt = t E0−mE1 − E2− . . .− E10

on X10 which corresponds to the divisor 2C0 + 5 f − E1 − . . . − E9 on F
9
1. The

integers t, m > 0 are such that

� �
t+2
2

�
−

�
m+1
2

�
− 10 = 5

t2 − m2 − 9 = 7,

from which we get:

�
t2 + 3t + 2 − m2 − m = 30
t2 = m2 + 16.

Solving the equations we �nd t = 5 and m = 3.
Hence Dt = D5 = 5E0 −3E1 − E2 − . . .− E10, which is the same divisor

we found in a).

B) The case 3.4 (iii).
A Del Pezzo double plane S is de�ned by the embedding of the blowing-up X7

of P
2 at 7 generic points via the very ample linear system |6E0 − 2E1 − . . . −

2E7|; it is a smooth surface of degree 8 in P6.
Hence our surface X is determined by the very ample linear system

|6E0 − 2E1 − . . . − 2E7 − Es| on X8 (see also [15]).
From the work of Alzati, Bertolini and Besana (see[1]) we know that the

surface X is projectively normal in P5 thus, since h1(OX (6E0 − 2E1 − . . . −

2E7 − E8)) = 0, X is p.C.M. in P
5, by Proposition 2.1.

We summarize the above results as follows:

Proposition 3.1. If X ⊆ P5 is a p.C.M. surface of degree d = 7, then it has
sectional genus g = 3 and it is one of the following rational surfaces:
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1) A Bordiga-White Surface, obtained embedding X10 in P5 via the linear
system |5E0 − 3E1 − E2 − . . . − E10|;

2) The embedding of F
9
e, e = 2, 3, in P

5 via the linear system

|2C0 + (4 + e) f − E1 − . . . − E9|;

3) A Veronesean Surface, de�ned by the embedding of X9 in P5 via the linear
system |4E0 − E1 − . . . − E9|;

4) A blowing-up of a point on a Del Pezzo double plane S, i.e. X8 embedded
in P5 via the linear system |6E0 − 2E1 − . . . − 2E7 − E8|.

3.5. Sur f aces of degree d = 8. Since a p.C.M. surface X ⊆ P5 of degree
d = 8 has sectional genus g = 4+h1(OH (1)) and since g ≤ 5, by Castelnuovo�s
bound, it is enough to consider the smooth surfaces of sectional genus g = 4, 5.

Their classi�cation is known (see[4], [14] and [15]) and it is the following:

If X ⊆ P5 is a smooth surface of degree d = 8 and sectional genus 4 ≤ g ≤ 5,
then it is either a K3 Surface of sectional genus g = 5 or it is one of the
following rational surfaces of sectional genus g = 4:

(i) A blowing-up π of the quadric surface Q ⊆ P3 with center 10 generic
points, H = π∗(3HQ) − E1 − . . . − E10;

(ii) A blowing-up π of a cubic surface S ⊆ P
3 with center 4 generic points,

H = π∗(2HS) − E1 − . . . − E4;

(iii) A blowing-up π of a Hirzebruch surface Fe , e ≤ 4, with center 12 generic
points, H = π∗(2C0 + (5 + e) f ) − E1 − . . . − E12.

K3 Surfaces in P5 of degree d = 8 and of sectional genus g = 5 are well
know and are p.C.M. Hence it remains to prove that the surfaces X ⊆ P

5 in
cases (i), . . . , (iii) are p.C.M.

A) The case 3.5(i).
We recall that the quadric surface Q ⊆ P

3 can be de�ned as the image of the
morphism X2 → P3, where X2 is the blowing-up P2 at 2 points, determined by
the complete linear system |2E0 − E1 − E2| (see 3.4 (i)a)).

Thus to blow-up Q at 10 generic points is equivalent to blow-up P2 at 11
generic points.

So HQ = 2E0 − E1 − E2, while H = π∗(3HQ) − (E0 − E1 − E2 −

E3 − . . . − E11 = (6E0 − 3E1 − 3E2) − (E0 − E1 − E2) − E3 − . . . − E11 =

5E0−2E1 −2E2− E3− . . .− E11 is a very ample divisor on X11 which de�nes
a Bordiga-White Surface in P

5 which is p.C.M. (see Section 1).
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B) The case 3.5(ii).
The cubic surface S ⊆ P3 is de�ned by the embedding of X6 in P3 via the very
ample linear system |3E0 − E1 − . . . − E6|.

