

LE MATEMATICHE Vol. LVII (2002) – Fasc. II, pp. 275–286

COLOURINGS OF VOLOSHIN FOR ATS (v)

ALBERTO AMATO

A mixed hypergraph is a triple H=(S,C,D), where S is the vertex set and each of C,D is a family of not-empty subsets of S, the C-edges and D-edges respectively. A strict k-colouring of H is a surjection f from the vertex set into a set of colours $\{1, 2, \ldots, k\}$ so that each C-edge contains at least two distinct vertices x, y such that f(x) = f(y) and each D-edge contains at least two vertices x, y such that $f(x) \neq f(y)$. For each $k \in \{1, 2, \ldots, |S|\}$, let r_k be the number of partitions of the vertex set into k not-empty parts (the colour classes) such that the colouring constraint is satisfied on each C-edge and D-edge. The vector $\mathbf{R}(H) = (r_1, \ldots, r_k)$ is called the chromatic spectrum of H. These concepts were introduced by V. Voloshin in 1993 [6].

In this paper we examine colourings of mixed hypergraphs in the case that H is an ATS(v).

1. Introduction.

A mixed hypergraph is a triple H=(S,C,D), where S is the vertex set and each of C,D is a family of subsets of S, the C-edges and D-edges respectively. A proper k-colouring of a mixed hypergraph is a mapping f from the vertex set into a set of colours $\{1, 2, ..., k\}$ so that each C-edge contains at least two distinct vertices x, y such that f(x) = f(y) and each D-edge contains at least two vertices x, y such that $f(x) \neq f(y)$. If C = D, then H is called a bihypergraph.

Entrato in redazione il 30 Luglio 2003.

A mixed hypergraph is called k-colourable if it admits a proper colouring with at most k colours; it is called uncolourable if it admits no colouring. A $strict\ k$ -colouring is a proper k-colouring using all k colours. The minimum number of colours in a colouring of H is called the $lower\ chromatic\ number\ \chi(H)$, the maximum number of colours in a strict colouring of H is called the $upper\ chromatic\ number\ \chi^*(H)$.

If $|\mathbf{S}| = n$, for each $k \in \{1, 2, ..., n\}$, let r_k be the number of partitions of the vertex set into k not-empty parts (called *colour classes*) such that the colouring constraint is satisfied on each C-edge and D-edge. In fact, r_k is the number of different strict k-colourings if we ignore permutations of colours. The vector $\mathbf{R}(H) = (r_1, ..., r_k)$ is called the *chromatic spectrum* of H.

These concepts were introduced by V. Voloshin in 1993 [6].

A Steiner System $S_{\lambda}(t, k, v)$ $(t, k, v, \lambda \in \mathbb{N})$ is a pair (S, B) where S is a finite set of v vertices and B is a family of subsets of S called *blocks* such that:

- 1) each block contains k vertices;
- 2) for each t-subset **T** of **S**, there exist exactly λ blocks containing **T**.
- If $\lambda = 1$, a system $\mathbf{S}_1(t, k, v)$ is denoted by $\mathbf{S}(t, k, v)$. A system $\mathbf{S}(2, 3, v)$ is called a **Steiner Triple System** and is denoted by $\mathbf{STS}(v)$. As it is well known, there exists an $\mathbf{STS}(v)$ if and only if $v \equiv 1 \pmod{6}$ or $v \equiv 3 \pmod{6}$.

An **Almost Triple System** of order v, briefly an ATS(v), is a pair (S, B) where S is a finite set of v vertices and B is a family of subsets of S, called *blocks*, such that:

- 1) there exists *exactly* one block containing 5 vertices;
- 2) all the other blocks contain 3 vertices;
- 3) each pair of vertices of **S** is contained in *exactly* one block of B.

It is possible to prove that an ATS(v) exists if and only if $v \equiv 5 \pmod{6}$.

In what follows, the block containing five vertices will be always denoted by b^* .

We illustrate now a technique for a recurrent construction of ATS(v). It is called $(v \to 2v+1)$ -construction and allows to obtain an ATS(2v+1) from an ATS(v). We will refer to this construction as **construction A**.

Construction A

Let (S, B) be an ATS(v), where $S = \{x_1, ..., x_v\}$, and let $T = \{y_1, ..., y_{v+1}\}$ be a (v + 1)-set of vertices disjoint from S. As v + 1 is an even number, it is possible to consider a 1-factorization $F = (F_1, F_2, ..., F_v)$ of the complete graph K_{v+1} defined on T. Let be $S' = S \cup T$, $B' = B \cup C$, where the set C is defined as follows:

$$\forall i \in \{1, ..., v\} \{x_i, y', y''\} \in C \leftrightarrow \{y', y''\} \in F_i$$
.

