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IRREDUCIBILITY OF HURWITZ SPACES OF COVERINGS

OF AN ELLIPTIC CURVE OF PRIME DEGREE WITH

ONE POINT OF TOTAL RAMIFICATION

FRANCESCA VETRO

Let Y be an elliptic curve, p a prime number and WHp,n(Y ) the
Hurwitz space that parametrizes equivalence classes of p-sheeted branched
coverings of Y , with n branch points, n − 1 of which are points of simple
rami�cation and one of total rami�cation. In this paper, we prove that
WHp,n(Y ) is irreducible if n − 1 ≥ 2p.

Introduction.

In this paper we prove the irreducibility of the Hurwitz space WHp,n(Y )
which parametrizes the equivalence classes of coverings of an elliptic curve Y,
whose degree p is a prime number and which have n−1 ≥ 2p points of simple
rami�cation and one point of total rami�cation.

Most of the results on irreducibility of Hurwitz spaces obtained so far
treat the case of coverings of P

1. Hurwitz proved in [6] the irreducibility of
Hd,n(P

1), the space which parametrizes simple coverings of degree d . Arbarello
proved in [1] the irreducibility of any of the Hurwitz spaces which parametrize
coverings of P

1 which have n − 1 points of simple rami�cation and one point
of total rami�cation. The case of coverings of P

1 with n − 1 points of simple
rami�cation and one point of arbitrary rami�cation was studied by Natanzon
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[9], Kluitmann [7] and Mochizuki [8], who proved the irreducibility of the
corresponding Hurwitz spaces. Harris, Graber and Starr studied in [5] the
Hurwitz spaces which parametrize simple degree d coverings of a positive
genus curve Y whose monodromy group is the group Sd . They proved the
irreducibility of these spaces when the number of branch points n satis�es
n ≥ 2d .

1. Preliminaries.

Let Y be an elliptic curve, X be a compact, connected Riemann surface and
f : X → Y be an analytic map onto Y . We recall some standard de�nitions
(see e.g.[4]). A branch point a ∈ Y is called a point of simple rami�cation for f
if f is rami�ed at only one point x ∈ f −1(a) and the rami�cation index e(x ) of
f at x is 2. A branch point a ∈ Y is called a point of total rami�cation for f if
� f −1(a) = 1. Two p-sheeted branched coverings f : X1 → Y and g : X2 → Y
are said to be equivalent if there exist a biholomorphic map ϕ : X1 → X2 such
that g◦ϕ = f . The equivalence class containing f is denoted by [ f ]. Let Sp be
the symmetric group on p letters acting on the set {1, ..., p}. Let us say that two
homomorphisms ϕ and η from π1(Y\A, y) to Sp are equivalent if they differ by
a inner automorphism, i.e. there is a σ ∈ Sp such that ϕ([α]) = ση[α]σ−1 for
any [α]∈ π1(Y\A, y).

Let p be a prime number and let WHp,n(Y ) be the Hurwitz space that
parametrizes equivalence classes of p-sheeted branched coverings of Y , with n
branch points, n − 1 of which are points of simple rami�cation and one of total
rami�cation. Let

WH A
p,n(Y ) = {[ f ]∈WHp,n(Y ) : f has discriminant locus A = {a1, ..., an }}.

By Riemann�s existence theorem the equivalence classes [ f ] ∈ WH A
p,n(Y )

are in one-to-one correspondence with equivalence classes of homomorphisms
µ : π1(Y\A, y) → Sp whose images are transitive subgroups of Sp . Let
γ1, ..., γn, α, β be the generators of π1(Y\A, y) represented in �gure 1.

The images via the homomorphisms µ of these generators determine a
(n + 2)-tuple of permutations of Sp

(µ(γ1), ..., µ(γn ), µ(α), µ(β)) = (t1, ..., tn, tα, tβ)

such that the ti with 1 ≤ i ≤ n are all transpositions except one that is a p-
cycle; tα, tβ are any two permutations of Sp and

�n
i=1 ti = [tα, tβ]. Since one

of ti is a p-cycle and p is prime then, if n ≥ 2, < t1, ..., tn >= Sp.
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Figure 1.

