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INTERPOLATION OF BESOV SPACES AND APPLICATIONS

LILIANA GABRIELA GHEORGHE

We de�ne the analytic Besov spaces on a bounded symmetric domain
associated with a rearrangement invariant space, give a description in terms
of certain differential operators, prove an interpolation theorem and �nd their
dual space; �nally, as an application we formulate necessary and suf�cient
conditions in order to little Hankel operator Hf belongs to SE , the Schatten
ideal associated with a given rearrangement invariant sequence space E.

1. Introduction.

Let � be a bounded symmetric domain in Cn , in its standard Harish-
Chandra realization; it is well-known (see e.g. [6]) that � is uniquely deter-
mined (up to biholomorphic mapping) by three analytic invariants (all of them
positive integers): r , called the rank of �, a and b. The Bergman reproducing
kernel of � is

K (z, w) =
1

h(z, w)N
, z, w ∈ �

where h(z, w) is a sum of homogeneous monomials in z and w and N =

a(r − 1) + b + 2 and the Bergman projection P (the orthogonal projection
of L2(dv) onto L2

a(dv)) is given by the formula

P f (z) =

�

�

f (w)

h(z, w)N
dv(w), f ∈ L2(dv), z ∈ �
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where dv is the normalized volume measure on �. Let α > −1 and let Cα be
a positive constant such that the measure dvα(z) = Cαh(z, z)

α dv(z) has total
mass 1 on �. Let L2

a(dvα) be the closed subspace of all analytic functions in
L2(dvα) and denote by Pα the corresponding Bergman projection

Pα f (z) = Cα

�

�

h(w, w)α f (w)

h(z, w)N+α
dv(w), f ∈ L2(dvα), z ∈ �.

Standard arguments show that Pα reproduces functions in L1
a(dvα). Let us

consider, as in [12], two radial differential operators:

Dα,β f (z) = cα,β lim
r→1−

�

�

h(w, w)β

h(z, w)N+α+β
f (rw) dv(w), f ∈ H (�), z ∈ �

Dα,β f (z) = cα,β lim
r→1−

�

�

h(w, w)α+β

h(z, w)N+β
f (rw) dv(w), f ∈ H (�), z ∈ �.

Dα,β and Dα,β are well de�ned (the limit always exists) and continuous on
H (�) (when endowed with the topology of uniform convergence on compacts).
When cα,β are properly chosen, we also have the following representation
formula

Dα,β Dα,β f (z) = f (z), f ∈ H (�), z ∈ �

(see Theorem 1 and Theorem 2 in [12]). For simplicity, we shall denote by Dα ,
the operator Dα,0 and by Dα , the oprerator Dα,0 .

Let E(dλ) a rearrangement invariant space over the measure space
(�, dλ), where

dλ(z) =
1

h(z, z)N
dv(z)

is the Möbius invariant measure on �; we de�ne the analytic Besov spaces
BE (�) associated with E(dλ) to be BE (�) = PE(dλ), endowed with the
quotient norm (see De�nition 1). We shall prove that a holomorphic function
f is in BE (�) if and only if the function h(z, z)N DN f (z) ∈ E(dλ) if and only
if for any α > −1 and for any real β , the function h(z, z)α Dα,β f (z) ∈ E(dλ)
(Theorem 1 and Corollary 1); then we give an alternative description in terms of
Pα (α > −1): BE (�) = PαE(dλ) (Theorem 2). When E(dλ) has absolute
continuous norm, we show that BE (�) is a separable Banach space, with
polynomials dense in it (Theorem 3) and whose dual is BE �(�) (Theorem 5).
Finally, we prove two interpolation theorem for pairs of Besov spaces (Theorem
5 and Proposition 2).
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The analytic Besov spaces Bp(�) over a bounded symmetric domain �

associated with L p(dλ) were de�ned and studied in [11] and [12], while the
classic case of the analytic Besov spaces Bp over the unit disk was studied in
[13].