It is easy to prove that H' = (S', B') is an ATS(2v + 1).

In what follows, we will consider ATS(v) as mixed hypergraphs in which C = D: we will call them BATS(v).

2. Preliminary results.

In this section we prove some general properties for BATS(v).

Theorem 2.1. Let H be a **BATS**(v) with $\chi^*(H) = k$ and let H' be a **BATS**(2v + 1) obtained from H by a construction A. Then

- *i*) $\chi^*(H') \le k + 1$
- ii) If H is h-colourable, then H' is (h + 1)- colourable.

Proof. Following the symbolism of construction A, let be $H = (\mathbf{S}, B)$, $H' = (\mathbf{S}', B')$ respectively an $\mathbf{ATS}(v)$ and an $\mathbf{ATS}(2v+1)$, where $|\mathbf{S}| = v$, $|\mathbf{S}'| = 2v+1$, $\mathbf{T} = \mathbf{S}' - \mathbf{S} = \{y_1, y_2, ..., y_{v+1}\}$. Since $\chi^*(H) = k$, let f be a k-colouring of H. Suppose that g is an h-colouring of H', for $h \geq k+2$. Since $\chi^*(H) = k$, then there exist at least two vertices $y', y'' \in \mathbf{T}$ such that $g(y') \neq g(y'')$ and $\{g(y'), g(y'')\} \cap g(\mathbf{S}) = \emptyset$. If $\{y', y''\} \in F_j$, then $\{x_j, y', y''\} \in B'$ and the triple $\{x_j, y', y''\}$ doesn't contain two vertices with a common colour. Therefore, for every h-colouring of H', $h \leq k+1$. Further, there exists a (k+1)-colouring of H': it sufficies to extend the k-colouring f of H to H', associating with all the vertices of \mathbf{T} a same colour, different from the k colours used for the vertices of H. It follows $\chi^*(H') = k+1$.

The second statement follows considering that it is always possible to give a same colour to the vertices of T, distinct from all the colours used for the vertices of S.

Theorem 2.2. Let H = (S, B) be a BATS(v) with $\chi^*(H) = k$ and let H' be a BATS(2v + 1) obtained from H by a construction A. If there exists a k-colouring f of H', then

$$\begin{cases} \sum_{i=1}^{k} \left(x_i^2 + (2a_i - 1)x_i \right) = v(v+1) \\ \sum_{i=1}^{k} x_i = v+1 \end{cases}$$

where, for each $i \in \{1, 2, ..., k\}$, a_i, x_i are respectively the number of vertices of S and S' - S coloured by the colour i in f.

Proof. Since $\chi^*(H) = k$, then, for every k-colouring f of H', f/\mathbf{S} is a k-colouring of \mathbf{S} . The second equality is immediate. Prove the first. Consider a colour $i, i \in \{1, 2, ..., k\}$. If F is the 1-factorization of \mathbf{K}_{v+1} on $\mathbf{T} = \mathbf{S}' - \mathbf{S}$ used to define H', then there are a_i factors of F associated with a_i vertices of \mathbf{S} coloured by i. So, in \mathbf{T} there are $a_i x_i$ pairs having exactly one vertex coloured by the colour i and

$$\begin{pmatrix} x_i \\ 2 \end{pmatrix}$$

pairs having both vertices coloured by i.

Therefore, the number of monochromatic pairs of **T** is:

$$\sum_{i=1}^{k} {x_i \choose 2} = \sum_{i=1}^{k} a_i \left(\frac{v+1}{2} - x_i \right)$$

hence

$$\sum_{i=1}^{k} \left(x_i^2 - x_i \right) = \sum_{i=1}^{k} \left(a_i(v+1) - 2a_i x_i \right)$$

from which, by a simple calculation, we obtain the first equality and the statement follows. \Box

Theorem 2.3. Let H be a BATS(v). If v > 5, then H is not 2-colourable.

Proof. Suppose $\chi(H) = 2$ and let **A**, **B** the colour classes of a 2-colouring of H, $|\mathbf{A}| = p$, $|\mathbf{B}| = v - p$. We say of type 1 the blocks b of H such that $|\mathbf{A} \cap b| = 1$, $|\mathbf{B} \cap b| = 2$ and of type 2 the blocks b of H such that $|\mathbf{A} \cap b| = 2$, $|\mathbf{B} \cap b| = 1$. Let b^* be the block of size 5.

Suppose $|\mathbf{A} \cap b^*| = 2$, $|\mathbf{B} \cap b^*| = 3$. The number of blocks of H is:

$$\left\lceil \binom{p}{2} - 1 \right\rceil + \left\lceil \binom{v - p}{2} - 3 \right\rceil + 1 = \frac{v(v - 1) - 14}{6}$$

hence

$$3p^2 - 3pv + v^2 - v - 2 = 0$$

and so v = 5, p = 2, 3.