Let Sn+2
p be (n + 2)-fold product of Sp . De�ne in Sn+2

p an equivalence
relation ∼ as follows

(t1, ..., tn, tn+1, tn+2) ∼ (µ1, ..., µn , µn+1, µn+2)

⇔ µi = stis
−1 for some s ∈ Sp and for all i (1 ≤ i ≤ n + 2).

For the rest of the paper we suppose n ≥ 2. Let [t1, ..., tn+2] be the
equivalence class containing (t1, ..., tn+2) and let

Ap,n+2 = {[t1, ..., tn, tα, tβ] : ti (i = 1, ..., n) are all transpositions except
one that is a p-cycle,

�n
i=1 ti = [tα, tβ]}.

By Riemann�s existence theorem it is possible to identify WH A
p,n(Y ) with

Ap,n+2 via the one-to-one map

ω : WH A
p,n(Y ) → Ap,n+2

de�ned by
ω([ f ]) = [µ(γ1), ..., µ(γn), µ(α), µ(β)].

Let Y (n) be the symmetric product of Y with itself n times and let � be
the codimension 1 locus of Y (n) consisting of non simple divisors. Let δ :
WHp,n(Y ) → Y (n)\� be the map which assigns to each [ f ] ∈ WHp,n(Y ) its
discriminant locus.

It is well known (see [4]) that it is possible to de�ne a topology on
WHp,n(Y ) in such a way that δ becomes a topological covering map. So the
braid group π1(Y

(n)\�, A) acts on the �ber δ−1(A) = WH A
p,n(Y ). Our aim

is to prove that the action of π1(Y
(n)\�, A) on this �ber is transitive. This
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would imply WHp,n(Y ) is connected. In order to prove that π1(Y
(n)\�, A)

acts transitively on Ap,n+2 , i.e. on WH A
p,n(Y ), it is suf�cient to prove that it

is possible, acting successively by the elements of a system of generators of
π1(Y

(n)\�, A), to bring every [t1, ..., tn, tα, tβ]∈WH A
p,n(Y ) to the normal form

(1) [(12...p), (12), ..., (12), (23), ..., (p − 1 p), id, id]

where the transpositions (12) are in odd number and each transposition (i i+1)
with i �= 1 is only present one time.

Remark. It is well known (see [2, 3]) that the generators of π1(Y
(n)\�, A)

are the elementary braids σi (i = 1, ..., n − 1) and the braid moves ρj , τj
( j = 1, ..., n) relative respectively to the loops α and β . The elementary braids
σi act on Ap,n+2 (see [6]) bringing the class

[t1, ..., ti−1, ti, ti+1, ..., tα, tβ]

to
[t1, ..., ti−1, ti ti+1t

−1
i , ti , ..., tn, tα, tβ].

The actions of ρj and τj were studied in [5]. The action of the generators τj
( j = 1, ..., n) changes the loops α and γj while it leaves unchanged the loops
γi (for every i �= j ) and β . When tn is a transposition τn transforms tα into t

�

α

where

(2) t
�

α = tα tn.

Analogously the action of ρj ( j = 1, ..., n) changes γj and β , leaving un-
changed the γi for every i �= j (i = 1, ..., n) and α. When t1 is a transposition
ρ1 transforms tβ into t

�

β where

(3) t
�

β = tβ t1.

2. Irreducibility of WHp,n(Y ).

In this section we will prove that WHp,n(Y ) is irreducible for n − 1 ≥ 2p.
Since WHp,n(Y ) is smooth it suf�ces to prove that WHp,n(Y ) is connected. Let

(4) [t1, ..., tn, tα, tβ]
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be an element of δ−1(A) = WH A
p,n(Y )

∼= Ap,n+2 . To prove that (4) is in the

orbit of (1) under the action of π1(Y
(n)\�, A), it is suf�cient to prove that

there are braid moves transforming (4) into [t
�

1, ..., t
�

n, id, id] where the t
�

i are all
transpositions except one that is a p-cycle,

�n
i=1 ti = id and < t

�

1, ..., t
�

n >= Sp .
In fact, once this is proved we observe that the equivalence class of (t