The importance of these spaces in operators theory arises from their
relation with Hankel operators Hf that belongs to Schatten ideals Sp ; the
question of characterizing those symbols f such that the Hankel operator Hf

belongs to the Schatten ideal Sp in the Bergman or Hardy space, has received
considerable attention from many authors (see [2], [4], [7], [8], [9], [10], [11],
[12] and the references therein). When the symbol f is a holomorphic function
on the disk, it was shown in [7] that Hf ∈ Sp if and only if f ∈ Bp, 1 ≤ p ≤ ∞;
in the theory of several complex variables, similar results were given in [2], [9]
and [10]; where is proved that if 0 < p ≤ 2n, then Hf ∈ Sp (on Hardy as well as
on Bergman space) if and only if f is constant while if 2n < p ≤ ∞, Hf ∈ Sp if
and only if f ∈ Bp . The �rst who studied necessary and suf�cient condition such
that Hf ∈ Sp,q, the Schatten ideal associated with Lorentz sequence spaces l p,q

was Peller (see [8]); for this, he considered a new class of spaces, �
1/p
p,q de�ned

in terms of a maximal nontangential function de�ned on a annular domain and

proved that Hf ∈ Sp,q if and only f ∈ �
1/p
p,q .

In the last section, we investigate necessary and suf�cient conditions
in order to the Hankel operator on weighted Bergman spaces on a bounded
symmetric domain h(α)

f (g) = (I − Pα)( f g), g ∈ L2
a(dvα) belongs to Schatten

ideals SE associated with rearrangement invariant sequence spaces and show
that if E is a given rearrangement invariant sequence space, h(α)

f ∈ SE if and
only if f ∈ BE (�) (Theorem 6 and Corollary 2). Our approach is completely
different of those in [9] and the main point is the interpolation theorem of Besov
spaces (Theorem 5).

2. Preliminaries.

We shall remind here some basic fact of interpolation theory that we shall
use latter on; for notations, unexplained de�nition and details, the reader is
referred to [3].

Let (X0, X1) be a compatible couple of Banach spaces, ρ a monotone
Riesz-Fischer norm and k( f, , X0, X1) be Peetre�s little functional; then the
space

(X0, X1)ρ = { f ∈ X0

�
X1

X0

+ X1 : � f �(X0,X1)ρ = ρ(k( f, , X0, X1)) < ∞}
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is a (monotone) interpolation space for the couple (X0, X1). This implies
that for any linear (o quasilinear, when Xi , i = 0, 1 are Banach lattices)
operator T that is bounded both on X0 and on X1, it follows that T is bounded
on (X0, X1)ρ , too. We say that (X0, X1) form a Calderon couple if all its
interpolation spaces are monotone; in this case, it forms a Gagliardo couple, too,
hence, by TheoremV 3.7 in [3], an intermediate space E for the couple (X0, X1)
is an interpolationone, if and only if there exists a monotoneRiesz-Fischer norm
ρ such that E = (X0, X1)ρ . In other words, all the interpolation spaces for a
Calderon couple (X0, X1), are obtainable by using only the interpolation functor
( )ρ de�ned above.

In this paper, we shall mainly deal with the Calderon couples (L p0 , L p1 )
and (Sp0

, Sp1
), 1 ≤ p0 ≤ p1 ≤ ∞ (see [5] and [1]), as well as with pairs of

Besov spaces (Bp0
(�), Bp1

(�)).
Let (R, µ) denote either the measure space (�, dλ) or N endowed with

the cardinal measure; let M(R, µ) be the space of all µ measurable functions
on R and ρ a monotone Riesz-Fischer norm which have Fatou�s property; then
the space

E = { f ∈ M(R, µ) : � f �E = ρ( f ∗) < ∞}

where f ∗ is the decreasing rearrangement of f , is called rearrangement invari-
ant space (r.i.). E is said to have absolute continuous norm if for any f ∈ E
and for any sequence of measurable sets En ↓ ∅, we have � fχEn

�E → 0, as
n → ∞. If E is r.i., then its associate,

E � = {g ∈ M(R, µ) : �g�E � = sup
��
�
�

�

R

f g dµ

�
�
�, � f �E ≤ 1

�
,

is a r.i., too. Hölder�s inequality

�
�
�

�

R

f g dµ

�
�
� ≤ � f �E�g�E �

is a consequence of the de�nition of E � ; note that we shall always have E �� = E ,
for any r.i. E . If g ∈ E �, then Lg( f ) =

�
R f g dµ de�nes a continuous functional

on E ; when E has absolute continuous norm, then the Banach dual E∗ of E
identi�es with E �, by mean of the canonic isomorphism g → Lg .

