PROJECTIVELY COHEN-MACAULY SURFACES
 OF SMALL DEGREE IN \mathbb{P}^{5}

MARINA MANCINI

In this paper we consider the nondegenerate projectively Cohen-Macaulay (p.C.M.) surfaces of small degree in \mathbb{P}^{5}. We determine those of degree $d \leq 9$ and all candidate rational surfaces as p.C.M. surfaces.

Introduction.

The problem of describing smooth embedded surfaces having particular properties, such as, for example, being projectively normal or projectively Cohen-Macaulay (p.C.M. for short), has been considered by many authors in the past (recall that such surface is p.C.M. if its homogeneous coordinate ring is Cohen-Macaulay).

Our aim in this paper is to determine all the nondegenerate p.C.M. surfaces of degree $d \leq 9$ in $\mathbb{P}_{\mathbb{C}}^{5}=\mathbb{P}^{5}$.

From our previous work (see [16]), we know that, if $g(H)=g$ is the sectional genus of a nondegenerate p.C.M. surface $X \subset \mathbb{P}^{N}$, then $N=$ $d-g+1+p_{a}-h^{2}\left(\mathcal{O}_{X}(1)\right)=d-g+1+h^{1}\left(\mathcal{O}_{H}(1)\right)$, where p_{a} denotes the arithmetic genus of X, and that for the degree d of X we have the bounds

$$
N-1 \leq d \leq\binom{ N}{2}+h^{1}\left(\mathcal{O}_{H}(1)\right)
$$

Entrato in Redazione il 28 settembre 2000.

In particular, when $p_{a}=0$, we have $h^{1}\left(\mathcal{O}_{H}(1)\right)=p_{a}-h^{2}\left(\mathcal{O}_{X}(1)\right)=0$, hence

$$
N-1 \leq d=N-g+1 \leq\binom{ N}{2}
$$

We also recall that the irregularity $q(X)=p_{g}-p_{a}$, of any p.C.M. surface is zero (e.g. see[16]).

So, in \mathbb{P}^{5}, we only have to consider surfaces of degree $d \leq 10+h^{1}\left(\mathcal{O}_{H}(1)\right)$ and sectional genus $g=d-4+h^{1}\left(\mathcal{O}_{H}(1)\right)$.

All the nondegenerate p.C.M. surfaces $X \subset \mathbb{P}^{5}$ of degree $d \leq 9$ can be determined. Our results are summarized in Table 1.

TABLE 1. Projectively C.M. surfaces in \mathbb{P}^{5} of degree ≤ 9

d	$g p_{a}$	Structure of X	$\mathcal{O}_{X}(H)=\mathcal{O}_{X}(1)$
4	00	Veronese Surface	
	00	Rational Normal Scroll	
5	10	Del Pezzo Surface, X_{4}	$\mathcal{O}_{X}\left(3 E_{0}-E_{1}-\ldots-E_{4}\right)$
6	20	Castelnuovo Surface, X_{7}	$\mathcal{O}_{X}\left(4 E_{0}-2 E_{1}-E_{2}-\ldots-E_{7}\right)$
7	30	Bordiga-White Surface, X_{10}	$\mathcal{O}_{X}\left(5 E_{0}-3 E_{1}-E_{2}-\ldots-E_{10}\right)$
	30	$\mathbb{F}_{e}^{9}, e=2,3$	$\mathcal{O}_{X}\left(2 C_{0}+(4+e) f-E_{1}-\ldots-E_{9}\right)$
	30	Veronesean Surface, X_{9}	$\mathcal{O}_{X}\left(4 E_{0}-E_{1}-\ldots-E_{9}\right)$
	30	X_{8}	$\mathcal{O}_{X}\left(6 E_{0}-2 E_{1}-\ldots-2 E_{7}-E_{8}\right)$
8	51	K3 Surface	
	40	X_{9}	$\mathcal{O}_{X}\left(9 E_{0}-3 E_{1}-\ldots-2 E_{10}\right)$
	40	Bordiga-White Surface, X_{11}	$\mathcal{O}_{X}\left(5 E_{0}-2 E_{1}-2 E_{2}-E_{3}-\ldots-E_{11}\right)$
	40	X_{10}	$\mathcal{O}_{X}\left(6 E_{0}-2 E_{1}-\ldots-2 E_{6}-E_{7}-\ldots-E_{10}\right)$
9	50	X_{10}	$\mathcal{O}_{X}\left(7 E_{0}-2 E_{1}-\ldots-E_{10}\right)$
	50	X_{12}	$\mathcal{O}_{X}\left(6 E_{0}-2 E_{1}-\ldots-2 E_{5}-E_{6}-\ldots-E_{12}\right)$
	50	$\mathbb{F}_{e}^{10}, 0 \leq e \leq 2 \mathcal{O}_{X}\left(4 C_{0}+(2 e+5) f-2 E_{1}-\ldots-2 E_{7}-E_{8}-\ldots-E_{10}\right)$	
	61	Y_{1}	
	72	Elliptic Surface	

We use the following notations:
$-d=\operatorname{deg} X, g(H)=g$ sectional genus of X
$-X_{s}$: blowing-up of \mathbb{P}^{2} at s generic points
$-\mathbb{F}_{e}^{s}$: blowing-up of the rational ruled surface \mathbb{F}_{e} at s generic points
$-Y_{s}$: blowing-up a K3 surface Y at s generic points.
Since the maximum degree of a rational p.C.M. surface X in \mathbb{P}^{N} is $d=\binom{N}{2}$, in order to complete the description of the rational p.C.M. surfaces in \mathbb{P}^{5} it remains to consider the case $d=10$.

Table 2, in Section 6, shows all the possible candidates as rational p.C.M. surfaces of degree $d=10$; it still an open problem to check if all of them actually exist and which of them are p.C.M.

I am grateful to Prof. A. Gimigliano for some helpful talks.