Suppose $|\mathbf{A} \cap b^*| = 1$, $|\mathbf{B} \cap b^*| = 4$. If we add the number of blocks of type 1 to the number of blocks of type 2, we obtain:

$$\binom{p}{2} + \left[\binom{v-p}{2} - 6 \right] + 1 = \frac{v(v-1) - 14}{6}$$

hence

$$3p^2 - 3pv + v^2 - v - 8 = 0$$

and so v = 5, p = 1, 4.

The statement is proved. \Box

3. Colourings for BATS(11).

In what follows, we indicate by the sequence $\mathbf{A}^{n_1}\mathbf{B}^{n_2}$, ... a colouring of a mixed hypergraph H which associates the colour \mathbf{A} with n_1 vertices, the colour \mathbf{B} with n_2 vertices,.... If H is a $\mathbf{BATS}(5)$, then it admits only the 2-colourings $\mathbf{A}^4\mathbf{B}$, $\mathbf{A}^3\mathbf{B}^2$, the 3-colourings $\mathbf{A}^3\mathbf{BC}$, $\mathbf{A}^2\mathbf{B}^2\mathbf{C}$ and the 4-colouring $\mathbf{A}^2\mathbf{BCD}$, so that $\chi(H) = 2$, $\chi^*(H) = 4$.

In what follows, H will be an ATS(11) defined on $S' = \{1, 2, ..., 11\}$. Further: $S = \{1, 2, 3, 4, 5\}$, T = S' - S, f will be a colouring of H, $F = (F_1, F_2, ..., F_5)$ will be a 1-factorization of K_6 defined on T. The blocks of H which are not contained in S are the triples $\{i, x, y\}$, for every $i \in \{1, 2, ..., 5\}$ and $\{x, y\} \in F_i$. To within to isomorphisms the triples of an ATS(11) are obtained from a 1-factorization of the type:

Theorem 3.1. All possible 3-colourings for a BATS(11) are of type A^6BC^4 , $A^3B^2C^6$, $A^5B^4C^2$.

Proof. Let H be a **BATS**(11). From Theorem 2.1, ii), H is 3-colourable. Let f be a 3-colouring of H. Observe that f/\mathbf{S} can be a 2-colouring or a 3-colouring on \mathbf{S} .

We denote by x_A , x_B , x_C the colour class cardinalities on **T** and a, b, c the colour class cardinalities on **S**. By Theorem 2.2, we have $x_A^2 + x_B^2 + x_C^2 + (2a-1)x_A + (2b-1)x_B + (2c-1)x_C = 30$, $x_A + x_B + x_C = 6$.

If f/\mathbf{S} is a 2-colouring $\mathbf{A}^4\mathbf{B}$ on \mathbf{S} , we have a=4, b=1, c=0, and $x_A^2+x_B^2+x_C^2+7x_A+x_B-x_C=30$, $x_A+x_B+x_C=6$, $x_C>0$. The possible solutions are: (0,5,1), (2,3,1), (2,0,4), (0,0,6). Since $x_A\leq 3$, $x_B\leq 3$, the first solution doesn't imply a colouring; further, in the second triple, $x_C=1$ implies $x_A\geq 4$ and this is not possible. The triple (2,0,4) implies a 3-colouring $\mathbf{A}^6\mathbf{BC}^4$. The triple (0,0,6) implies the 3-colouring $\mathbf{A}^4\mathbf{BC}^6$.

If f/\mathbf{S} is a 2-colouring $\mathbf{A}^3\mathbf{B}^2$ on \mathbf{S} , we have a=3, b=2, c=0, and $x_A^2 + x_B^2 + x_C^2 + 5x_A + 3x_B - x_C = 30, x_A + x_B + x_C = 6, x_C > 0$. The

possible solutions are: (0, 4, 2), (3, 1, 2), (3, 0, 3), (0, 0, 6). Since $x_B \le 3$, the first solution is not acceptable. The second and the third solutions imply the existence of 3-chromatic blocks. The solution (0, 0, 6) implies a 3-colouring $\mathbf{A}^3\mathbf{B}^2\mathbf{C}^6$.

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^3\mathbf{BC}$ on \mathbf{S} , we have a=3, b=1, c=1, and $x_A^2+x_B^2+x_C^2+5x_A+x_B+x_C=30$, $x_A+x_B+x_C=6$, $x_C>0$. It is possible to prove that there are not natural solutions.