Associate with any r.i. E , there are two (real) numbers 1 ≤ pE ≤ qE ≤ ∞,
called the Boyd indices of E . Boyd�s interpolation theorem states that if T is an
operator of weak type (p, p) and (q, q), then T is bounded on any r.i. E whose
Boyd indices verify 1 ≤ p < pE ≤ qE < q ≤ ∞ (see [3]).

Many important classes of r.i., such as the Lorentz spaces L p,q have
absolute continuous norm if and only if have non trivial Boyd indices 1 < pE =
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qE = p < ∞; in this case (L p,q)∗ = L p�,q �

= (L p,q)�, 1
p

+ 1
p� = 1, 1

q
+ 1

q � = 1;

a similar fact occurs with the Orlicz spaces L� , that have absolutely continuous
norm if and only if have non trivial inferior Boyd indices and if this condition
is ful�lled, we have (L�)∗ = (L�)� = Lψ , where ψ is the Young�s conjugate
function of φ . Nevertheless, there exists examples of r.i. for which the two
proprieties are completely independent. The following spaces, constructed by
R. Sharpley (see[3]), furnish such an example.

Let E be an arbitrary r.i. and �x 1 ≤ q ≤ ∞; let

�q(E) =
�
f ∈ M(D, dA) : � f ��q

=
�� ∞

0

[ f ∗∗(t)ϕE (t)]
q dt

t

�1/q
< ∞

�
,

where f ∗∗(t) = 1
t

� t

0 f ∗(s) ds is the maximal function, f ∗ the decreasing
rearrangement of f and ϕE the fundamental function of E and where, as usual,
if q = ∞ we take sup instead of integral; then, if E has non trivial fundamental
indices, �q (E) is a r.i. whose Boyd and fundamental indices coincide with
the fundamental indices of E ; further, �q(E) has absolute continuous norm if
and only if 1 ≤ q < ∞ and if this conditions are satis�ed, then �q (E)∗ =

�q (E)� = �q � (E �) (for details, see e.g. [3], pg. 285). So, if we choose q = ∞

and E having non trivial fundamental indices, then �∞(E) will have non trivial
Boyd indices and its norm will not be absolute continuous. On the other hand,
if we take q < ∞ and a r.i. E with trivial fundamental indices, then we get
�∞(E), a r.i. whose norm is absolute continuous but whose Boyd indices are
trivial.

Notations. From now on, ρ will always denote a monotone Riesz-Fischer
norm having Fatou property and ( )ρ the corresponding interpolation functor;
if 1 ≤ p0 ≤ p1 ≤ ∞ and if E(dµ) = ((L p0 (dµ), L p1 (dµ))ρ , then we shall
simply designate by E the corresponding r.i. sequence space E = (l p0 , l p1 )ρ .

3. Analytic Besov spaces.

A very useful tool in what follows is a Forelli-Rudin type theorem for
bounded symmetric domains.

Lemma 1. (see [6] or Lemma 2 in [11]). Let � be a bounded symmetric do-
main, t > −1 and c ∈ R such that c >

a(r−1)
2

; then

Ic,t (z) =

�

�

h(w, w)t

|h(z, w)|N+t+c
dv(w) ∼ h(z, z)−c

where, as usually, the notation f ∼ g means that there exists some constant
C > 0 such that 1/Cg(z) ≤ f (z) ≤ Cg(z), ∀ z ∈ �.
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Let us consider the following family of integral operators:

Vα,β f (z) = h(z, z)α
�

�

h(w, w)β

h(z, w)N+α+β
f (w)dv(w), z ∈ �;

we shall denote, for simplicity, by Vα the operator Vα,0.

Lemma 2. With the notations above, if α > N − 1 and β is an arbitrary real
constant, then the operators Vα and VN,β are bounded on any E(dλ).

Proof. By interpolation, it will suf�ce to prove their boundedness on L1(dλ)
and on L∞(dλ). We shall give the proof for Vα , as the one for VN,β is similar.