Thus a smooth hyperplane section of the surface X ⊆ P5 is a divisor of type
H = π∗(2HS)− E7 − . . . − E10 = 6E0 − 2E1 − . . .− 2E6 − E7 − . . .− E10 =

6E0 − E , where E = 2E1 + . . . + 2E6 + E7 + . . . + E10.
Hence we can denote by X10 the blowing-up of the cubic surface S ⊆ P

3

at 4 generic points.
Since h1(OX (1)) = h1(OX10

(6E0 − E)) = 0 and the surface X is
projectively normal in P5 (see [1]), then X is p.C.M., by Proposition 2.1.

C) The case 3.5(iii).
The embedding X of F

12
e , the blowing-up of Fe at 12 generic points, in P

5

via the very ample linear system |2C0 + (5+e) f − E1 − . . .− E12|, with e ≤ 4,
is not projectively normal, by [1; Theorem 5.4]. Thus, clearly, it is not p.C.M.
too.

The following proposition summarizes what we have seen above.

Proposition 3.2. X ⊆ P5 is a p.C.M. surface of degree d = 8, then X is either
a K3 Surface of sectional genus g = 5 or a rational surface of sectional genus
g = 4. In this case X is one of the following:

1) A Bordiga-White Surface, de�ned by the embedding of X11 in P5 via the
linear system |5E0 − 2E1 − 2E2 − E3 − . . . − E11|;

2) The embedding of X10, the blowing-up a cubic surface S ⊆ P
3 at 4 generic

points, in P5 via the linear system

|6E0 − 2E1 − . . . − 2E6 − E7 − . . . − E10|.

4. Rational p.C.M. surfaces of degree 9.

In order to complete the description of the rational p.C.M. surfaces in P5,
it would remain to consider the rational surfaces of degree d = 9, 10. Here we
consider the case d = 9.

Let X be a rational p.C.M. surface in P
5 of degree d = 9, then its sectional

genus has to be g(H ) = g = 5 (see the introduction).
On the other hand, if X ⊆ P

5 ia a smooth rational surface of degree d = 9
and sectional genus g = 5, consider the exact sequence:

0 → OX → OX (1) → OX (1) → 0.
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Since d = 9 > 2g − 2 = 8, we have h1(OH (1)) = 0, hence h1(OH (1)) = 0.
This implies, by Proposition 2.1, that the surface X ⊆ P5 is p.C.M. if, and only
if, it is projectively normal.

On the projective normality of smooth surfaces of degree 9 and sectional
genus 5 in P5 we have the following result:

Theorem 4.1. (See [2; Theorem 1.1]). Let S be a smooth surface embedded
by the complete linear system associated with a very ample line bundle L as a
surface of degree d = 9 and sectional genus g = 5 in P5. Assume (S, L) is not a
scroll over a curve. Then (S, L) fails to be projectively normal if and only if it is a
rational conic bundle such as (S, L) = (F15

e , 2C0+(6+e) f −E1−. . .−E15), 0 ≤

e ≤ 5.

Note that, if (S, L) ia a scroll over a curve, in order to be p.C.M. it must be
a rational scroll in P5 (see [16]). But there exist no values of b > e > 0 such
that the very ample linear system |C0 + bf | determines an embedding of Fe in
PN = P5 of degree d = 9.

In fact d = −e + 2b = 9, while N = 2(b + 1) − e − 1 = 5, from which
we get the equations −e + 2b = 9 and −e + 2b = 4, which give no solutions.

Thus any smooth rational surface X ⊆ P5 with d = 9 and g = 5, different
from a rational conic bundle as in Theorem 4.1, is projectively normal and so
p.C.M.. Such surfaces have been classi�ed by E. L. Livorni in [15] and we list
them as follows:

Let X be a smooth rational surface and L a very ample line bundle on X such
that L2 = 9, h0(L) = 6, g(X, L) = g = 5. Then X is one of the following:

(i) (X10, 7E0 − 2E1 − . . . − 2E10);

(ii) (X12, 6E0 − 2E1 − . . . − 2E5 − E6 − . . . − E12);

(iii) (F15
e , 2C0 + (6 + e) f − E1 . . . − E15), 0 ≤ e ≤ 5;

(iv) (F10
e , 4C0 + (2e + 5) f − 2E1 . . . − 2E7 − E8 − . . . − E10), 0 ≤ e ≤ 2;

(v) (F12
1 , 3C0 + 5 f − E1 . . . − E12).