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^2\mathbf{B}^2\mathbf{C}$ on \mathbf{S} , we have a=2, b=2, c=1, $x_A^2+x_B^2+x_C^2+3x_A+3x_B+x_C=30$, $x_A+x_B+x_C=6$, $x_C>0$. The possible solutions are: (2,3,1), (3,2,1), (0,3,3), (3,0,3), (0,2,4), (2,0,4). Since $x_C\leq 3$, the last two solutions are not acceptable. The third and the fourth solutions imply the existence of 3-chromatic blocks. The triple (2,3,1) implies the 3-colouring $\mathbf{A}^4\mathbf{B}^5\mathbf{C}^2$. The solution (3,2,1) implies a 3-colouring $\mathbf{A}^5\mathbf{B}^4\mathbf{C}^2$.

The statement is proved. \Box

Theorem 3.2. All possible 4-colourings for a BATS(11) are of type A^3BCD^6 , $A^2B^2CD^6$.

Proof. Let H be a **BATS**(11) and let f be a 4-colouring of H. Observe that f/\mathbf{S} can be a 3- or a 4-colouring on \mathbf{S} . Denote by x_A , x_B , x_C , x_D the colour class cardinalities on \mathbf{T} and a, b, c, d the colour class cardinalities on \mathbf{S} . By Theorem 2.2, $x_A^2 + x_B^2 + x_C^2 + x_D^2 + (2a-1)x_A + (2b-1)x_B + (2c-1)x_C +$

 $(2d-1)x_D = 30$, $x_A + x_B + x_C + x_D = 6$. If f/\mathbf{S} is a 3-colouring $\mathbf{A}^3\mathbf{BC}$ on \mathbf{S} , then a = 3, b = 1, c = 1, d = 0, so that $x_A^2 + x_B^2 + x_C^2 + x_D^2 + 5x_A + x_B + x_C - x_D = 30$, $x_A + x_B + x_C + x_D = 6$, $x_D > 0$. Further: i) $x_A \le 3$, $x_B \le 3$, $x_C \le 3$; and ii) if one among x_A , x_B , x_C is odd, then the other two must be positive. The only possible solution is (0, 0, 0, 6), that implies the 4-colouring $\mathbf{A}^3\mathbf{BCD}^6$.

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^2\mathbf{B}^2\mathbf{C}$ on \mathbf{S} , then a=2, b=2, c=1, d=0, so that $x_A^2 + x_B^2 + x_C^2 + x_D^2 + 3x_A + 3x_B + x_C - x_D = 30$, $x_A + x_B + x_C + x_D = 6$, $x_D > 0$, with the condition i) and ii) shown above. Also in this case, the only possible solution is (0, 0, 0, 6), that implies a 4-colouring of type $\mathbf{A}^2\mathbf{B}^2\mathbf{C}\mathbf{D}^6$.

Finally, if f/S is a 4-colouring on **S**, it is necessarily of type A^2BCD , so that we have a = 2, b = 1, c = 1, d = 1, $x_A^2 + x_B^2 + x_C^2 + x_D^2 + 3x_A + x_B + x_C + x_D = 30$, $x_A + x_B + x_C + x_D = 6$, with the condition *i*) and *ii*) shown above. There is no solution and then the assertion of theorem follows.

Theorem 3.3. All possible 5-colourings for a **BATS**(11) are of type A^2BCDE^6 .

Proof. Let H be a **BATS**(11) and let f be a 5-colouring of H. Necessarily, f/\mathbf{S} is 4-colouring on \mathbf{S} and it can be only of type $\mathbf{A}^2\mathbf{BCD}$. From Theorem 3.2,

the only possible colouring for H is a 5-colouring, which can be only of type A^2BCDE^6 . \square

A consequence:

Corollary. For each **ATS**(11), there exist only 3-colourings, 4-colourings, 5-colourings.

4. Colourings for BATS(23).

The terminology is the same of Section 3. In what follows, every **BATS**(23) is obtained from a **BATS**(11) by construction **A**; it will be $S = \{1, 2, ..., 11\}$, $T = S' - S = \{12, 13, ..., 23\}$.

By Theorem 2.3, $\chi(H) \geq 3$ for all colourable **BATS**(23). Further, if we denote by x_i the *i*-colour class cardinality on **T** and a_j the *j*-colour class cardinality on **S**, we can prove the following Lemma:

Lemma 4.1. Let H be a 3-colourable **BATS**(23) obtained from a **BATS**(11) by construction **A**. Then

- *i*) $x_A \le 6, x_B \le 6, x_C \le 6$
- ii) if $x_i, x_j \in \{x_A, x_B, x_C\}$ for $i \neq j$, then $x_i \leq a_i + a_j, x_j \leq a_i + a_j$.