If f ∈ L∞(dλ); then, by Lemma 1

|Vα f (z)| ≤ Ch(z, z)α
�

�

dv(w)

|h(z, w)|N+α

so by Lemma 1, Vα is bounded on L∞(dλ).
If f ∈ L1(dλ), then by Fubini�s theorem

�

�

|Vα f (z)| dλ(z) ≤

�

�

| f (w)|

�

�

h(z, z)α−N

h(z, w)α+N
dv(z)dv(w) ∼

∼

�

�

| f (w)|h(w, w)−N dv(w),

where the last relation follows by Lemma 1, applied for t = α − N > −1 and
c = α, taking in account that α > N − 1 = a(r − 1) = b + 1 >

a(r−1)
2

, where
the last inequality is veri�ed in any bounded symmetric domain �. This proves
that Vα is bounded on L1(dλ), too, ending the proof.

De�nition 1. Let BE (�) be the set of all (analytic) functions on � of the form
f = Pϕ , with ϕ ∈ E(dλ); when normed with the natural quotient norm induced
by the Bergman projection P, � f �BE (�) = inf{�ϕ�E (dλ), Pϕ = f }, it becomes
a Banach space, called the Besov space associated with E(dλ).

We shall prove a �rst description of BE (�) in term of derivatives.

Theorem 1. The Besov space BE (�) consists of all analytic functions f on
�, integrable with respect to volume measure, such that the function fN (z) =

h(z, z)N DN f (z) belongs to E(dλ). Moreover, we have the equivalence of the
norms: � f �BE (�) ∼ � fN �E (dλ).
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Proof. Let f ∈ BE (�) and let ϕ ∈ E(dλ) such that f = Pϕ ; then

fN (z) = h(z, z)N DN (Pϕ)(z) = CN h(z, z)N
�

�

Pϕ(w)dv(w)

h(z, w)2N
=

CN h(z, z)N
�

�

1

h(z, w)2N

�

�

ϕ(u)

h(u, w)N
dv(u)dv(w) =

CN h(z, z)N
�

�

ϕ(u)

�

�

1

h(z, w)2N h(u, w)N
dv(w)dv(u) =

CN h(z, z)N
�

�

ϕ(u)

h(z, u)2N
dv(u) = CN VNϕ(z)∈ E(dλ)

since, by Lemma 2, the operator VN is bounded on E(dλ); this shows that
fN ∈ E(dλ) and � fN �E (dλ) ≤ C�ϕ�BE (�); passing at the in�mum over all
ϕ ∈ E(dλ) such that f = Pϕ , we obtain � fN �E (dλ) ≤ C� f �BE (�) .

Now, if f is analytic and integrable in � and if fN ∈ E(dλ), we have
the representation formula f = DN DN f = P fN , hence f ∈ BE (�) and
� f �BE (�) ≤ � fN �E (dλ) , proving the set equality and, by the open mapping
theorem, the equivalence of norms.

We can prove now, in a similar manner a description in terms of Dα,β .

Corollary 1. Let � be a bounded symmetric domain, α > N − 1 and E(dλ)
a r.i.; let f ∈ H (�); then f ∈ BE (�) if and only if for any real number β , the
function h(z, z)α Dα,β f (z) belongs to E(dλ).

Proof. If f ∈ BE (�), then there exists a function ϕ ∈ E(dλ) such that

f (z) =

�

�

ϕ(w)

h(z, w)N
dv(w), z ∈ �;

since the integral above is uniformly convergent on compact sets and since the
operator Dα,β is continuous on H (�), we may derivate inside the integral sign
and obtain

Dα,β f (z) =

�

�

Dα,β
z [h(z, w)−N ]ϕ(w) dv(w), z ∈ �.

By the proof of Theorem 1 in [12], there exists a constant C > 0 such that

h(z, z)α |Dα,β f (z)| ≤ Ch(z, z)α
�

�

|ϕ(w)|

|h(z, w)|N+α
dv(w) = CṼαϕ(z), z ∈ �,
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where the last equality serves as de�nition of the quasilinear operator Ṽα .
Proceeding as in the proof of Lemma 2, we can verify that Ṽα is bounded on any
E(dλ), hence, the relation above, together with the fact that E(dλ) is an order
ideal, imply that h(z, z)α Dα,β f (z)∈ E(dλ).

In order to prove the converse, assume that

ϕ(z) = h(z, z)α Dα,β f (z)∈ E(dλ);

then, proceeding as in the proof of Theorem 4 of [12], we obtain

h(z, z)N |DN f (z)| ≤ Ch(z, z)N
�
�
�

�

�

hβ(w, w)

h(z, w)2N+β
ϕ(w) dv(w)

�
�
� =

= |VN,βϕ(z)| ∈ E(dλ),

since, by Lemma 2, the operator VN,β is bounded on E(d�).

