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SYMMETRIZATION OF AMATHEMATICAL MODEL

OF CHARGE TRANSPORT IN SEMICONDUCTORS

A. M. BLOKHIN - I. G. SOKOVIKOV

A mathematical model of charge transport in semiconductors is consid-
ered. The model is a quasilinear system of differential equations. A problems
of �nding an additional entropy conservation law and system symmetrization
are solved.

Introduction.

It is well known that hydrodynamic models are widely used in mathemati-
cal modelling of various physical phenomena. This is typical, for example, for
semiconductor physics. In the last years a lot of new mathematical models of
hydrodynamic type for description of charge transport in semiconductors were
proposed. It is necessary to note, however, that mathematical justi�cation of
such models is far from perfect in most cases.

Below we consider the mathematical model of charge transport in semi-
conductors, which has recently been proposed in the article [1]. The model is a
quasilinear system of rather complex equations (see section 1). We simplify this
system using reliable reasons; next, for this simpler system, we formulate and
solve the problem of �nding the additional entropy conservation law. Moreover,
we discuss symmetrization of this simpler equations system.
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1. Preliminary information.

Now, we brie�y describe the mathematical model suggested in [1]. Some
related mathematical and calculational aspects are discussed in [2]. Follow-
ing [3], we write down a dimensionless quasilinear system of hydrodynamic
equations, which describe this model, in one-dimensional non-stationary case
(reduction of the system to a dimensionless form is detailed in [7]):

(1.1) Rτ + J (1)
s = 0,

(1.2) J (1)
τ + J (2)

s = F
(2),

(1.3) eτ + J (3)
s = F

(3),

(1.4) στ + J (4)
s = F

(4),

(1.5) J (3)
τ + J (5)

s = F
(5).

Here τ is the time; s , the spacial coordinate;
R, the electron gas density;
J (1) = Ru, the electron �ow, i.e. a variable which characterizes the electric
current in a semiconductor;
u, the electron gas velocity;
J (2) = Ru2 + P , the �ow in the momentum balance equation (1.2);
P = P + � , the single component of the stress tensor in the one-dimensional
case;
P = Rϑ , the pressure in the electron gas;
ϑ , the temperature;

e = R�E = R
�
u2

2
+ 3

2
ϑ

�
, the volume density of the total energy;

J (3) = J (1)(�E + ϑ) + � + �u, the energy �ow in the energy conservation law
(1.3);
�, the heat �ow;

σ = 2
3
Ru2 + � ;

J (4) = uσ + 4
3
uP + 8

15
�;

J (5) = u2e + 5
2
u2

P + 5
2
Pϑ + 7

2
�ϑ + 16

5
�u, the �ow of the energy �ow;

F
(2) = RQ − J (1)

τP
;
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F
(3) = J (1)Q − R�E−3/2

τW
;

F
(4) = 4

3
J (1)Q − �

τσ
;

F
(5) =

�
3
2
Ru2 + 5

2
P + �

�
Q − J (3)

τq
are the source terms in (1.2)�(1.5);

Q = ϕs , ϕ is the electric potential;
τP = τP (�E), the relaxation time in (1.2);
τW = τW (�E), the relaxation time in (1.3);
τσ = τσ (�E), the relaxation time in the equation (1.4) for the stress � ;
τq = τq(�E), the relaxation time in the equation (1.5) for the heat �ow Q .

The system (1.1)�(1.5) has to be completed with one-dimensional Poisson
equation for the electric potential ϕ(τ, s) (see [7]), but since it is unrelated to
the problem of symmetrization discussed in this article it is not placed here.

Remark 1.1. Now we brie�y describe the method to obtain system of the
hydrodynamic type in the theory of charge transport in semiconductors. Mostly,
the Boltzmann transport equation is basic (see [1]), for which it is possible to
write down, generally speaking, an in�nite system of the so called momentum
correlations. In order to obtain a system with a �nite number of equations, some
realistic reasoning (the so called closing procedures) is used. While analyzing
the system of moment correlations, it is easy to understand that only the �rst
three equations (in the one-dimensional case) are physically clear. They are
the mass conservation law, the momentum conservation law, and the energy
conservation law. The other moment correlations have no such a physical
meaning; essentially they are differential equations for various additions in the
impulse and energy �ows. So, in the system (1.1)�(1.5), the equations (1.4),
(1.5) are differential equations in additions � , � which appear in the �ows
J (2), J (3).