Proof. Observe that i) is immediate, otherwise there exist a monochromatic triple. For ii) consider that if $x_i > a_i + a_j$ for some pair i, j, then an item x of \mathbf{T} coloured by j forms x_i pairs with items of \mathbf{T} coloured by i. These pairs should form triples with an element of \mathbf{S} coloured necessarily by i or j; it follows that $a_i + a_j > x_i$, and it is not possible. \square

Theorem 4.2. All possible 3-colourings for a BATS(23) are of type $A^{10}B^4C^9$, $A^6B^6C^{11}$, $A^{10}B^8C^5$.

Proof. Let H be a **BATS**(23) and let f be a 3-colouring of H. Observe that f/\mathbf{S} must be a 3-colouring on \mathbf{S} . We denote by x_A , x_B , x_C the colour class cardinalities on \mathbf{T} and a, b, c the colour class cardinalities on \mathbf{S} . By Theorem 2.2, we have $x_A^2 + x_B^2 + x_C^2 + (2a-1)x_A + (2b-1)x_B + (2c-1)x_C = 132$, $x_A + x_B + x_C = 12$.

If f/S is a 3-colouring A^6BC^4 on S, then we have a = 6, b = 1, c = 4, so that $x_A^2 + x_B^2 + x_C^2 + 11x_A + x_B + 7x_C = 132$, $x_A + x_B + x_C = 12$, with the conditions i) and ii) of Lemma 4.1. There is only one possible solution: (4, 3, 5). It gives a colouring $A^{10}B^4C^9$. A possible colouring is: $A = \{1, 2, 3, 4, 5, 6, 12, 13, 14, 15\}$, $B = \{7, 16, 17, 18\}$, $C = \{1, 2, 3, 4, 5, 6, 12, 13, 14, 15\}$

{8, 9, 10, 11, 19, 20, 21, 22, 23}, with the 1-factorization shown in Table 1 [see *Appendix*].

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^3\mathbf{B}^2\mathbf{C}^6$ on \mathbf{S} , then we have a=3, b=2, c=6, so that $x_A^2+x_B^2+x_C^2+5x_A+3x_B+11x_C=132$, $x_A+x_B+x_C=12$, with the conditions i) and ii) of Lemma 4.1. There is only one possible solution: (3,4,5). It gives a 3-colouring $\mathbf{A}^6\mathbf{B}^6\mathbf{C}^{11}$. A possible colouring is: $\mathbf{A}=\{1,2,3,12,13,14\}$, $\mathbf{B}=\{4,5,15,16,17,18\}$, $\mathbf{C}=\{6,7,8,9,10,11,19,20,21,22,23\}$, with the 1-factorization shown in Table 2 [see Appendix].

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^5\mathbf{B}^4\mathbf{C}^2$ on \mathbf{S} , then we have a=5, b=4, c=2, so that $x_A^2+x_B^2+x_C^2+9x_A+7x_B+3x_C=132$, $x_A+x_B+x_C=12$, with the conditions i) and ii) of Lemma 4.1. The possible solutions are: (0,6,6), (3,6,3), (5,1,6), (5,4,3). The triple (0,6,6) implies a 3-colouring $\mathbf{A}^5\mathbf{B}^{10}\mathbf{C}^8$. A possible colouring is: $\mathbf{A}=\{1,2,3,4,5\}$, $\mathbf{B}=\{6,7,8,9,18,19,20,21,22,23\}$, $\mathbf{C}=\{10,11,12,13,14,15,16,17\}$, with the 1-factorization shown in Table 3 [see Appendix].

The solution (3, 6, 3) implies that a point $x \in \mathbf{S}$ coloured by \mathbf{C} is associated with 3 pairs $\{y, z\} \subseteq \mathbf{T}$ coloured by \mathbf{BC} , one pair coloured by \mathbf{AA} , one pair coloured by \mathbf{BB} and one pair coloured by \mathbf{AB} , and it is not acceptable. The solution (5, 1, 6) implies that the pairs $\{y, z\} \subseteq \mathbf{T}$ coloured by \mathbf{AA} cannot form a triple with a point $x \in \mathbf{S}$ coloured by \mathbf{C} ; a point of \mathbf{S} associated with a pair \mathbf{AA} and it is not possible because $x_A = 5$ and \mathbf{B}^4 . The only possible solution is the triple (5, 4, 3) which gives a 3-colouring $\mathbf{A}^{10}\mathbf{B}^{8}\mathbf{C}^{5}$ similar to $\mathbf{A}^{5}\mathbf{B}^{10}\mathbf{C}^{8}$.

The assertion of theorem follows. \Box

Theorem 4.3. All possible 4-colourings for a colourable BATS(23) are of type $A^6BC^4D^{12}$, $A^3B^2C^{12}D^6$, $A^5B^4C^2D^{12}$.