It has been shown that there exist no surfaces as in (v) (e.g. see [2]), while
Theorem 4.1 gives us that only case (iii) is not p.C.M.. So we can conclude that
the only rational p.C.M. surfaces in P

5 of degree d = 9 are the ones in Table 1,
if they exist. In order to check that they actually do, see [15] for cases (i), (iv)
and [3] for case (ii).
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5. Nonrational p.C.M. surfaces of degree 9.

Suppose that X is a nonrational p.C.M. surface in P5 of degree d = 9, then
g = 5 + h1(OH (1)) ≤ 7.

All the smooth surfaces of sectional genus g ≤ 7 whose minimal model
is a surface with nonnegative Kodaira dimension have been classi�ed in [15],
from where we have the following:

Fact. Let X ⊆ P5 be a nonrational smooth surface of degree d = 9, sectional
genus 5 ≤ g ≤ 7, arithmetic genus pa and geometric genus pg . Then we have
the following cases:

(i) g = 6, q = h1(OX ) = 0, pa = pg = 1, X is the blowing-up at one point
of a K3 Surface;

(ii) g = 7, q = h1(OX ) = 0, pa = pg = 2, X is an Elliptic Surface.

By [2], Theorem 1.1], the surfaces X listed above are both projectively
normal.

Proposition 5.1. Let d, g ∈ Z be such that d > g−1. Let X ⊆ P
N be a smooth

surface of degree d = N + g − 1 − h1(OH (1)), sectional genus g(H ) = g and
irregularity q = h1(OX ) = 0. If h1(OX (1)) = 0, then X is p.C.M. if, and only
if it is projectively normal.

Proof. Let X ⊆ P
N be projectively normal. We want to prove that, when

h1(OX (1)) = 0, the surface X is P.C.M., i.e. that h2(IX (m)) = h1(OX (m)) = 0,
for all m ≥ 2.

Applying the Riemann-Roch Theorem on the smooth hyperplane section
H of X , since d > g − 1, by hypothesis, we get

N − h1(OH (1)) = h0(OH (1)) − h1(OH (1)) = d − g + 1 > 0,

hence N > h1(OH (1)). So we have:

md = m(N +g −1−h1(OH (1))) = m(N −h1(OH (1)))+m(g −1) > 2(g −1),

∀m ≥ 2, from which we deduce that h1(OH (m)) = 0, ∀m ≥ 2.

Consider the exact sequence

0 → OX (m − 1) → OX (m) → OH (m) → 0.

Since h1(OX (1)) = 0 and h1(OH (m)) = 0, ∀m ≥ 2, we have that
h1(OX (m − 1)) = 0 implies h1(OX (m)) = 0, ∀m ≥ 2, and this is what we
required. �

Now, let us consider the two projectively normal surfaces X ⊆ P5 quoted
in the Fact above. Since d = 9 > g − 1, by Proposition 5.1, the surfaces X will
also be p.C.M. in P5 if h1(OX (H )) = h1(OX (1)) = 0.

This is what we show in the following proposition.
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Proposition 5.2. A nonrational smooth surface X ⊆ P5 of degree 9 is p.C.M.

Proof. Let X ⊆ P
5 be as above.

Consider the exact sequence

0 → OX → OX (1) → OH (1) → 0,

where H is a smooth hyperplane section of X of genus g.
Since h1(OX ) = 0, h1(OH (1)) = h0(OH (1)) = d − 1 + g = g − 5 and, in

our two cases, g − 5 = pg = h2(OX ), we have h1(OX (1)) = h2(OX (1)).
By the Serre Duality Theorem, h2(OX (1)) = h2(OX (H )) = 0 if, and only

if, h0(OX (KX − H )) = 0.

Consider (KX − H ).H = KX .H − H 2 = 2g − 2− 2d = 2g − 20, which
is < 0 when g = 6 or 7, hence h0(OX (KX − H )) = 0.