1. Background on the p.C.M. embeddings of blowing-ups of \mathbb{P}^{2} at a finite set of distinct points.

Let $Z=\left(P_{1}, \ldots, P_{s} ; m_{1}, \ldots, m_{s}\right)$ be, with $m_{1} \geq \ldots \geq m_{s}$, the 0 dimensional subscheme of $\mathbb{P}_{\mathbb{C}}^{2}=\mathbb{P}^{2}$ associated to the homogeneous ideal $I_{Z}=p_{1}^{m_{1}} \cap \ldots \cap p_{s}^{m_{s}} \subset \mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$, where each p_{i} is a homogeneous prime ideal which corresponds to a point P_{i} of $\mathbb{P}^{2}, i=1, \ldots, s$.

If X_{s} is the blowing-up \mathbb{P}^{2} at the distinct points P_{1}, \ldots, P_{s} of the support of Z, we denote by E_{1}, \ldots, E_{s} the divisor classes on X_{s} which contain the exceptional divisor and by E_{0} the divisor class on X_{s} of the strict transform of generic line of \mathbb{P}^{2}. It is well known that Pic $X_{s} \cong \mathbb{Z}^{s+1}$ is freely generated by $E_{0}, E_{1}, \ldots, E_{s}$ and that, if C is a plane curve of degree t with a singularity at P_{i} of multiplicity $=m_{i}, i=1, \ldots, s$, then the strict transform of C on X_{s} is an effective divisor in the divisor class of $t E_{0}-m_{1} E_{1}-\ldots-m_{s} E_{s}$ (e.g. see [11]).

Now, let $H_{Z}(t)$ be the Hilbert function of Z; let $\sigma(Z)=\min \left\{t / \Delta H_{Z}(t)=\right.$ $0\}$, where $\Delta H_{Z}(t)=H_{Z}(t)-H_{Z}(t-1)$ is the first difference of $H_{Z}(t)$, then we have:

$$
\sigma(Z)-1=\tau(Z)=\min \left\{t / h^{0}\left(\tau_{Z}(t)\right) \cdot h^{1}\left(\chi_{Z}(t)\right)=0\right\}
$$

where $\tau_{Z} \subseteq \mathcal{O}_{\mathbb{P}^{2}}$ denotes the ideal sheaf of Z. Namely, $\tau(Z)$ is the smallest integer t for which the linear system of all the plane curves of degree t passing through each $P_{i}, i=1, \ldots, s$, with multiplicity al least m_{i} is regular (e.g. see [7]).

If $D_{t}=t E_{0}-m_{1} E_{1}-\ldots-m_{s} E_{s}$ is a divisor on X_{s} associated to the scheme $Z \subset \mathbb{P}^{2}$, then we have the following results (see [6]):

Proposition 1.1. D_{t} is very ample on X_{s} for every $t \geq \sigma(Z)$ if, and only if, no line of \mathbb{P}^{2} has intersection of degree $\geq \sigma(Z)$ with Z.

Proposition 1.2. The very ample linear system $\left|D_{t}\right|$ embeds X_{s} as a projectively Cohen-Macaulay surface for every $t \geq \sigma(Z)$.

We also know (e.g. see [16]) that a necessary condition so that $\left|D_{t}\right|$ embeds X_{s} as a projectively Cohen-Macaulay surface is that $h^{1}\left(\mathcal{O}_{X_{s}}\left(D_{t}\right)\right)=0$ and so that $t \geq \tau(Z)$.

When D_{t} is very ample, we denote by $V_{t, Z}$ the image of the embedding $\varphi_{t, Z}: X_{s} \rightarrow \mathbb{P}^{N}$, where $N+1=h^{0}\left(\mathcal{O}_{X_{s}}\left(D_{t}\right)\right)=\binom{t+2}{2}-\operatorname{deg} Z$ (e.g. see[6]), which is determined by $\left|D_{t}\right|$ on X_{s}.

On the homogeneous ideal of the surface $V_{t, Z} \subseteq \mathbb{P}^{N}$ know what follows:
Proposition 1.3. (See [6]). Let $t \geq \sigma(Z)+1$, then the homogeneous ideal of $V_{t, Z} \subseteq \mathbb{P}^{N}$ is generated by forms of degree ≤ 3.

Proposition 1.4. (See [5]). Let $t \geq \sigma(Z)+1$, then the homogeneous ideal of $V_{t, Z} \subseteq \mathbb{P}^{N}$ is generated by quadrics.

On the defining ideal of certain surfaces $V_{t, Z} \subseteq \mathbb{P}^{N}$ we have more detailed information, namely we know that their generators can be given as minors of suitable matrices. In particular:
a) $t=d, Z=\left(P_{1}, \ldots, P_{s}\right), s=\binom{d+1}{2}$: for every $d \geq 3$, the surface $V_{d, Z}$ is called a White Surface in \mathbb{P}^{d}. It has degree $\binom{d}{2}$, sectional genus $\binom{d-1}{2}$ and its ideal is generated by the 3×3 minors of a $3 \times d$ matrix of linear forms (see [8]);
b) $t=d, Z=\left(P_{1}, \ldots, P_{s}\right), s=\binom{d+1}{2}$: for every $d \geq 3$, the surface $V_{d+1, Z}$ is called a Room Surface in $\mathbb{P}^{2 d+2}$. It has degree $\binom{d+2}{2}$ and sectional genus $\binom{d}{2}$. Its ideal is generated by the 2×2 minors of a $3 \times(d+1)$ matrix of linear forms (see [5]);
c) $t=d+1, Z=\left(P_{1}, \ldots, P_{s}\right), s=\binom{d+1}{2}+k$, with $0<k<d+1$: for every $d \geq 3$, the surface $V_{d+1, Z}$ is called a Veronesean Surface in $\mathbb{P}^{2 d-k+2}$. It has degree $\binom{d+2}{2}-k$ and sectional genus $\binom{d}{2}$. Its ideal is given as follows: its generators are the entries of the matrix $A \cdot B$, the 2×2 minors of B and the $3 \times d$ minors of A, where B and A are two matrices of linear forms of order, respectively, $3 \times(d-k+1)$ and $k \times 3$ (see [10]);
d) $t=d, Z=\left(P_{1}, \ldots, P_{s} ; d-2,1, \ldots, 1\right), s=2 d$: for every $d \geq 4$, the surface $V_{d, Z}$ is called a Bordiga-White Surface in \mathbb{P}^{d}. It has degree $2 d-3$,
sectional genus $d-2$ and its ideal is generated by the 2×2 minors of a matrix of type

$$
\left(\begin{array}{lllll}
y_{1,1} & Y_{1,2} & \ldots & Y_{1, d-2} & Q_{1} \\
y_{2,1} & Y_{2,2} & \ldots & Y_{2, d-2} & Q_{2}
\end{array}\right)
$$

where the $Y_{a, b}$ are linear forms, while Q_{1} and Q_{2} are quadratic forms (see [6]).

