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DIRICHLET PROBLEM WITH L?-BOUNDARY
DATA FOR REAL SUB-LAPLACIANS

ERMANNO LANCONELLI

Let /£ be a real sub-Laplacian on a stratified Lie group G. In this note
we present some results on the Dirichlet problem for £ with L?-boundary
data, on domains €2 which are contractible with respect to the natural dilations
of G. One of the main difficulties we overcome is the presence of non-regular
boundary points for the usual Dirichlet problem for .£. A potential theoretical
approach is followed.

Acknowledgement. The results presented in this note are contained in the paper
[2] with Andrea Bonfiglioli. It originates from a lecture given at the Accademia
delle Scienze dell’Istituto di Bologna, on October 26, 2004, during a commem-
oration of Gianfranco Cimmino. The lecture focused on the contribution given
by Cimmino to the Dirichlet problem for the classical Laplace equation.

1. Introduction.

In a paper dated 1937 G. Cimmino introduced a method to study the
Dirichlet problem with L? boundary data for the Laplace equation [3]. Cimmino
method, which is reminiscent the one used in the theory of Hardy spaces of
holomorphic functions, naturally extends to the more general setting of the real
sub-Laplacians on stratified Lie groups.
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In recent years these operators have received a considerable attention due to they
role in the theory of second order partial differential equations with non-negative
characteristic form. Sub-Laplacian operators appear in many differet settings,
both theoretical and applied, including geometric theory of several complex
variables, Cauchy-Riemann and conformal geometry, Weyl formalization of
Quantum Mechanics, mathematical models of crystal materials.

The main ideas of Cimmino approach can be described as follows. Let 2
be a bounded open subset of R with sufficiently smooth boundary. Assume 2
is starlike with respect to the origin. More precisely assume that

AMO0Q) C @, forO0 <A<l
Given a function 1 : Q — R, define
u, : 02 —> R,  u(x) = u(rx)
If u is harmonic in  and, for a suitable ¢ € L*(dR2, do), it satisfies
u, — ¢. asr—1
in L>(3Q, do’), then Cimmino says that u solves the Dirichlet problem

(D) {Au:O in

ulpo=¢  in L?
Cimmino proves that this problem is well posed: it has one and only one

solution for every ¢ € L?>(3S2, do). The uniqueness is proved by Cimmino as a
consequence of the following noteworthy monotonicity Lemma: the function

A — |MA|2Lz<39) 2/ lu(rx)|* do(x)
a0

is monotone increasing. Then, if u solves (D) with ¢ = 0, one has
0 < |uzlj2ygy <0, for0<a <1,
which obviously implies # = 0 in 2.
To prove the existence, Cimmino uses what Caccioppoli called the com-

pleteness method. Define

ROQ) := {p € LX) : (D) has a solution}.
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It easy to see that R(dS2) contains the space C(d€2) of the continuous
functions on the boundary of Q2. Then, since the closure of C(d€2) in the
L?*(3K2, do) norm is the whole L?(3S2, do’) one has

ROQ) = L3, do)

Cimmino proves that R is closed with respect to the L*(dS2, do’)-norm,
obtaining
ROQ) = L*(3R, do),

that is the existence of a solution to (D) for every ¢ € L*(0R2, do).

The full strength of Cimmino method clearly appears by looking at the

Dirichlet problem from a potential theoretical point of wiew. Any sub-Laplacian
£ endows RY with a structure of S-harmonic space. This allows to ’solve” the
Dirichlet problem, with very general boundary data, by using the Perron-Wiener
method in the setting of the abstract harmonic spaces. Our main results shows
that the Cimmino solutions actually are the Perron-Wiener solutions.
The monotonicity lemma, needed by Cimmino method to get uniqueness , in
our paper is proved by using the Poisson-Jensen formula for the £-subharmonic
function contained in [1]. This formula suggests to replace the surfaces measure
do used by Cimmino, with the J£-harmonic measure.

2. The sub-laplacians and their fundamental solutions.

A stratified Lie group is a connected and simply connected Lie group G
whose Lie algebra g admits a stratification, i.e. a direct sum decomposition

g=g1 P - P g with
(2.1) lg1, 9] = gip1 fori <r —1, [g1,9.]1=1{0}.
If {Xq, ..., X,,} is a basis of g;, the operator

m
L=y x;
i=1
is called a sub-Laplacian on G. Let us denote
d,:dlm(g,) i=1,...,r

By means of the natural identification of G with its Lie algebra via the exponen-
tial map, it is non restrictive to suppose that G = R”" is equipped with a family
of dilations) (8;)»>0, which are automorfisms of G, of the following form

(22) (S)L(x<d])v LR ) x<dr)) = ()\-xgd])v ceey )\.rx<dr))v
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where x@) e R% i = 1,...,r. With respect to these dilations the vector fields
X1, ..., X, are homogeneous of degree one, so that £ is §;-homogeneous of
degree two, i.e.,

(2.3) Lo 8) =1 (Lu)os, forevery ueC>G,R).