So h1(OX (1)) = h2(OX (1)) = 0 and, by what we have seen above, this is
enough to conclude that the surfaces X ⊆ P5 are p.C.M. �

6. Rational p.C.M. surfaces of degree 10.

In [16] we showed that the maximum degree of a rational p.C.M. surface
X ⊆ P

N is d =
�

N
2

�
.

There are known rational p.C.M. surfaces which attain the maximum
degree, namely the White Surfaces (see Section 1).

In P5 the candidate rational surfaces as p.C.M. surfaces of maximum
degree d = 10 are described in the following table (see [15] for a classi�cation
of rational surfaces of degree 10).

The existence of the surface is known in case (vi) (White Surface) and in
case (v), see [15], while in cases (i), (iii), (vii) and (viii) we can consider the
following theorem.

Theorem 6.1. (See [3], Theorem 2.1]). Let P1, . . . , Pr , R1, . . . , Rn be general
points on P

2, with r ≥ 1. De�ne Xr,n as the blowing-up of P
2 along these

points, πr,n the corresponding projection map, and E1, . . . , Er , F1, . . . , Fn the
exceptional divisor corresponding resp. to the points P1, . . . , Pr , R1, . . . , Rn .
Let l1, . . . , lr be integers, with l1 ≥ . . . ≥ lr ≥ 2. Suppose m, r and li are
such that there exists a �good� curve of degree m − 1; and either l1 ≤ 3 and
4m ≥ l1 + l2 + . . . + lr + 9 or l1 > 3 and 4m ≥ 2l1 + l2 + . . . + lr + 10. Then
the sheaf L = π∗

r,n (OP2 (m)) ⊗ (−l1E1 − . . . − lr Er − F1 − . . . − Fn) is very

ample on Xr,n for all n ≤ m(m+3)−l1(l1+1)−...−lr (lr +1)
2

− 5.
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TABLE 2. Rational p.C.M. surfaces in P5 of degree 10

(Xs, Dt ) − (Fs
e , D)

(i) (X14, 6E0 − 2E1 − . . . − 2E4 − E5 − . . . − E14)

(ii) (X12, 9E0 − 3E1 − . . . − 3E7 − 2E8 − E9 − . . . − E12)

(iii) (X12, 7E0 − 2E1 − . . . − 2E9 − E10 − . . . − E12)

(iv) (X11, 9E0 − 3E1 − . . . − 3E6 − 2E7 − . . . − 2E10 − E11)

(v) (X10, 10E0 − 3E1 − . . . − 3E10)

(vi) (X15, 5E0 − E1 − . . . − E15)

(vii) (X15, 6E0 − 3E1 − 2E2 − E3 − . . . − E15)(equiv. F14
0 , 3C0 + 4 f − E1 − . . . − E14)

(viii) (X11, 8E0 − 3E1 − 3E2 − 2E3 − . . . − 2E11)(equiv. F10
0 , 5C0 + 5 f − 2E1 − .. − 2E10)

(ix) (F14
2 , 3C0 + 7 f − E1 − . . . − E14)

(x) (F12
e , 4C0 + (2e + 5) f − 2E1 − . . . − 2E6 − E7 − . . . − E12; 0 ≤ e ≤ 2)

(xi) (F11
e , 4C0 + (2e + 6) f − 2E1 − . . . − 2E9 − E10 − E11; 0 ≤ e ≤ 2)

By Theorem 6.1, in order to have that Dt is very ample on Xs it is enough
to show that there exists a �good� plane curve of degree (t − 1), i.e. a curve
having, as its only singularities, r multiple points at the P �

i s, i = 1, . . . , r , of
multiplicity= li , respectively, and such that its strict transform on Xr is smooth.

Since there are plane curves of degree 5 and 6 with, respectively, 4 and 9
nodes (e.g. see[9; Proposition 1.1]) and there are plane curves of degree 5 (resp.
7) with 1 triple point and 1 node (resp. 2 triple points and 9 nodes) (e.g. see
Section 2 in [17]), we deduce that the surfaces in cases (i), (iii), (vii) and (viii)
really exist, as required.

The problem of the existence of the surfaces in cases (ii), (iv), (ix), (x), (xi)
remains open.

Except for the White Surface (case (vi)), it is still unknown if the surfaces
in Table 2 are really p.C.M.

We recall that (see [16; Proposition 3.5]) a suf�cient condition to have that
the surfaces in Table 2 are p.C.M. is that their ideal contains no quadric.
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