�

1, ..., t
�

n)
can be thought as the Hurwitz-system relative to a branched covering of P

1 and
utilizing the Arbarello�s result [1] we obtain that [t

�

1, ..., t
�

n, id, id] is in the orbit
of (1) under the action of π1(Y

(n)\�, A). At �rst we will prove that (4) can be
transformed, via the action of suitable σi and σ

−1
i , into [t

�

1, ..., t
�

n−2, τ, τ, tα, tβ]
where τ is a transposition of Sp. After we will prove that there are braid
moves transforming [t

�

1, ..., t
�

n−2, τ, τ, tα, tβ] into [t
�

1, ..., t
�

n−2, τ
�

, τ
�

, tα, tβ] with

τ
�

arbitrary transposition of Sp . Once this is proved it is suf�cient to act with
suitable ρi and τj to conclude.

Lemma 1. Let [t1, ..., tn, tα, tβ] be an element of W H A
p,n(Y ). Suppose n − 1 ≥

2p. Then there are braid moves transforming

[t1, ..., tn, tα, tβ] into [t
�

1, ..., t
�

n−2, τ, τ, tα, tβ],

where τ is a transposition of Sp.

Proof. Acting with elementary braids it is possible to bring (4) to [t̄1, t̄2, ..., t̄n,
tα, tβ] where t̄1 is a p-cycle. Let G be the group generated by the transpositions
t̄2, ..., t̄n and let D1, ..., Dr be the domains of transitivity of G . Then

G = SD1
× ... × SDr

.

We observe that if t̄j and t̄j+1 (2 ≤ j ≤ n − 1) are such that t̄j ∈ SDh
and

t̄j+1 ∈ SDk
with h �= k and 1 ≤ h, k ≤ r , then operating with σj we obtain

[..., t̄j , t̄j+1, ...] → [..., t̄j t̄j+1 t̄
−1
j , t̄j , ...]

where t̄j t̄j+1 t̄
−1
j = t̄j t̄

−1
j t̄j+1 = t̄j+1 because the Di (i = 1, . . . , r) are disjoint.

So acting with elementary braids on transpositions in different domains of
transitivity, the result is to interchange place. Then acting with appropriate
σi and σ

−1
i it is possible to replace the sequence t̄2, ..., t̄n with a new one in

which, for every j , all transpositions moving elements of a Dj stay together.
The assumption n − 1 ≥ 2p assures that the number of ti belonging to SDj

is
greater or equal to 2|Dj |, for at least one Dj (1 ≤ j ≤ r). Once this is achieved
the proof is the same as the proof of Proposition 3.1 in [5].
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Lemma 2. Let [t1, . . . , tn−2, τ, τ, tα, tβ] be an element of W H A
p,n(Y ), where t1

is a p − cycle and τ is a transposition of Sp. Then there are braid moves
transforming

[t1, . . . , tn−2, τ, τ, tα, tβ] into [t1, . . . , tn−2, τ
�

, τ
�

, tα, tβ]

where τ
�

is an arbitrary transposition of Sp.

Proof. Let H =< t1, . . . , tn−2 >, let h ∈ H and let h = h1 · · ·hs where hi
or h−1

i for i = 1, . . . , s lies in the set {t1, . . . , tn−2}. De�ne τ h = h−1τh. We
will prove that acting with braid moves and their inverses it is possible to bring
[t1, . . . , tn−2, τ, τ, tα, tβ] to [t1, . . . , tn−2, τ h, τ h, tα, tβ].

We distinguish two cases. If h1 is equal to ti for some i = 1, . . . , n − 2,
acting with suitable inverses of elementary braids move the pair (τ, τ ) to the left
of ti . Applying σ−1

i and σ−1
i+1 we bring [t1, . . . , ti−1, τ, τ, ti, . . . , tn−2, tα, tβ] to

[t1, . . . , ti−1, ti, τ ti , τ ti , ti+1, . . . , tn−2, tα, tβ]. Now acting with the appropriate
σj move (τ ti , τ ti ) to the (n − 1) − th and n − th place.

If h1 is equal to t−1
i for some i = 1, . . . , n−2, we move (τ, τ ) to the right

of ti and applying σi and σi+1 we bring

[t1, . . . , ti−1, ti, τ, τ, ti+1, . . . , tn−2, tα, tβ]

to
[t1, . . . , ti−1, τ h1 , τ h1, ti, . . . , tn−2, tα, tβ].