2. Some results on rational p.C.M. surfaces.

Let X be a rational p.C.M. surface in \mathbb{P}^{N} of degree d, with $n-1 \leq d \leq$ $\binom{N}{2}$; then X has sectional genus $g=d+1-N+h^{1}\left(\mathcal{O}_{H}(1)\right)=d+1-\bar{N}$ (see [16]). We recall that, in terms of the coomology of the ideal sheaf of X, \mathfrak{I}_{X}, the fact that X is p.C.M. in \mathbb{P}^{N} can be expressed by the condition $h^{i}\left(\mathcal{I}_{X}(m)\right)=0$, for $i=1,2$ and for all $m \geq 0$.

In our previous work (see [16]) we showed that a rational surface $X \subseteq \mathbb{P}^{N}$ of degree $\binom{N}{2}$, sectional genus $\binom{N-1}{2}$ and with $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$ is p.C.M. if, and only if, it is projectively normal.

Now we want to extend this result, namely we have:
Proposition 2.1. Let $X \subseteq \mathbb{P}^{N}$ be a smooth surface of degree $d=N+g-1$, sectional genus g and irregularity $q=h^{1}\left(\mathcal{O}_{X}=0\right.$. If $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$, then X is p.C.M. if, and only if, it is projectively normal.

Proof. Let us suppose that $X \subseteq \mathbb{P}^{N}$ is projectively normal, hence that $h^{1}\left(\mathcal{I}_{X}(m)\right)=0$, for all $m \geq 0$.

Since $h^{i}\left(\mathcal{O}_{\mathbb{P}^{n}}(m)\right)=0$, for all $0<i<N$ and $m \geq 0$, from the exact sequence

$$
0 \rightarrow \mathcal{I}_{X}(m) \rightarrow \mathcal{O}_{\mathbb{P}^{N}}(m) \rightarrow \mathcal{O}_{X}(m) \rightarrow 0
$$

we deduce that $h^{1}\left(\mathcal{O}_{X}(m)\right)=h^{2}\left(\mathcal{I}_{X}(m)\right)$. We want to show that $h^{1}\left(\mathcal{O}_{X}(m)\right)=$ $0, \forall m \geq 0$. Consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(m-1) \rightarrow \mathcal{O}_{X}(m) \rightarrow \mathcal{O}_{H}(m) \rightarrow 0
$$

where H is a smooth hyperplane section of X.
Since $m d=m(N+g-1)>2 g-2, \forall m \geq 2$, we have $h^{1}\left(\mathcal{O}_{H}(m)\right)=$ $0, \forall m \geq 2$. Thus, by the above exact sequence, $h^{1}\left(\mathcal{O}_{X}(m-1)\right)=0$ implies $h^{1}\left(\mathcal{O}_{X}(m)\right)=0$ for all $m \geq 2$, and so, since $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$ by hypothesis, we get what wanted.

Proposition 2.2. The homogeneous ideal of a rational p.C.M. surface $X \subseteq \mathbb{P}^{N}$ can always be generated by forms of degree ≤ 3 and $h^{0}\left(\mathcal{f}_{X}(2)\right) \neq 0$ except when X has maximum degree $d=\binom{N}{2}$.
Proof. From [16] we know that the ideal I_{X} of a rational p.C.M. surface $X \subseteq \mathbb{P}^{N}$ can always be generated by forms of degree ≤ 3, and tha only generators are cubics in the case in which X has maximum degree $\binom{N}{2}$. So it remains to prove that, when X has not maximum degree $\binom{N}{2}, I_{X}$ always contains quadratic forms.

Let H be a smooth hyperplane section of X and consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{X}(2) \rightarrow \mathcal{O}_{H}(2) \rightarrow 0 .
$$

Since

$$
h^{0}\left(\mathcal{O}_{X}(2)\right)=h^{0}\left(\mathcal{O}_{X}(1)\right)+h^{0}\left(\mathcal{O}_{X}(2)\right)=N+1+2 d+1-g=3 N+g,
$$

we have:

$$
\begin{aligned}
0=h^{1}\left(\chi_{X}(2)\right) & =h^{0}\left(\chi_{X}(2)\right)-h^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(2)\right)+h^{0}\left(\mathcal{O}_{X}(2)\right)= \\
& =h^{0}\left(\chi_{X}(2)\right)-\binom{N-1}{2}+g .
\end{aligned}
$$

Clearly, $h^{0}\left(\mathcal{f}_{X}(2)\right)=0$ only when $g=\binom{N-1}{2}$, and this terminates the proof.