If f/\mathbf{S} is a 3-colouring $\mathbf{A}^6\mathbf{BC}^4$ on \mathbf{S} , then a=6, b=1, c=4, d=0, so that $x_A^2 + x_B^2 + x_C^2 + x_D^2 + 11x_A + x_B + 7x_C - x_D = 132$, $x_A + x_B + x_C + x_D = 12$, $x_D > 0$, with the conditions i) and ii) shown above. The possible solutions are: (0,0,0,12), (6,0,0,6), (6,0,2,4), (6,3,2,1).

The first solution gives a 4-colouring $\mathbf{A}^6\mathbf{B}\mathbf{C}^4\mathbf{D}^{12}$, for $\mathbf{A} = \{1, 2, 3, 4, 5, 6\}$, $\mathbf{B} = \{7\}$, $\mathbf{C} = \{8, 9, 10, 11\}$, $\mathbf{D} = \{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23\}$.

The second and third solutions give 4-colourings of type $A^{12}BC^4D^6$, $A^{12}BC^6D^4$ respectively, which are similar to $A^6BC^4D^{12}$. The solution (6, 3, 2, 1) is not acceptable because $x_B = 3$, $x_D = 1$ and only one 1-factor admits the existence of pairs coloured by **BD**.

If f/\mathbf{S} is a 3-colouring of type $\mathbf{A}^3\mathbf{B}^2\mathbf{C}^6$ of \mathbf{S} , then a=3, b=2, c=6, d=0, so that $x_A^2+x_B^2+x_C^2+x_D^2+5x_A+3x_B+11x_C-x_D=132$, $x_A+x_B+x_C+x_D=12$, $x_D>0$, with the conditions i) and ii) shown above. The possible solutions are: (0,0,0,12), (0,0,6,6), (0,4,6,2), (3,1,6,2).

The first solution gives a 4-colouring $\mathbf{A}^3\mathbf{B}^2\mathbf{C}^6\mathbf{D}^{12}$, for $\mathbf{A} = \{1, 2, 3\}$, $\mathbf{B} = \{4, 5\}$, $\mathbf{C} = \{6, 7, 8, 9, 10, 11\}$, $\mathbf{D} = \{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23\}$. The second solution gives a 4-colouring $\mathbf{A}^3\mathbf{B}^2\mathbf{C}^{12}\mathbf{D}^6$ similar to the previous one. The solution (0, 4, 6, 2) is not acceptable because $x_D > 0$ and $x_B = 4$ imply the existence of at least 4 points of \mathbf{S} coloured by \mathbf{B} , while it is \mathbf{B}^2 . The solution (3, 1, 6, 2) is not acceptable because $x_D = 2$ implies $x_B \ge 2$.

If f/\mathbf{S} is a 3-colouring of type $\mathbf{A}^5\mathbf{B}^4\mathbf{C}^2$ of \mathbf{S} , then a=5, b=4, c=2, d=0, so that $x_A^2+x_B^2+x_C^2+x_D^2+9x_A+7x_B+3x_C-x_D=132$, $x_A+x_B+x_C+x_D=12$, $x_D>0$, with the conditions shown above. The possible solutions are: (0,0,0,12), (4,6,0,2). The first solution gives a 4-colouring $\mathbf{A}^5\mathbf{B}^4\mathbf{C}^2\mathbf{D}^{12}$, for $\mathbf{A}=\{1,2,3,4,5\}$, $\mathbf{B}=\{6,7,8,9\}$, $\mathbf{C}=\{10,11\}$, $\mathbf{D}=\{12,13,14,15,16,17,18,19,20,21,22,23\}$. The solution (4,6,0,2) is not acceptable because $x_D=2$ implies $x_C\geq 2$.

Now we consider the cases in which f/\mathbf{S} is a 4-colouring on **S**. In these cases, i) $x_A \le 6$, $x_B \le 6$, $x_C \le 6$, $x_D \le 6$; ii) if x = 0, $x \in \{x_A, x_B, x_C, x_D\}$, then all the others are even.

If f/\mathbf{S} is a 4-colouring of type $\mathbf{A}^3\mathbf{BCD}^6$ on \mathbf{S} , then a=3, b=1, c=1, d=6, so that $x_A^2+x_B^2+x_C^2+x_D^2+5x_A+x_B+x_C+11x_D=132$, $x_A+x_B+x_C+x_D=12$, with the conditions shown above. The possible solutions are: (6,0,2,4), (6,2,0,4). These solutions are not acceptable because $x_B=2$ or $x_C=2$ and $\mathbf{A}^3\mathbf{B}$ ($\mathbf{A}^3\mathbf{C}$) implies $x_A+x_B\leq 4$ ($x_A+x_C\leq 4$).