Now move (τ h1 , τ h1) to the (n − 1) − th and n − th place. Proceeding in this
way successively for every hi (i = 2, . . . , s) we conclude.

So Lemma 1 and Lemma 2 assure that choosing h appropriately we may
obtain among the �rst n permutations of (4) an arbitrary transposition of Sp .

Now we are ready to prove the following theorem.

Theorem 1. WHp,n(Y ) is connected for (n − 1) ≥ 2p.

Proof. Let [t1, . . . , tn, tα, tβ] ∈WH A
p,n(Y ). Let tα = λ1λ2 · · ·λs be a factoriza-

tion of tα as product of disjoint cycles such that �λ1 ≥ �λ2 ≥ . . . ≥ �λs and let
tβ = µ1µ2 · · ·µt be a factorization of tβ in the product of disjoint cycles such
that �µ1 ≥ �µ2 ≥ . . . ≥ �µt . (Note that λi and µj may also be trivial).

De�ne the norm of tα and tβ as follows

|tα| :=

s�

i=1

(�λi − 1) and |tβ | :=

t�

j=1

(�µj − 1)
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We will prove the transitivity of the action of π1(Y
(n)\�, A) onWH A

p,n(Y ) using
induction on |tα| + |tβ |.

If (4) is such that |tα|+|tβ | = 0 then tα = tβ = id , i.e. [t1, . . . , tn, tα, tβ] =

[t1, . . . , tn, id, id]. So applying the result of [1] we obtain that (4) is in the orbit
of (1) under the action of π1(Y

(n)\�, A).
Therefore suppose that |tα| + |tβ | > 0 and suppose, by way of induction,

that for each [t1, . . . , tn, t
�

α, t
�

β] such that |t
�

α|+|t
�

β | < |tα|+|tβ | it is possible, act-

ing with the braid moves σi , ρj , τh and their inverses, to bring [t1, . . . , tn, t
�

α, t
�

β]

to [t
�

1, . . . , t
�

n, id, id].
|tα| + |tβ | > 0 implies that either |tα| > 0 or |tβ | > 0. Suppose �rst that

|tα| > 0. Let us choose a transposition σ such that �λ1σ = �λ1 −1. By Lemma
1 and Lemma 2 [t1, . . . , tn, tα, tβ] is in the orbit of [t

�

1, . . . , t
�

n−2, σ, σ, tα, tβ]
under the action of π1(Y

(n)\�, A). Acting with the braid move τn , by (2), we
obtain a new class [t

�

1, . . . , t
�

n−2, σ, t
�

n, t
�

α, tβ] such that

|t
�

α| + |tβ | < |tα| + |tβ |.

By the induction assumption applied to [t
�

1, . . . , t
�

n−2, σ, t
�

n, t
�

α, tβ] we conclude
that there are braid moves transforming (4) into [t̄1, . . . , t̄n, id, id].

If instead it holds |tβ | > 0 and |tα| = 0, let σ be a transposition of Sp such
that µ1σ is a (�µ1 − 1) − cycle. By Lemma 1 and Lemma 2 [t1, . . . , tn, id, tβ]
is in the orbit of [t

�

1, . . . , t
�

n−2, σ, σ, id, tβ].

Acting with σ
−1
n−2, σ

−1
n−3, . . . , σ

−1
1 and σ

−1
n−1, . . . , σ

−1
2 we bring [t1, . . . ,

tn, id, tβ] to [σ, σ, t
�

3, . . . , t
�

n, id, tβ]. Applying ρ1, by (3), we have [t1, . . . ,

tn, id, tβ] is bringed to [t
�

1, σ, t
�

3, . . . , t
�

n, id, t
�

β ], with |t
�

β | < |tβ |. By the
induction assumption we conclude [t1, . . . , tn, id, tβ] is in the orbit of [t̄1, . . . ,

t̄n, id, id]. In this way it is proved that there are braid moves transforming
[t1, . . . , tn, tα, tβ] into [t

�

1, . . . , t
�

n, id, id]. To conclude it is suf�cient to apply
the Arbarello�s result [1].
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