Finally, we shall prove a description of Besov spaces in terms of the family
of Bergman type projections Pβ , de�ned in Section 1.

Theorem 2. Let β > −1; then Bp(�) = PβE(dλ).

Proof. If f ∈ BE (�), then by Corollary 1, h(z, z)N DN,β f (z) ∈ E(dλ). Using
the de�nition of Pβ , reproducing formulas and Fubini�s Theorem we obtain

Pβ[h(z, z)
N DN,β f (z)] = DN,β DN,β f (z) = f (z),

so BE (�) ⊆ Pβ(E(dλ)).
Now, if f = Pβϕ, with ϕ ∈ E(dλ), then by Theorem 1 in [12]

h(z, z)N DN,β f (z) = h(z, z)N
�

�

h(w, w)β DN,β[h(z, w)−(N+β) ]ϕ(w) dv(w) =

= h(z, z)N
�

�

h(w, w)β

h(z, w)2N+β
ϕ(w) dv(w) = VN,βϕ(z)∈ E(dλ),

since VN,β is bounded on E(dλ). This proves the inclusion PβE(dλ) ⊆ BE (�),
ending the proof.

We shall discuss now the separability of Besov spaces. We begin by
making a simple remark.

Proposition 1. Any analytic Besov space BE (�) contain all the analytic func-
tions on �; in particular, BE (�) contain all the polynomials.
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Proof. Let f ∈ H (�); then there exists r > 1 such that f ∈ H (�r ),
where �r = {r z, z ∈ �}; by the proof of Theorem 7 in [11], it follows that
DN f ∈ H (�r ) ⊃ H (�); this fact implies, as one can easily check, that the
function h(z, z)N DN f (z)∈ L1(dλ)∩ L∞(dλ) �→ E(dλ), hence, by Theorem 1,
f ∈ BE (�).

Theorem 3. If E(dλ) has absolute continuous norm, then the Besov space
BE (�) is a separable Banach space, with polynomials dense in it.

Proof. Let f ∈ BE (�); there exists ϕ ∈ E(dλ) such that f = Pϕ ; consider
�n ↑ � a compact exhaustion of � and let ϕn = ϕχ�n

, n ≥ 1; then
ϕn ∈ E(dλ), as E(dλ) has absolute continuous norm. Let ε > o and choose
Nε such that �ϕ − ϕNε

�E (d�) < ε/2 denote, for simplicity of notations by
g = PϕNε

; then � f − g�BE (� < ε/2. Since ϕn were chosen to be compactly
supported in �, we can easily see that the function g ∈ H (�); so there exists
r > 1 such that g ∈ H (�r ), where �r is de�ned as above and the function
h(z, z)N DNg(z) ∈ L1(dλ) ∩ L∞(dλ) �→ E(dλ); at this point, if we proceed as
in the proof of Theorem 7 in [11], we obtain

�h(z, z)N DNg(z)�E (dλ) ≤ �h(z, z)N DN g(z)�L1(dλ)∩L∞(dλ) ≤

≤ sup{|DNg(
z

r
)|, z ∈ �}.

Since the function DNg is holomorphic in �, its homogeneous expansion
converges uniformly and absolutely on �r ; so, if we replace g by its remainder
in its homogeneous expansion in the above estimation, we �nd a polynomial p ∈

BE (�) that approximates g in the norm of BE (�) with an error < ε/2; putting
all this together, we obtain � f − p�BE (�) ≤ � f − g�BE (�) + �g − p�BE (�) < ε

ending the proof.

Lemma 3. (see [11], Lemma 16). Let E(dλ) be a r.i. with absolute continuous
norm. Then, for all f ∈ E(dλ) and g ∈ E �(dλ), the following proprieties hold:

1) V 2
α f = Vα f

2) VαPα f = Vα f

3) PαVα f = Pα f

4)

�

�

Vα f (z)g(z) dλ(z) =

�

�

f (z)Vαg(z) dλ(z).