After simple but cumbersome calculations, the system (1.1)�(1.5) can be
rewritten in a non-divergent form:

(1.6) Uτ + BUs = F,

where B = uI5 + B0,

U =








R
u
P
�

�








, B0 =








0 R 0 0 0
0 0 R−1 R−1 0
0 λ 0 0 2/3
0 µ 0 0 8/15
b51 b52 b53 b54 0








, F =








0
F2

F3

F4

F5








λ =
5P + 2�

3
, µ =

4P + 7�

3
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b51 = −
5P + 7�

2R2
P, b52 =

16

5
�, b53 =

5P

2R
, b54 =

P − �

R
,

F2 = Q −
u

τP
, F3 =

2

3
Rg, g = u2

� 1

τP
−

1

2τW

�
+

3(1 − ϑ)

2τW
,

F4 =
4

3

Ru2

τP
−

�

τσ

,

F5 = −
�

τq
+ �u

� 1

τσ

+
1

τP
−

1

τq

�
+

5

2
Pu

� 1

τP
−

1

τq

�
+

+
Ru3

2

� 5

3τW
−

1

τq
−

1

τP

�
−

5

2
J (1) 1 − ϑ

τW
,

I5 is an unitary matrix of order 5. We note that hyperbolicity of the system
(1.6) has been discussed in [2]. As shown, it becomes hyperbolic under
essential restrictions on components of the vector U . In our opinion, this makes
dif�culties for using numerical methods to �nd solutions to (1.6).

At the same time in [6, 7] the so called gas-dynamical model of charge
transport in semiconductors has been considered. This model has been derived
from (1.1)�(1.5) by turning � and � into zero and truncating the last two
equations. The gas-dynamical model in a non-divergent form looks like the
following:

(1.7) Uτ + BUs = F.

Here

U =

�
R
u
P

�

, B =

�
0 R 0
0 0 R−1

0 5P/3 0

�

+ uI3, F =

�
0
F2

F3

�

;

the aggregates F2, F3 are described above. The system (1.7) is indeed a
gas-dynamical equations system (with right parts) for a polytropic gas with
the adiabatic exponent γ = 5/3. Results of numerical calculations (see [6])
have shown that this model adequately depict peculiarities of test tasks in
semiconductor physics.

Remark 1.2. Actually, turning � and � into zero and truncating the differen-
tial equations for them is an element of the closing procedure (see. Remark 1.1.)
while obtaining the gas-dynamical model of charge transport in semiconductors.
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We note that for the system (1.7) it is easy to write down an additional
entropy law (see [6, 7]):

(1.8) (RS)τ + (RuS)s = g̃,

where S is the mass entropy connected with the density R and the pressure P
by the state equation

(1.9) P = R5/3 exp{(2/3)S},

g̃ =
R

ϑ
g (the aggregate g is described above).

In this article, we consider a simpler system which is obtained from (1.1)�(1.5)
by turning � into zero and truncating the last equation (1.5). The system in a
non-divergent form looks as follows:

(1.10) Uτ + BUs = F.

Here

U =






R
u
P
�




 , B =






0 R 0 0
0 0 R−1 R−1

0 λ 0 0
0 µ 0 0




 + uI4, F =






0
F2

F3

F4




 ;

the aggregates F2, F3, F4 are described above. Under some natural physical
restrictions

(1.11) R > 0, P > 0,

the system (1.10) is hyperbolic. The aim of this article is to �nd an additional
entropy conservation law for the system (1.10)

(1.12) ητ + �s = G,

(where η, �, G are some functions in components of the vector U ), which
would hold at any smooth solutions to the system (1.1)�(1.4). Here η is the
entropy function; �, the entropy �ow; G , the entropy production.
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2. On �nding the entropy law for the system (1.10).

As well know (see [5]), existence of the additional entropy conservation
law (1.12) means existence of functions

qi = qi (U ), i = 1, 4,

called the Lagrange multipliers (or canonical variables (see [3])) such that the
following relations are valid:

(2.1) dη = q1dR + q2d J
(1) + q3de + q4dσ,

(2.2) d� =

4�

i=1

qid J
(i),

(2.3) G =

4�

i=2

qiF
(i).

In what follows we assume that the entropy function η is of the form

(2.4) η = RS + f (R, u, ϑ, �).

Moreover, the addition f must satisfy the following condition:

(2.5) f
�
�
�=0

= 0.

Taking into account the relation (1.9), we easily obtain from (2.4):

(2.6) dη = (S − 1 + fR )dR + fu du +
�3R

2ϑ
+ fϑ

�
dϑ + f�d�.

On the other hand, we deduce from (2.1):

(2.7) dη = q̃1dR + q̃2d J
(1) + q3de + q4d� =

= (q̃1 + uq̃2 + q3
�E)dR + (q̃2 + uq3)Rdu +

3

2
Rq3dϑ + q4d�,

where

q̃1 = q1 −
2

3
u2q4,
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q̃2 = q2 +
4

3
uq4.