Finally, if f/\mathbf{S} is a 4-colouring of type $\mathbf{A}^2\mathbf{B}^2\mathbf{C}\mathbf{D}^6$ on \mathbf{S} , then a=2, b=2, c=1, d=6, so that $x_A^2+x_B^2+x_C^2+x_D^2+3x_A+3x_B+x_C+11x_D=132, x_A+x_B+x_C+x_D=12$, with the conditions shown above. The possible solutions are: (0,2,4,6), (2,0,4,6), (2,3,1,6), (3,2,1,6). The first two solutions are not acceptable because $x_D=6$ implies $x\leq 3$ for every $x\in\{x_A,x_B,x_C\}$. The solutions (2,3,1,6), (3,2,1,6) imply 4-colourings $\mathbf{A}^4\mathbf{B}^5\mathbf{C}^2\mathbf{D}^{12}$ (respectively $\mathbf{A}^5\mathbf{B}^4\mathbf{C}^2\mathbf{D}^{12}$).

The assertion of theorem follows. \Box

Theorem 4.4. All possible 5-colourings for a BATS(23) are of type $A^3BCD^6E^{12}$, $A^2B^2CD^6E^{12}$,

Proof. Let H be a colourable **BATS**(23) and let f be a 5-colouring of H. Observe that f/\mathbf{S} can be a 4-colouring on \mathbf{S} of type $\mathbf{A}^3\mathbf{BCD}^6$, $\mathbf{A}^2\mathbf{B}^2\mathbf{CD}^6$. If we denote by x_A , x_B , x_C , x_D , x_E the colour class cardinalities on \mathbf{T} and a, b, c, d, e the colour class cardinalities on \mathbf{S} , then, by Theorem 2.2, $x_A^2 + x_B^2 + x_C^2 + x_D^2 + x_E^2 + (2a-1)x_A + (2b-1)x_B + (2c-1)x_C + (2d-1)x_D + (2e-1)x_E = 132$, $x_A + x_B + x_C + x_D + x_E = 12$. Further: i) $x_A \le 6$, $x_B \le 6$, $x_C \le 6$, $x_D \le 6$; ii) if x = 0, $x \in \{x_A, x_B, x_C, x_D\}$, then all the others are even.

If f/\mathbf{S} is a 4-colouring of type $\mathbf{A}^3\mathbf{BCD}^6$ on \mathbf{S} , then a=3, b=1, c=1, d=6, so that $x_A^2+x_B^2+x_C^2+x_D^2+x_E^2+5x_A+x_B+x_C+11x_D-x_E=132$, $x_A+x_B+x_C+x_D+x_E=12$, with the conditions i) and ii) shown above. The possible solutions are: (0,0,0,0,12), (0,0,0,6,6). The first solution implies a 5-colouring $\mathbf{A}^3\mathbf{BCD}^6\mathbf{E}^{12}$, for $\mathbf{A}=\{1,2,3\}$, $\mathbf{B}=\{4\}$, $\mathbf{C}=\{5\}$, $\mathbf{D}=\{6,7,8,9,10,11\}$, $\mathbf{E}=\{12,13,14,15,16,17,18,19,20,21,22,23\}$. The second solution implies another 5-colouring of type $\mathbf{A}^3\mathbf{BCD}^{12}\mathbf{E}^6$, that is similar to the previous one.

If f/\mathbf{S} is a 4-colouring of type $\mathbf{A}^2\mathbf{B}^2\mathbf{C}\mathbf{D}^6$ on \mathbf{S} , then a=2, b=2, c=1, d=6, so that $x_A^2+x_B^2+x_C^2+x_D^2+x_E^2+3x_A+3x_B+x_C+11x_D-x_E=132$, $x_A+x_B+x_C+x_D+x_E=12$, with the conditions i) and ii) shown above. The possible solutions are: (0,0,0,0,12), (0,0,0,6,6), (0,4,0,6,2), (4,0,0,6,2).

The first solution implies a 5-colouring $A^2B^2CD^6E^{12}$, for $A = \{1, 2\}$, $B = \{3, 4\}$, $C = \{5\}$, $D = \{6, 7, 8, 9, 10, 11\}$, $E = \{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23\}$. The second solution implies a 5-colouring $A^2B^2CD^{12}E^6$. The solution (0, 4, 0, 6, 2) (respectively (4, 0, 0, 6, 2)) implies that a point $x \in S$ coloured by B(A) is associated with 8 pairs of T coloured by BE(AE), that is not possible.

The statement is proved. \Box

Theorem 4.5. All possible 6-colourings for a **BATS**(23) are of type $A^2BCDE^6F^{12}$. There are not 7 or more colourings.

Proof. The statement is a consequence of the previous results and of Theorem 3.3.