3. Projectively p.C.M. surfaces of degree $\leq \mathbf{8}$.

THe smooth surfaces of degree $d \leq 8$ in \mathbb{P}^{5} have been completely described (see [12], [4]). In this section we determine which of them are p.C.M. (Table 1 in the introduction summarizes our results).
3.1. Surfaces of degree $\boldsymbol{d}=4$. In \mathbb{P}^{5} the p.C.M. surfaces of degree $d=4$ are either Veronese Surfaces or rational scrolls, which are well known to be p.C.M.
3.2. Surfaces of degreed \boldsymbol{d} 5. The only p.C.M. surfaces of degree 5 in \mathbb{P}^{5} are the Del Pezzo Surfaces.
3.3. Surfaces of degree $\boldsymbol{d}=6$. The possibilities for a smooth surface of degree 6 in \mathbb{P}^{5} are described in [12] and are the following:
(i) An elliptic, scroll white $e=0$ and $g=1$;
(ii) A Castelnuovo Surface, with $g=2$, defined by the embedding of X_{7} in \mathbb{P}^{5} via the very ample linear system $\left|D_{t}\right|=\left|4 E_{0}-2 E_{1}-E_{2}-\ldots-E_{7}\right|$.
Since $5=N \neq d-g+1+h^{1}\left(\mathcal{O}_{H}(1)\right)=6+H^{1}\left(\mathcal{O}_{H}(1)\right)$ (see [16]), the unique p.C.M. surface of degree $d=6$ in \mathbb{P}^{5} is the Castelnuovo Surface (see also [12]).
3.4. Surfaces of degree $\boldsymbol{d}=7$. The smooth surfaces of degree $d=7$ in \mathbb{P}^{5} are classified by Ionescu in [12] and they are described as follows.
If $X \subseteq \mathbb{P}^{5}$ is a smooth surface of degree $d=7$, then it has sectional genus $g(H)=3$ and it is one of the following rational surfaces:
(i) A blowing-up π of $\mathbb{F}_{e}, e=0,1,2,3$, with center 9 points; $H=\pi^{*}\left(H_{e}\right)-$ $E_{1}-\ldots-E_{9}$, where $H_{e}=2 C_{0}+(4+e) f$;
(ii) A blowing-up π of \mathbb{P}^{2} with center 9 points, $H=\pi^{*}(4 L)-E_{1}-\ldots-E_{9}$;
(iii) A blowing-up of a point on a Del Pezzo double plane S, i.e. on a double covering of \mathbb{P}^{2} ramified along a smooth quartic, $H=\pi^{*}\left(H_{s}\right)-E$.
The surface $X \subseteq \mathbb{P}^{5}$ of the case 3.4 (ii) is a p.C.M. surface, called (Veronesean Surface (see Section 1). Hence we have to consider the surfaces of the cases (i) and (iii).

A) The case 3.4 (i).

Let us denote by \mathbb{F}_{e}^{9} the blowing-up of \mathbb{F}_{e} at 9 generic points and let us consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{X}(1) \rightarrow 0
$$

By [1], Theorem 4.1, the smooth rational surface $X \subseteq \mathbb{P}^{5}$ is projectively normal. Moreover, since $d=7>2 g(H)-2=4$, we have $h^{1}\left(\mathcal{O}_{H}(1)\right)=0$ and so $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$. By Proposition 2.1, this is enough to conclude that X is p.C.M. in \mathbb{P}^{5}.

In particular, when $e=0,1$, another description of the surface X can be given, using a plane model, as follows.
a) $\boldsymbol{e}=\mathbf{0}: \mathbb{F}_{0}^{9}$ is isomorphic to X_{10}, the blowing-up of \mathbb{P}^{2} at 10 generic points.

In fact, \mathbb{F}_{0} is isomorphic to the Quadric Surface $Q \subseteq \mathbb{P}^{3}$ and Q is obtained from X_{2} via the complete (not very ample) linear system $\left|2 E_{0}-E_{1}-E_{2}\right|$.

Since the line $E_{0}-E_{1}-E_{2}$ on X_{2} is contracted to a point $P \in Q$, we have that to blow-up Q at the point P and at other 8 generic points is equivalent to blow-up \mathbb{P}^{2} at 10 generic points, as we said.

Taking $C_{0}=E_{0}-E_{1}$ and $f=E_{0}-E_{2}$, to the very ample divisor $H_{0}=2 C_{0}+4 f-E_{1}-\ldots-E_{9}$ on \mathbb{F}_{0}^{9} corresponds the very ample divisor $D_{5}=2\left(E_{0}-E_{1}+4\left(E_{0}-E_{2}\right)-\left(E_{0}-E_{1}-E_{2}\right)-E_{3}-\ldots-E_{10}=\right.$ $5 E_{0}-E_{1}-3 E_{2}-E_{3}-\ldots-E_{10}$ on X_{10}.

The embedding of X_{10} in \mathbb{P}^{5} via the complete linear system $\left|D_{5}\right|$ is a Bordiga-White Surface (see Section 1).
b) $\boldsymbol{e}=\mathbf{1}:$ Since \mathbb{F}_{1} is isomorphic to X_{1}, we have that \mathbb{F}_{1}^{9} is isomorphic to X_{10}.

Let us determine the very ample divisor $D_{t}=t E_{0}-m E_{1}-E_{2}-\ldots-E_{10}$ on X_{10} which corresponds to the divisor $2 C_{0}+5 f-E_{1}-\ldots-E_{9}$ on \mathbb{F}_{1}^{9}. The integers $t, m>0$ are such that

$$
\left\{\begin{array}{l}
\binom{t+2}{2}-\binom{m+1}{2}-10=5 \\
t^{2}-m^{2}-9=7,
\end{array}\right.
$$

from which we get:

$$
\left\{\begin{array}{l}
t^{2}+3 t+2-m^{2}-m=30 \\
t^{2}=m^{2}+16
\end{array}\right.
$$

Solving the equations we find $t=5$ and $m=3$.
Hence $D_{t}=D_{5}=5 E_{0}-3 E_{1}-E_{2}-\ldots-E_{1} 0$, which is the same divisor we found in a).

B) The case 3.4 (iii).

A Del Pezzo double plane S is defined by the embedding of the blowing-up X_{7} of \mathbb{P}^{2} at 7 generic points via the very ample linear system $\mid 6 E_{0}-2 E_{1}-\ldots-$ $2 E_{7} \mid$; it is a smooth surface of degree 8 in \mathbb{P}^{6}.

Hence our surface X is determined by the very ample linear system $\left|6 E_{0}-2 E_{1}-\ldots-2 E_{7}-E_{s}\right|$ on X_{8} (see also [15]).

From the work of Alzati, Bertolini and Besana (see[1]) we know that the surface X is projectively normal in \mathbb{P}^{5} thus, since $h^{1}\left(\mathcal{O}_{X}\left(6 E_{0}-2 E_{1}-\ldots-\right.\right.$ $\left.\left.2 E_{7}-E_{8}\right)\right)=0, X$ is p.C.M. in \mathbb{P}^{5}, by Proposition 2.1.