Comparing (2.6) and (2.7), we �nally have:

(2.8)






q1 = S − 1 + fR − (u/R) fu + (u2 − �E)� + 2
3
u2 f�,

q2 = R−1 fu − u� − 4
3
u f�,

q3 = �,

q4 = f�.

Here � = 1
ϑ

+ 2
3R
fϑ .

Now, we compose the aggregate

(2.9) L = q1R + q2 J
(1) + q3e + q4σ − RS − f = −R + R fR + � f� − f.

Following the classic article [9], we call the aggregate L by the generating
function (see also [3, 4]).

We rewrite (2.2) as follows:

(2.10) d� = u(q1dR + q2d J
(1) + q3de + q4dσ ) +

+ (q1R + q2 J
(1) + q3e + q4σ )du +

+
�
q2 + u

�
q3 +

4

3
q4

��
dP + P

�
q3 +

4

3
q4

�
du.

In a view of (2.1), (2.8), (2.9), the expression (2.10) transforms into:

(2.10�) d� = d(uη) +
1

R
fudP +

�
R fR +

2P

3R
fϑ + µ f� +

�

ϑ
− f

�
du.

The aggregate µ is described above. The right hand expression in (2.10�) is a
total differential if fu = 0, i.e. f = f (R, ϑ, �), and

(2.11) R fR +
2P

3R
fϑ + µ f� = f −

�

ϑ
.

We consider (2.11) as a differential equation for �nding the function f . We
note, however, that the solution to (2.11) can be found in the form

(2.12) f = f (R, r), r =
�

ϑ
, f

�
�
r=0

= 0.
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In this connection, (2.11) can be rewritten as:

(2.11�) R fR +
�5

3
r −

2r2

3R
+

4

3
R
�
fr = f − r.

We �nd the general solution to (2.11�). For this purpose we form the so called
concomitant system of ordinary differential equations (see [9]):

(2.13)






dr

dR
=

4

3
+

5

3
y −

2

3
y2, y =

r

R
,

d f

d R
=

f

R
− y,

.

The �rst integrals of this system can be taken in the form:

(2.14)
y + 1

R2(2 − y)
= C1,

f

R
+

1

2
ln

�
27

(y + 1)(2 − y)2

�

= C2 .

Therefore, the general solution to (2.11�) can be written as:

(2.15) f =
R

2
ln

� (r + R)(2R − r)2

27R3

�
+ RF0

� r + R

R2(2R − r)

�
,

where F0 is an arbitrary function in a single variable.
In order to satisfy (2.12),we take the constant (1/2)ln(27/4) as the function

F0. Finally, we have

(2.16) f =
R

2
ln

� (r + R)(2R − r)2

4R3

�
.

The function (2.16) satis�es all the desired conditions. Additionally, we �nd the
derivatives fR , fr :

(2.17)






fR =
1

2
ln

� (r + R)(2R − r)2

4R3

�
+

3r2

2(r + R)(2R − r)
,

fr = −
3Rr

2(r + R)(2R − r)
.

So, the system (1.10) admits existence of the additional entropy conservation
law (1.12) which we write as follows:

(2.18) (R�)τ + (Ru�)s = G.
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Here

(2.19) � = S +
1

2
ln

�
Pω2

4P3

�
, ω = 2P − � (�= 0),

(2.20) G =
(Ru)2

PτP
+

3R�2

2Pωτσ

−
R2(2P + �)

Pω

�E − 3/2

τW
.

Now the formulae (2.8), (2.9) for the Lagrange multipliers qi , i = 1, 4 of the
generating function L look as follows:

(2.8�)






q1 =
1

2
ln

�
Pω2

4R5

�
+
Ru2 − 5P

2P
,

q2 = −
Ru

P
,

q3 =
R(2P + �)

Pω
,

q4 = −
3R�

2Pω
,

(2.9�) L = −R.

In a view of (1.1), the relation (2.18) can be rewritten as:

(2.18�) �τ + u�s =
G

R
.

Consequently, in a view of (2.18�), the system (1.10) can be rewritten as a
symmetric t -hyperbolic system:

(2.21)






d�

dτ
=
G

R
,

R du
dτ

+ Ps = RF2,

1

λ

dP

dτ
+ us =

1

λ
F3,

1

µ

d�

dτ
+ us =

1

µ
F4,

provided that

(2.22)






λ =
5P + 2�

3
> 0,

µ =
4P + 7�

3
> 0, i.e. � > −

4

7
P.

Here d
dτ

= ∂
∂τ

+ u ∂
∂s

.
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Remark 2.1. The additional entropy conservation law (2.18�) is a consequence
of equations in (1.10). Therefore, we can replace any one of these equations
by the relation (2.18�). In some cases, such a substitution leads to a symmetric
system immediately. In our case, substituting the �rst equation in (1.10) for
(2.18�), we come to the symmetric t -hyperbolic (by Friedrichs) system (2.21).