The integer Q = Y ._,id; is called the homogeneous dimension of G.
Throughout the note we shall assume Q > 3 (if Q = 2 then G = (R?, 4)
and £ is an elliptic operator with constant coefficients ).
The characteristic form of the sub-laplacian £ is non-negative definte, and it is
strictly positive definite, if and only if r, the step of G, is equal to one. Hence,
if r > 1, £ is not elliptic at any points. On the other hand, the stratification
condition (2.1) ensures that the Lie algebra generated by X, ..., X,, has rank
N at any points. Consequently, by a well known theorem of Hormander [4],
L is hypoelliptic, i.e., any distributional solution to Lu = f is C* whenever
f is C*°. Every smooth function u : @ — R such that Lu = 0 in 2 will be
called JL-harmonic in Q. We shall denote by F#(£2) the space of the L£-harmonic
functions in €.

With respect to the cited logarithmic coordinates on G, /£ can be written
as

L =div(Ax) V), V=(@y,...,0,),

where A(x) is a non-negative definite matrix with polynomial entries.
A noteworthy property of £ is the structure of his fundamental solution.
Indeed, there exists a homogeneous norm d on G such that

2.4 'x,y)= dZ*Q(y*] ox), x,veG

is a fundamental solution for L.
We call homogeneous norm on G any function d : G — [0, co) such that:
d € C®(G \ {0}) N C(G), d($,(x)) = Ad(x), d(x~') = d(x), d(x) = 0 iff
x =0.
This striking analogy between £ and the standard Laplace operator allows to
develop a Potential Theory that parallels the classical one . A starting point of
this theory is the following Mean Value Theorem for £-harmonic functions,
that extends to this new setting the classical Gauss-Koebe Theorem.

For every x € RN and r > 0 let us define

Dx,r):={y eRN: d(y*] ox) <r}
Then, for every «£-harmonic functions u in an open set 2 C R", we have

(2.5 u(x) = M,(u)(x) for every D(x,r) C Q
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where
_ G .
M, (u)(x) = —5 K™ oyu(y)dy
r= Jp(x,r)

and

K = Z(de)z.
j=1

Viceversa, if u is a continous function in Q satisfying (2.5) then u € C*®
and JL-harmonic in 2. The kernel K is 8, -homogeneous of degree zero. It is a
constant function if and only if G is the Euclidean group and £ is, up to a linear
change of coordinates, the standard Laplace operator.

3. Potential Theory for the sub-laplacians .

In this section we still denote by £ a sub-laplacian on a stratified Lie group
G. If Q is an open subset of G , a function u : 2 — [—o0, oo[ will be said
L-subharmonic if it is upper semicontinuos and satisifies

u(x) < M,(u)(x) for every D(x,r) € Q.

The family of all £- subharmonic functions is a cone that will be denoted by
S(R2) . If —u is L- subharmonic we will say that u is J£- superharmonic. The
cone of all «£- superharmonic functions in 2 will be denoted by S(Q).
If © is a bounded open set and ¢ is an extended function on the boundary
of 2, 1.e.
@00 — [—o0, 0],

one defines

H, = influ € 5(Q) : liminfu > ¢, infu > —oc)

and

ﬂf; ;= sup{u € () : limsupu < ¢, supu < oo}.
a0

. . . . . =0
We say that ¢ is a risolutive functions iff the functions H, and ﬂf} are equal
and L-harmonic in Q. In this case the function

Q._ ¢
H(ﬂ = H(ﬂ

Q
H,
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is called the Perron-Wiener solution to the Dirichlet problem

(D) {£u=0 in

ulpo = @.

The classical Wiener’s Theorem for the standard Laplace operator extends
to this general setting. Indeed:

every continuous function is resolutive.

As well as in the classical case, we cannot expect that H (;7 is a true solution
of (D). However, if (D) is solvable in the classical sense, i.e. if there exists a
function u € C(Q), L£-harmonic in  and such that u|;q = ¢, then H(ff =u.