We summarize the above results as follows:

Proposition 3.1. If $X \subseteq \mathbb{P}^{5}$ is a p.C.M. surface of degree $d=7$, then it has sectional genus $g=3$ and it is one of the following rational surfaces:

1) A Bordiga-White Surface, obtained embedding X_{10} in \mathbb{P}^{5} via the linear system $\left|5 E_{0}-3 E_{1}-E_{2}-\ldots-E_{10}\right|$;
2) The embedding of $\mathbb{F}_{e}^{9}, e=2,3$, in \mathbb{P}^{5} via the linear system

$$
\left|2 C_{0}+(4+e) f-E_{1}-\ldots-E_{9}\right|
$$

3) A Veronesean Surface, defined by the embedding of X_{9} in \mathbb{P}^{5} via the linear system $\left|4 E_{0}-E_{1}-\ldots-E_{9}\right| ;$
4) A blowing-up of a point on a Del Pezzo double plane S, i.e. X_{8} embedded in \mathbb{P}^{5} via the linear system $\left|6 E_{0}-2 E_{1}-\ldots-2 E_{7}-E_{8}\right|$.
3.5. Surfaces of degree $\boldsymbol{d}=$ 8. Since a p.C.M. surface $X \subseteq \mathbb{P}^{5}$ of degree $d=8$ has sectional genus $g=4+h^{1}\left(\mathcal{O}_{H}(1)\right)$ and since $g \leq 5$, by Castelnuovo's bound, it is enough to consider the smooth surfaces of sectional genus $g=4,5$. Their classification is known (see[4], [14] and [15]) and it is the following:

If $X \subseteq \mathbb{P}^{5}$ is a smooth surface of degree $d=8$ and sectional genus $4 \leq g \leq 5$, then it is either a K3 Surface of sectional genus $g=5$ or it is one of the following rational surfaces of sectional genus $g=4$:
(i) A blowing-up π of the quadric surface $Q \subseteq \mathbb{P}^{3}$ with center 10 generic points, $H=\pi^{*}\left(3 H_{Q}\right)-E_{1}-\ldots-E_{10}$;
(ii) A blowing-up π of a cubic surface $S \subseteq \mathbb{P}^{3}$ with center 4 generic points, $H=\pi^{*}\left(2 H_{S}\right)-E_{1}-\ldots-E_{4} ;$
(iii) A blowing-up π of a Hirzebruch surface $\mathbb{F}_{e}, e \leq 4$, with center 12 generic points, $H=\pi^{*}\left(2 C_{0}+(5+e) f\right)-E_{1}-\ldots-E_{12}$.
K3 Surfaces in \mathbb{P}^{5} of degree $d=8$ and of sectional genus $g=5$ are well know and are p.C.M. Hence it remains to prove that the surfaces $X \subseteq \mathbb{P}^{5}$ in cases (i), ..., (iii) are p.C.M.
A) The case 3.5(i).

We recall that the quadric surface $Q \subseteq \mathbb{P}^{3}$ can be defined as the image of the morphism $X_{2} \rightarrow \mathbb{P}^{3}$, where X_{2} is the blowing-up \mathbb{P}^{2} at 2 points, determined by the complete linear system $\left|2 E_{0}-E_{1}-E_{2}\right|$ (see $\left.3.4(i) a\right)$).

Thus to blow-up Q at 10 generic points is equivalent to blow-up \mathbb{P}^{2} at 11 generic points.

So $H_{Q}=2 E_{0}-E_{1}-E_{2}$, while $H=\pi^{*}\left(3 H_{Q}\right)-\left(E_{0}-E_{1}-E_{2}-\right.$ $E_{3}-\ldots-E_{11}=\left(6 E_{0}-3 E_{1}-3 E_{2}\right)-\left(E_{0}-E_{1}-E_{2}\right)-E_{3}-\ldots-E_{11}=$ $5 E_{0}-2 E_{1}-2 E_{2}-E_{3}-\ldots-E_{11}$ is a very ample divisor on X_{11} which defines a Bordiga-White Surface in \mathbb{P}^{5} which is p.C.M. (see Section 1).

B) The case $3.5(\mathrm{iii})$.

The cubic surface $S \subseteq \mathbb{P}^{3}$ is defined by the embedding of X_{6} in \mathbb{P}^{3} via the very ample linear system $\left|3 E_{0}-E_{1}-\ldots-E_{6}\right|$.

Thus a smooth hyperplane section of the surface $X \subseteq \mathbb{P}^{5}$ is a divisor of type $H=\pi^{*}\left(2 H_{S}\right)-E_{7}-\ldots-E_{10}=6 E_{0}-2 E_{1}-\ldots-2 E_{6}-E_{7}-\ldots-E_{10}=$ $6 E_{0}-E$, where $E=2 E_{1}+\ldots+2 E_{6}+E_{7}+\ldots+E_{10}$.

Hence we can denote by X_{10} the blowing-up of the cubic surface $S \subseteq \mathbb{P}^{3}$ at 4 generic points.

Since $h^{1}\left(\mathcal{O}_{X}(1)\right)=h^{1}\left(\mathcal{O}_{X_{10}}\left(6 E_{0}-E\right)\right)=0$ and the surface X is projectively normal in \mathbb{P}^{5} (see [1]), then X is p.C.M., by Proposition 2.1.

C) The case 3.5 (iii).

The embedding X of \mathbb{F}_{e}^{12}, the blowing-up of \mathbb{F}_{e} at 12 generic points, in \mathbb{P}^{5} via the very ample linear system $\left|2 C_{0}+(5+e) f-E_{1}-\ldots-E_{12}\right|$, with $e \leq 4$, is not projectively normal, by [1; Theorem 5.4]. Thus, clearly, it is not p.C.M. too.