Concluding this section, we note that the additional entropy law for the
system (1.10) is not unique. Indeed, taking a smooth function h = h(�), we
have

(2.18��) (Rh)τ + (Ruh)s = h�G.

Such an ambiguity can be used while numerically studying the system (1.10)
(see, e.g., [8]).

3. Symmetrization of the system (1.10).

In the previous section we have proposed a variant of symmetric form of
the system (1.10) (see (2.21)). To obtain another variant, we rewrite the system
(1.10) in a slightly different form. Summing up the third and forth equations in
(1.10), �nally we obtain:

(3.1)
dP

dτ
+ 3Pus = F3 + F4.

Next, we multiply the third equation by 2 and subtract the forth equation:

(3.2)
dω

dτ
+ ωus = 2F3 − F4

and, using (1.9), rewrite the expression for � (see (2.19)) in the following form:

(3.3) � =
1

2
ln

�
Pω2

4

�
−

5

2
lnR.

In a view of (3.1), (3.2), (3.3), we derive another symmetric form of the system
(1.10)

(3.4)






d�

dτ
=
G

R
,

dX

dτ
= 2

F3 + F4

3P
− 2

2F3 − F4

ω
,

Re−π du

dτ
+ πs = Re−π F2,

1

3

dπ

dτ
+ us =

F3 + F4

3P
.
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Here

π = lnP, X =
2

3
π − lnω2.

While obtaining (3.4), we have assumed that inequalities (1.11) are ful�lled. We
have also assumed that � �= 2P (ω �= 0) (see (2.19))

If (1.11) are valid the system (3.4) is symmetric t -hyperbolic (by
Friedrichs).

Finally, one more variant of symmetric form of the system (1.1)�(1.4) is
connected with the obtained in section 2 canonical variables qi , i = 1, 4 and
the generating function L . We need one more generating function M :

(3.5) M =

4�

i=1

qi J
(i) − � = −Ru = uL.

Further symmetrization formalism is detailed in [3, 4, 5]. It follows from (2.9),
(3.5) that

R = Lq1
, J (1) = Lq2

, e = Lq3
, σ = Lq4

,

J (1) = Mq1
, J (2) = Mq2

, J (3) = Mq3
, J (4) = Mq4

.

Next, the system (1.1)�(1.4) can be rewritten as follows:

(3.6) (Lqi )τ + (Mqi )s = F
(i), i = 1, 4 (F (1) = 0).

We obtain from (3.6):

(3.6�) A0qτ + A1qs = F ,

where

q =






q1

q2

q3

q4




 , F =






0
F

(2)

F
(3)

F
(4)




 ,

A0 = (Lqi qj ), A1 = (Mqiqj ), i, j = 1, 4 are symmetric matrices. After
cumbersome calculations we �nd the matrices A0 , A1 :

A0 = −







R Ru R�E σ

R uRu2 + P
Ru3

2
+ 3

2
λu 2

3
Ru3 + µu

R�E Ru3

2
+ 3

2
λu a0

33 a0
34

σ 2
3
Ru3 + µu a0

43 a0
44





 ,
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where

a0
33 =

Ru4

4
+

3

2
λu2 +

3(5P2 + �2)

4R

a0
34 = a0

43 =
Ru4

3
+

14P + 11�

6
u2 +

�(7P + �)

2R

a0
44 =

4Ru4

9
+

16P + 28�

9
u2 +

2(2P2 + 2P� + 3�2)

3R
;

A1 = uA0 − P �A1,

�A1 =







0 1 u 3
4
u

1 2u 3
2
u2 + 3λ

2R
2u2 +

µ

R

u 3
2
u2 + 3λ

2R
u3 + 3λ

R
u 4

3
u3 + 14P+11�

3R
4
3
u 2u2 +

µ

R
4
3
u3 + 14P+11�

3R
u 16

9
u3 +

5uµ
3R





 ,

and prove the matrix B0 = −A0 is positive de�nite provided that P > 0. Taking
into account this fact, �nally we rewrite the system (1.1)�(1.4) as a symmetric
t -hyperbolic system (by Friedrichs):

(3.6��) B0qτ + B1qs = −F .

Here B1 = uB0 + P �A1.
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