Proof. First observe that the operators Vα, V
2
α and VαPα are all bounded on

E(dλ). Since, by hypothesis, E(dλ) has absolute continuous norm, it will
coincide with the closure of all bounded functions that are compactly supported
on �. This means that it will suf�ce to check the proprieties 1-4 only for such
functions f . But this requires straightforward computations that involves the
reproducing proprieties of Pα, Dα and Fubini�s theorem.
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Theorem 4. If E(dλ) has absolute continuous norm, then with respect to the
pairing

< f, g >α=

�

�

Vα f (z)Vαg(z) dλ(z),

we have B∗
E (�) = BE �(�).

Proof. Let g ∈ BE �(�) and consider the functional

Lg( f ) =

�

�

Vα f (z)Vαg(z) dλ(z);

then clearly Lg is a bounded linear functional on E(dλ), as, by Holder�s
inequality, we have

|Lg( f )| ≤ �Vα f �E (dλ)�Vαg�E �(dλ) = � f �BE (�)�g�BE� (�);

this prove that BE � (�) �→ BE (�), continuously.

Let now F be an arbitrary bounded functional on BE (�); we have to prove
that there exists a function g ∈ E �(dλ) such that F = Lg . As Vα maps BE (�)
boundedly to E(dλ), we may extend the functional F ◦V −1

α : Vα(BE (�)) → C ,
by using Hahn-Banach theorem, up to a bounded linear functional on E(dλ),
denoted by �F ◦ V −1

α . Since E(dλ) has absolute continuous norm, its dual
E(dλ)∗ is canonically isomorphic with its associate space E �(dλ), so there exists
a function ψ ∈ E �(dλ), such that

�F ◦ V −1
α (h) =

�

�

h(z)ψ(z)dλ(z), ∀h ∈ E(dλ);

consequently,

F( f ) = �F ◦ V −1
α (Vα f ) =

�

�

Vα f (z)ψ(z) dλ(z), ∀ f ∈ BE (�).

By Lemma 3
�

�

Vα f (z)ψ(z) dλ(z) =

�

�

V 2
α f (z)ψ(z) dλ(z) =

=

�

�

Vα f (z)Vαψ(z) dλ(z), f ∈ BE (�).

So if we take g = Vαψ , then we obtain g ∈ BE �(�) and F( f ) = Lg( f ),
f ∈ BE (�).

We shall prove now an interpolation theorems for Besov spaces, which
shall be the key tool for the study of Schatten ideals of little Hankel operators.
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Theorem 5. If ρ be a monotone Riesz - Fischer norm, 1 ≤ p0 < p1 ≤ ∞ and
E(dλ) = (L p0 (dλ), Lp1

(dλ))ρ , then (Bp0
(�), Bp1

(�))ρ = BE (�).

Proof. Consider again the linear operator VN f (z) = h(z, z)N DN f (z); since
VN is bounded from Bpi

(�) to L pi (�), i = 0, 1 by interpolation, VN maps
boundedly (Bp0

(�), Bp1
(�))ρ to E(dλ); hence for all f ∈ (Bp0

(�), Bp1
(�))ρ ,

we have

� f �BE (�) = �hN (z, z)DN f (z)�E (dλ) ≤ � f �(Bp0
(�),Bp1

(�))ρ ,

proving the continuous inclusion (Bp0
(�), Bp1

(�))ρ �→ BE (�).

Now assume that f ∈ BE (�) and let f = Pϕ , where ϕ ∈ E(dλ); we want
to proof that f ∈ (Bp0

(�), Bp1
(�))ρ .

By the de�nition of the Besov spaces, the Bergman projection maps
boundedly L pi (dλ) onto Bpi

(�), i = 0, 1 hence, by interpolation, we deduce
that P maps boundedly E(dλ) to (Bp0

(�), Bp1
(�))ρ . So, if f ∈ BE (�) and

ϕ ∈ E(dλ) is such that Pϕ = f , then � f �(Bp0
(�),BP1

(�))ρ ≤ �ϕ�E (dλ); �nally, we
get � f �(Bp0

(�),BP1
(�))ρ ≤ � f �BE (�) , proving that BE (�) �→ (Bp0

(�), BP1
(�))ρ

continuously.

We may prove a Boyd type theorem for Besov spaces. We say that a
quasilinear operator T is of weak type (p, q) if T is bounded from Bp,1 to
Bp,∞, where we denoted by Bp,q the space BL p,q (dλ)(�).