The following proposition summarizes what we have seen above.
Proposition 3.2. $X \subseteq \mathbb{P}^{5}$ is a p.C.M. surface of degree $d=8$, then X is either a K3 Surface of sectional genus $g=5$ or a rational surface of sectional genus $g=4$. In this case X is one of the following:

1) A Bordiga-White Surface, defined by the embedding of X_{11} in \mathbb{P}^{5} via the linear system $\left|5 E_{0}-2 E_{1}-2 E_{2}-E_{3}-\ldots-E_{11}\right|$;
2) The embedding of X_{10}, the blowing-up a cubic surface $S \subseteq \mathbb{P}^{3}$ at 4 generic points, in \mathbb{P}^{5} via the linear system

$$
\left|6 E_{0}-2 E_{1}-\ldots-2 E_{6}-E_{7}-\ldots-E_{10}\right| .
$$

4. Rational p.C.M. surfaces of degree 9.

In order to complete the description of the rational p.C.M. surfaces in \mathbb{P}^{5}, it would remain to consider the rational surfaces of degree $d=9,10$. Here we consider the case $d=9$.

Let X be a rational p.C.M. surface in \mathbb{P}^{5} of degree $d=9$, then its sectional genus has to be $g(H)=g=5$ (see the introduction).

On the other hand, if $X \subseteq \mathbb{P}^{5}$ ia a smooth rational surface of degree $d=9$ and sectional genus $g=5$, consider the exact sequence:

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{X}(1) \rightarrow 0
$$

Since $d=9>2 g-2=8$, we have $h^{1}\left(\mathcal{O}_{H}(1)\right)=0$, hence $h^{1}\left(\mathcal{O}_{H}(1)\right)=0$. This implies, by Proposition 2.1, that the surface $X \subseteq \mathbb{P}^{5}$ is p.C.M. if, and only if, it is projectively normal.

On the projective normality of smooth surfaces of degree 9 and sectional genus 5 in \mathbb{P}^{5} we have the following result:

Theorem 4.1. (See [2; Theorem 1.1]). Let S be a smooth surface embedded by the complete linear system associated with a very ample line bundle L as a surface of degree $d=9$ and sectional genus $g=5$ in \mathbb{P}^{5}. Assume (S, L) is not a scroll over a curve. Then (S, L) fails to be projectively normal if and only if it is a rational conic bundle such as $(S, L)=\left(\mathbb{F}_{e}^{15}, 2 C_{0}+(6+e) f-E_{1}-\ldots-E_{1} 5\right), 0 \leq$ $e \leq 5$.

Note that, if (S, L) ia a scroll over a curve, in order to be p.C.M. it must be a rational scroll in \mathbb{P}^{5} (see [16]). But there exist no values of $b>e>0$ such that the very ample linear system $\left|C_{0}+b f\right|$ determines an embedding of \mathbb{F}_{e} in $\mathbb{P}^{N}=\mathbb{P}^{5}$ of degree $d=9$.

In fact $d=-e+2 b=9$, while $N=2(b+1)-e-1=5$, from which we get the equations $-e+2 b=9$ and $-e+2 b=4$, which give no solutions.

Thus any smooth rational surface $X \subseteq \mathbb{P}^{5}$ with $d=9$ and $g=5$, different from a rational conic bundle as in Theorem 4.1, is projectively normal and so p.C.M.. Such surfaces have been classified by E. L. Livorni in [15] and we list them as follows:

Let X be a smooth rational surface and L a very ample line bundle on X such that $L^{2}=9, h^{0}(L)=6, g(X, L)=g=5$. Then X is one of the following:
(i) $\left(X_{10}, 7 E_{0}-2 E_{1}-\ldots-2 E_{10}\right)$;
(ii) $\left(X_{12}, 6 E_{0}-2 E_{1}-\ldots-2 E_{5}-E_{6}-\ldots-E_{12}\right)$;
(iii) $\left(\mathbb{F}_{e}^{15}, 2 C_{0}+(6+e) f-E_{1} \ldots-E_{15}\right), 0 \leq e \leq 5$;
(iv) $\left(\mathbb{F}_{e}^{10}, 4 C_{0}+(2 e+5) f-2 E_{1} \ldots-2 E_{7}-E_{8}-\ldots-E_{10}\right), 0 \leq e \leq 2$;
(v) $\left(\mathbb{F}_{1}^{12}, 3 C_{0}+5 f-E_{1} \ldots-E_{12}\right)$.

It has been shown that there exist no surfaces as in (v) (e.g. see [2]), while Theorem 4.1 gives us that only case (iii) is not p.C.M.. So we can conclude that the only rational p.C.M. surfaces in \mathbb{P}^{5} of degree $d=9$ are the ones in Table 1 , if they exist. In order to check that they actually do, see [15] for cases $(i),(i v)$ and [3] for case (ii).

5. Nonrational p.C.M. surfaces of degree 9 .

Suppose that X is a nonrational p.C.M. surface in \mathbb{P}^{5} of degree $d=9$, then $g=5+h^{1}\left(\mathcal{O}_{H}(1)\right) \leq 7$.

All the smooth surfaces of sectional genus $g \leq 7$ whose minimal model is a surface with nonnegative Kodaira dimension have been classified in [15], from where we have the following:
Fact. Let $X \subseteq \mathbb{P}^{5}$ be a nonrational smooth surface of degree $d=9$, sectional genus $5 \leq g \leq 7$, arithmetic genus p_{a} and geometric genus p_{g}. Then we have the following cases:
(i) $g=6, q=h^{1}\left(\mathcal{O}_{X}\right)=0, p_{a}=p_{g}=1, X$ is the blowing-up at one point of a K3 Surface;
(ii) $g=7, q=h^{1}\left(\mathcal{O}_{X}\right)=0, p_{a}=p_{g}=2, X$ is an Elliptic Surface.

By [2], Theorem 1.1], the surfaces X listed above are both projectively normal.
Proposition 5.1. Let $d, g \in \mathbb{Z}$ be such that $d>g-1$. Let $X \subseteq \mathbb{P}^{N}$ be a smooth surface of degree $d=N+g-1-h^{1}\left(\mathcal{O}_{H}(1)\right)$, sectional genus $g(H)=g$ and irregularity $q=h^{1}\left(\mathcal{O}_{X}\right)=0$. If $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$, then X is p.C.M. if, and only if it is projectively normal.
Proof. Let $X \subseteq \mathbb{P}^{N}$ be projectively normal. We want to prove that, when $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$, the surface X is P.C.M., i.e. that $h^{2}\left(\ell_{X}(m)\right)=h^{1}\left(\mathcal{O}_{X}(m)\right)=0$, for all $m \geq 2$.