A point y € 02 is called L-regular for 2 iff

lim H$'(x) = p(y) forevery g € C(3Q).
xX—>y

The Dirichlet problem (D) is solvable in the classical sense if and only if
every point of €2 is L-regular for Q2. As we can expect, due to the possible
high degeneracy of £, the set

0;r Q :={y €9 : y is not L-regular for 2}

is in general not empty, even if the boundary of Q is C'**. Nevertheless, 9;. Q
is negligible from a £-potential theoretical point of view. Indeed, for every
bounded open set €2,

0;;r Q2 is  L-polar

A set E C G is called L-polar if there exists a L-superharmonic function u
such that
E C {x:ulx)=o00}.

For every fixed points x € Q2 the map
COR) > ¢ — HE(x) eR

is linear and non-negative. Then, there exists a unique Radon measure ,uff such
that

HEw = [ umdnto)
Q2

p$ is called the L-harmonic measure related to Q at x. From the Harnack
inequality for non negative £-harmonic functions, if €2 is connected and x, x’" €
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Q, then u is absolutely continuous with respect to u$t with bounded density
function.

The fundamental resolutive theorem states that a function ¢ : 9Q —
[—o0, 0] is resoltive if and only if

e L@, uf)

for every x € Q. By the previous remark, if €2 is connected, this condition is
satisfied if (3.1) holds for just one point x € €.

The set of the boundary points which are not £-regular is negligible also
with respect to the harmonic measures. Indeed

n2@, =0 VYxeQ.

4. Dirichlet problem with L? boundary data.

As in the previous sections £ will denote a sub-Laplacian on a stratified
Lie group G whose dilations are denoted by §,. A bounded open set 2 C G
will be said §, -contractible if

5,02)Cc R for 0<A<l.
In this case, given a function u : Q — [—00, o0], for every A € ]0, 1[ we set
uy 02 — [—00,00], uu(x) = u(d,(x)).

In what follows we shall assume 2 is §;-contractible and denote by u the L£-
harmonic measure related to Q at x = 0:

o= UG

Given a function ¢ € LP(02, u), 1 < p < oo, we shall say that u solves the

Dirichlet problema
Lu=0 in Q

(Dp) { MlaQ =, in LP”.

if u is L£- harmonic in Q and 4, — ¢ as A — 1in LP(0L2, ).
Since 92 is bounded, L7(dR2, ) C L' (92, 1) so that every ¢ € LP(3S2, ) is
resolutive. Our main results is the following theorem
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Theorem. For every ¢ € LP(02, u), 1 < p < 00, the Dirichlet problem (D,,)
has a unique solution. It is given by

BT R?)
u._Hw

An outline of the proof of this theorem is as follows.

Uniqueness. Let # be a L£- harmonic funcions in 2. Then |u|? € §(2) and
there exists a Radon measure v such that L|u|? = v in the weak sense of
distributions. Let us put v := |u|?. By the Poisson-Jensen formula in [1] we
obtain

U(O)Z/ U(Z)dﬂg*(Z)—/ Gq, (0, 2)dv(z)
I9ZY Q2

so that
lu(8,()|” du(z) = Iu(O)Ip+/ Gq,(0,2)dv(z).

do Q2

Here 2, := §,(2) and G, denotes the L-Green function of £2;.

It is quite obvious that this last right hand side is monotone increasing with
respect to A. As a consequence, if u is a solution of (D)) with boundary data
¢ = 0, we have

0=< / lu(@.@)I” du /0
I

Then, letting w; (x) = |u(5,(x))|?, x € 12, we obtain

/ wkd,u(s)?zo.
aQ

This implies

0 < Hy(x) <C.HZ(0) = / w;, dpd =0.
a0

Hence HJ = 0. Then,
w(z) = lim HJ (x) =0, VzeQ\P
X—>Z

where P := 0;,Q is the L-polar subset of 92 of the L-nonregular boundary
points. Then u(6x) = 0 for every z € Q\ P and for every A € ]0, 1[, that is

u=0 in Q\Uy<u<18:(P)
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At this point, in order to complete the proof of the uniqueness theorem,
we proved the following crucial results: if P is any L-polar subset of 02, then
Q\ Up<,<18,(P) has no interior points. As a consquence, since u is continuous
in 2, we get u = 0.

Existence. This part of the proof, even if not trivial, does not require particular
devices. First of all, one proves that the Perron-Wiener function H (;7 is a solution
of (D)) if ¢ is continuos. Then, by using a standard approximation argument,
one shows that this also hold for every ¢ € LP(092, 1) .
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