Proposition 1. Let E(dλ) be a r.i. over (�, dλ), and let p and q be such that
1 ≤ p < pE ≤ qE < q < ∞, where pE and qE are the Boyd indices of E(dλ).
Then any operator T that is of weak type (p, q) and (q, q) is bounded on BE (�).

Proof. By Theorem 1, the linear operator VN f (z) = h(z, z)N DN f (z) is
bounded from BE (�) to E(d�), so the quasilinear operator VN ◦ T ◦ P is of
(classic) weak type (p, p) and (q, q) so, according to Boyd�s theorem (see [3],
chap III), it is bounded on E(dλ), too and there exists a constant C > 0 such
that �VN ◦ T ◦ Pϕ�E (dλ) ≤ C�ϕ�E (dλ) ϕ ∈ E(dλ). Now �x f ∈ BE (�); then
there exists ϕ ∈ E(dλ) such that f = Pϕ , so �VN ◦ T f �E (dλ) ≤ C�ϕ�E (dλ);
passing at the in�mum over all ϕ ∈ E(d�) such that f = Pϕ , we get
�VN ◦ T f �E (dλ) ≤ C� f �BE (�) , for all f ∈ BE (�). Since the function T f
is analytic, the latter relation implies that T f ∈ BE(�) and �T f �BE (�) ≤ C� f �,
for all f ∈ BE (�), proving that T is bounded on BE (�).
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4. Schatten ideals of Hankel operators.

Let E be a monotone Riesz-Fischer sequences space and denote by

SE = {T : L2
a(dvα) → L2

a(dvα), T compact :

�T�Se
= �{sn(T )}n∈N �E < ∞}

the Schatten ideal associated with the r.i. sequence space E where

sn(T ) = inf{�T − R�, rankR ≤ n}

is the nth singular number of the compact operator T ; {sn}n∈N form a decreasing
sequence, that coincideswith the decreasing rearrangement of the eigenvalues of
the compact and positive operator (T T ∗)1/2; when E = l p , we shall denote by
Sp the classic Schatten ideal Slp. The interpolation proprieties of the Calderon
couple Sp0

, Sp1
) were investigated in [1]. We shall remind this useful result.

Lemma 4. (see [1], Theorem 2). If ρ is a monotone Riesz-Fischer norm, 1 ≤

p0 ≤ p1 ≤ ∞, then (Sp0
, Sp1

)ρ = S(lp0, lp1)ρ .

Now we shall reformulate a result which is implicitly proved in [11].

Lemma 5. (see [11], Lemma 21). With the notations above, if 1 ≤ p0 ≤ p1 ≤

∞, and if f ∈ E(dλ), then the little Hankel operator h f ∈ SE .

Proof. Just use Lemma 2 in [11] and Lemma 4.

At this point, if we proceed as in the proof of Theorem 22 in [11] and use
the previous lemma, we can easily deduce the following.

Lemma 6. Let E(dλ) be a r.i. with absolute continuous norm; then for all
f ∈ E(dλ) and g ∈ E �(dλ), the operator h f hg is in the trace class S1 and

T r(h f hg) =

�

�

Vα f (z)Vαg(z) dλ(z).

Finally, we may prove

Theorem 6. Let α > −1, f ∈ L2(�, dvα) and E(dλ) a r.i. with absolute
continuous norm; then we have h f ∈ SE if and only if Vα f ∈ E(dλ).
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Proof. By [11], Lemma 20, we have hVα f = h f , for all f ∈ L2(�, dvα), hence,
since by hypothesis Vα f ∈ E(dλ), by Lemma 5, it follows that h f ∈ SE .

For the converse, if f ∈ L2(�, dvα) and h f ∈ SE , then using Lemma 6,

the boundedness from E �(dλ) to SE � of the operator g → hg and a duality
argument, we obtain

�Vα f �E (dλ) = sup
��
�
�

�

�

Vα f (w)g(w) dλ(w)
�
�
� , �g�E �(dλ) ≤ 1

�
=

sup{Tr(h f hg) , �g�E �(dλ) ≤ 1} < ∞.

Corollary 2. Under the same hypothesis of Theorem 6, if f is holomorphic on
�, then we have h f ∈ SE if and only if f ∈ BE .
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