Applying the Riemann-Roch Theorem on the smooth hyperplane section H of X, since $d>g-1$, by hypothesis, we get

$$
N-h^{1}\left(\mathcal{O}_{H}(1)\right)=h^{0}\left(\mathcal{O}_{H}(1)\right)-h^{1}\left(\mathcal{O}_{H}(1)\right)=d-g+1>0,
$$

hence $N>h^{1}\left(\mathcal{O}_{H}(1)\right)$. So we have:
$m d=m\left(N+g-1-h^{1}\left(\mathcal{O}_{H}(1)\right)\right)=m\left(N-h^{1}\left(\mathcal{O}_{H}(1)\right)\right)+m(g-1)>2(g-1)$, $\forall m \geq 2$, from which we deduce that $h^{1}\left(\mathcal{O}_{H}(m)\right)=0, \forall m \geq 2$.

Consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(m-1) \rightarrow \mathcal{O}_{X}(m) \rightarrow \mathcal{O}_{H}(m) \rightarrow 0 .
$$

Since $h^{1}\left(\mathcal{O}_{X}(1)\right)=0$ and $h^{1}\left(\mathcal{O}_{H}(m)\right)=0, \forall m \geq 2$, we have that $h^{1}\left(\mathcal{O}_{X}(m-1)\right)=0 \operatorname{implies} h^{1}\left(\mathcal{O}_{X}(m)\right)=0, \forall m \geq 2$, and this is what we required.

Now, let us consider the two projectively normal surfaces $X \subseteq \mathbb{P}^{5}$ quoted in the Fact above. Since $d=9>g-1$, by Proposition 5.1, the surfaces X will also be p.C.M. in \mathbb{P}^{5} if $h^{1}\left(\mathcal{O}_{X}(H)\right)=h^{1}\left(\mathcal{O}_{X}(1)\right)=0$.

This is what we show in the following proposition.

Proposition 5.2. A nonrational smooth surface $X \subseteq \mathbb{P}^{5}$ of degree 9 is p.C.M.
Proof. Let $X \subseteq \mathbb{P}^{5}$ be as above.
Consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{H}(1) \rightarrow 0
$$

where H is a smooth hyperplane section of X of genus g.
Since $h^{1}\left(\mathcal{O}_{X}\right)=0, h^{1}\left(\mathcal{O}_{H}(1)\right)=h^{0}\left(\mathcal{O}_{H}(1)\right)=d-1+g=g-5$ and, in our two cases, $g-5=p_{g}=h^{2}\left(\mathcal{O}_{X}\right)$, we have $h^{1}\left(\mathcal{O}_{X}(1)\right)=h^{2}\left(\mathcal{O}_{X}(1)\right)$.

By the Serre Duality Theorem, $h^{2}\left(\mathcal{O}_{X}(1)\right)=h^{2}\left(\mathcal{O}_{X}(H)\right)=0$ if, and only if, $h^{0}\left(\mathcal{O}_{X}\left(K_{X}-H\right)\right)=0$.

Consider $\left(K_{X}-H\right) . H=K_{X} . H-H^{2}=2 g-2-2 d=2 g-20$, which is <0 when $g=6$ or 7 , hence $h^{0}\left(\mathcal{O}_{X}\left(K_{X}-H\right)\right)=0$.

So $h^{1}\left(\mathcal{O}_{X}(1)\right)=h^{2}\left(\mathcal{O}_{X}(1)\right)=0$ and, by what we have seen above, this is enough to conclude that the surfaces $X \subseteq \mathbb{P}^{5}$ are p.C.M.

6. Rational p.C.M. surfaces of degree 10.

In [16] we showed that the maximum degree of a rational p.C.M. surface $X \subseteq \mathbb{P}^{N}$ is $d=\binom{N}{2}$.

There are known rational p.C.M. surfaces which attain the maximum degree, namely the White Surfaces (see Section 1).

In \mathbb{P}^{5} the candidate rational surfaces as p.C.M. surfaces of maximum degree $d=10$ are described in the following table (see [15] for a classification of rational surfaces of degree 10).

The existence of the surface is known in case (vi) (White Surface) and in case (v), see [15], while in cases (i), (iii), (vii) and (viii) we can consider the following theorem.

Theorem 6.1. (See [3], Theorem 2.1]). Let $P_{1}, \ldots, P_{r}, R_{1}, \ldots, R_{n}$ be general points on \mathbb{P}^{2}, with $r \geq 1$. Define $X_{r, n}$ as the blowing-up of \mathbb{P}^{2} along these points, $\pi_{r, n}$ the corresponding projection map, and $E_{1}, \ldots, E_{r}, F_{1}, \ldots, F_{n}$ the exceptional divisor corresponding resp. to the points $P_{1}, \ldots, P_{r}, R_{1}, \ldots, R_{n}$. Let l_{1}, \ldots, l_{r} be integers, with $l_{1} \geq \ldots \geq l_{r} \geq 2$. Suppose m, r and l_{i} are such that there exists a "good" curve of degree $m-1$; and either $l_{1} \leq 3$ and $4 m \geq l_{1}+l_{2}+\ldots+l_{r}+9$ or $l_{1}>3$ and $4 m \geq 2 l_{1}+l_{2}+\ldots+l_{r}+10$. Then the sheaf $\mathcal{L}=\pi_{r, n}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(m)\right) \otimes\left(-l_{1} E_{1}-\ldots-l_{r} E_{r}-F_{1}-\ldots-F_{n}\right)$ is very ample on $X_{r, n}$ for all $n \leq \frac{m(m+3)-l_{1}\left(l_{1}+1\right)-\ldots-l_{r}\left(l_{r}+1\right)}{2}-5$.