5. Appendix.

$$\mathbf{A} = \{1, 2, 3, 4, 5, 6\} \cup \{12, 13, 14, 15\},$$

$$\mathbf{B} = \{7\} \cup \{16, 17, 18\},$$

$$\mathbf{C} = \{8, 9, 10, 11\} \cup \{19, 20, 21, 22, 23\}$$

```
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11

    12-21
    12-20
    12-23
    15-19
    15-21
    14-19
    16-19
    16-23
    16-22
    16-21
    16-20

    13-22
    13-23
    13-21
    12-18
    12-17
    12-16
    17-20
    17-22
    17-19
    17-23
    17-21

    15-23
    14-22
    14-20
    13-16
    13-18
    13-17
    18-22
    18-21
    18-23
    18-20
    18-19

    14-18
    15-17
    15-16
    14-17
    14-16
    15-18
    12-13
    13-19
    13-20
    12-19
    12-22

    16-17
    16-18
    17-18
    20-21
    19-23
    20-23
    14-15
    15-20
    14-21
    15-22
    14-23

    19-20
    19-21
    19-22
    22-23
    20-22
    21-22
    21-23
    12-14
    12-15
    13-14
    13-15
```

Table 1

A =
$$\{1, 2, 3\} \cup \{12, 13, 14\},$$

B = $\{4, 5\} \cup \{15, 16, 17, 18\},$
C = $\{6, 7, 8, 9, 10, 11\} \cap \{19, 20, 21, 22, 23\}$

```
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11

    12-17
    12-15
    13-16
    12-16
    12-18
    12-13
    12-14
    13-14
    15-17
    16-18
    17-18

    13-18
    14-18
    14-17
    13-17
    13-15
    14-19
    13-19
    12-23
    12-21
    12-19
    12-22

    15-16
    16-17
    15-18
    14-15
    14-16
    15-20
    16-20
    17-20
    14-22
    13-20
    14-20

    14-23
    13-22
    12-20
    18-21
    17-19
    16-21
    17-21
    15-21
    13-23
    14-21
    13-21

    19-20
    19-21
    19-22
    19-23
    20-21
    17-22
    18-22
    16-22
    16-19
    15-22
    15-19

    21-22
    20-23
    21-23
    20-22
    22-23
    18-23
    15-23
    18-19
    18-20
    17-23
    16-23
```

Table 2

 $\mathbf{A} = \{1, 2, 3, 4, 5\},$ $\mathbf{B} = \{6, 7, 8, 9\} \cup \{18, 19, 20, 21, 22, 23\},$ $\mathbf{C} = \{10, 11\} \cup \{12, 13, 14, 15, 16, 17\}$

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 12-13
 12-14
 12-15
 12-16
 12-17
 12-18
 12-19
 12-20
 12-21
 12-22
 12-23

 14-15
 13-16
 13-17
 13-15
 13-14
 13-19
 13-20
 13-21
 13-22
 13-23
 13-18

 16-17
 15-17
 14-16
 14-17
 15-16
 14-20
 14-21
 14-22
 14-23
 14-18
 14-19

 18-19
 18-20
 18-21
 18-22
 18-23
 15-21
 15-22
 15-23
 15-18
 15-19
 15-20

 20-21
 19-22
 19-23
 19-21
 19-20
 16-22
 16-23
 16-18
 16-19
 16-20
 16-21

 22-23
 21-23
 20-22
 20-23
 21-22
 17-23
 17-18
 17-19
 17-20
 17-21
 17-22

Table 3

REFERENCES

- [1] C. Berge, Hypergraphs: combinatorics of finite sets, North Holland, 1989.
- [2] C. Colbourn A. Rosa, *Triple Systems*, Oxford Science Publications, 1999, sect. 18.6: *Strict colorings and the upper chromatic number*, pp. 340–341.
- [3] P. Erdös A. Hajnal, *On chromatic number of graphs and set-systems*, Acta Math. Acad. Sci. Hung., 17 (1996), pp. 61–99.
- [4] M. Gionfriddo G. Lo Faro, 2-colorings in S(t, t + 1, v), Discrete Math., 111 (1993), pp. 263–268.
- [5] L. Milazzo Zs. Tuza, *Upper chromatic number of Steiner triple and quadruple systems*, Discrete Math., 174 (1997), p. 247–259.
- [6] V.I. Voloshin, *The mixed hypergraphs*, Comput. Sci. J. Moldova, 1 (1993), pp. 45–52.
- [7] V.I. Voloshin, *On the upper chromatic number of a hypergraph*, Australas J. Combin., 11 (1995), pp. 25–45.

Dipartimento di Matematica e Informatica, Università di Catania Viale Andrea Doria 6, 95125 Catania (ITALIA)