TABLE 2. Rational p.C.M. surfaces in \mathbb{P}^{5} of degree 10

	$\left(X_{s}, D_{t}\right)-\left(\mathbb{F}_{e}^{s}, D\right)$
(i)	$\left(X_{14}, 6 E_{0}-2 E_{1}-\ldots-2 E_{4}-E_{5}-\ldots-E_{14}\right)$
(ii)	$\left(X_{12}, 9 E_{0}-3 E_{1}-\ldots-3 E_{7}-2 E_{8}-E_{9}-\ldots-E_{12}\right)$
(iii)	$\left(X_{12}, 7 E_{0}-2 E_{1}-\ldots-2 E_{9}-E_{10}-\ldots-E_{12}\right)$
(iv)	$\left(X_{11}, 9 E_{0}-3 E_{1}-\ldots-3 E_{6}-2 E_{7}-\ldots-2 E_{10}-E_{11}\right)$
(v)	$\left(X_{10}, 10 E_{0}-3 E_{1}-\ldots-3 E_{10}\right)$
(vi)	$\left(X_{15}, 5 E_{0}-E_{1}-\ldots-E_{15}\right)$
(vii)	$\left(X_{15}, 6 E_{0}-3 E_{1}-2 E_{2}-E_{3}-\ldots-E_{15}\right)\left(\right.$ equiv. $\left.\mathbb{F}_{0}^{14}, 3 C_{0}+4 f-E_{1}-\ldots-E_{14}\right)$
(viii)	$\left(X_{11}, 8 E_{0}-3 E_{1}-3 E_{2}-2 E_{3}-\ldots-2 E_{11}\right)\left(\right.$ equiv. $\left.\mathbb{F}_{0}^{10}, 5 C_{0}+5 f-2 E_{1}-. .-2 E_{10}\right)$
$($ ix) $)$	$\left(\mathbb{F}_{2}^{14}, 3 C_{0}+7 f-E_{1}-\ldots-E_{14}\right)$
(x)	$\left(\mathbb{F}_{e}^{12}, 4 C_{0}+(2 e+5) f-2 E_{1}-\ldots-2 E_{6}-E_{7}-\ldots-E_{12} ; 0 \leq e \leq 2\right)$
$(x i)$	$\left(\mathbb{F}_{e}^{11}, 4 C_{0}+(2 e+6) f-2 E_{1}-\ldots-2 E_{9}-E_{10}-E_{11} ; 0 \leq e \leq 2\right)$

By Theorem 6.1, in order to have that D_{t} is very ample on X_{s} it is enough to show that there exists a "good" plane curve of degree $(t-1)$, i.e. a curve having, as its only singularities, r multiple points at the $P_{i}^{\prime} s, i=1, \ldots, r$, of multiplicity $=l_{i}$, respectively, and such that its strict transform on X_{r} is smooth.

Since there are plane curves of degree 5 and 6 with, respectively, 4 and 9 nodes (e.g. see[9; Proposition 1.1]) and there are plane curves of degree 5 (resp. 7) with 1 triple point and 1 node (resp. 2 triple points and 9 nodes) (e.g. see Section 2 in [17]), we deduce that the surfaces in cases (i), (iii), (vii) and (viii) really exist, as required.

The problem of the existence of the surfaces in cases $(i i),(i v),(i x),(x),(x i)$ remains open.

Except for the White Surface (case (vi)), it is still unknown if the surfaces in Table 2 are really p.C.M.

We recall that (see [16; Proposition 3.5]) a sufficient condition to have that the surfaces in Table 2 are p.C.M. is that their ideal contains no quadric.

REFERENCES

[1] A. Alzati - M. Bertolini - G.M. Besana, Projective normality of varieties of small degree, Communications in Algebra, 25 (12) (1997), pp. 3761-3771.
[2] G.M. Besana - S. Di Rocco, On the projective normality of smooth surfaces of
degree nine, Geometria Dedicata, 74 (1999), pp. 1-21.
[3] C. De Volder, Very Ampleness and Gauss maps of Linear Systems on Blowing-ups of Projective Varieties, PH. D. Thesis, Univ. Ghent, Belgium (2000).
[4] L. Ein, Nondegenerate surfaces of degree $n+3$ in $\mathbb{P}_{\mathbb{C}}^{N}$, J. Reine Angew. Math., 351 (1984), pp. 1-11.
[5] A.V. Geramita - A. Gimigliano, Generators for the defining ideal of certain rational surfaces, Duke Math. J., 62-1 (1993), pp. 61-83.
[6] A.V. Geramita - A. Gimigliano - Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann., 301 (1995), pp. 363-380.
[7] A. Gimigliano, Our thin knowledge about fat points, The curves seminar at Queen's, Vol. VI, Queen's Paper in Pure and Applied Math., 83 (1989).
[8] A. Gimigliano, On Veronesean surfaces, Proc. Konin. Ned. Akad. van Wetenschappen Ser. A, 92 (1989), pp. 71-85.
[9] A. Gimigliano, A construction of projectively normal curves, Ann. Univ. di Ferrara, Sez. VII, 34 (1988), pp. 161-181.
[10] A. Gimigliano - A. Lorenzini, On the ideal of Veronesean Surfaces, Canadian Journal of Math., 45-4 (1984), pp. 758-777.
[11] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
[12] P. Ionescu, Embedded projective varieties of small invariants, In: Proceedings of the Week of Algebraic Geometry, Bucharest 1982. Lecture Notes Math. 1056, Berlin Heidelberg, Springer, New York, 1984.
[13] P. Ionescu, Embedded projective varieties of small invariants, II. Rev. Roumaine Math. Pures Appl., 31 (1986), pp. 539-544.
[14] P. Ionescu, Embedded projective varieties of small invariants, III. Lecture Notes Math. 1417, Springer, New York, 1990.
[15] E.L. Livorni, On the existence of some surfaces, Lecture Notes Math. 1417, Springer, New York, 1990.
[16] M. Mancini, Rational projectively Cohen-Macaulay surfaces of maximum degree, Preprint.
[17] M. Mancini, Normally generated line bundles of smallest degree on curves, Ann. Univ. di Ferrara, Sez. VII, 45(1999), pp. 163-175.

Dipartimento di Matematica, Università di Bologna, p.za S. Donato, 5

40127 Bologna (ITALY)
e-mail: mancinm@libero.it

