LE MATEMATICHE Vol. LX (2005) – Fasc. I, pp. 121–128

CHARACTERIZATION OF THE ABSOLUTELY SUMMING OPERATORS IN A BANACH SPACE USING μ -APPROXIMATE l_1 SEQUENCES

N. L. BRAHA

In this paper we will give a characterization of 1-absolutely summing operators using μ -approximate l_1 sequences. Exactly if $(x_n)_{n=1}^{\infty}$ is μ approximate l_1 , basic and normalized sequence in Banach space X then every bounded linear operator T from X into Banach space Y is 1-absolutely summing if and only if Y is isomorphic to Hilbert space

Introduction.

In the following we will denote by X a Banach space with norm ||.||. Some notations which are usefull in the sequel.

Definition 1. [3] Let $(x_i)_{i \in \mathbb{N}}$ be a sequence of unit vectors in a Banach space X (where $I = \{1, 2, ..., n\}$ or I = N), and let $\mu \ge 0$. We say that (x_i) is a μ -approximate l_1 system if

$$\left\|\sum_{i\in A} \pm x_i\right\| \ge k(A) - \mu$$

for all finite sets $A \subset I$ and for all choices of signs, where k(A) denotes the cardinal number of the set A.

Entrato in redazione il 24 Ottobre 2004.

Definition 2. [1] An operator $T \in L(X, Y)$ is called p-absolutely summing if there is a constant K so that, for every choice of an integer n and vectors $(x_i)_{i=1}^n$ in X, we have

$$\left(\sum_{i=1}^{n} \|Tx_i\|^p\right)^{\frac{1}{p}} \le K \sup_{||x^*|| \le 1} \left(\sum_{i=1}^{n} |x^*(x_i)|^p\right)^{\frac{1}{p}}$$

All other notations are like as in [1].

Theorem 1. [4] Every bounded linear operator T from l_1 into l_2 is absolutely summing and $\pi_1(T) \le K_G||T||$.

Theorem 2. [5] (Ideal property of p-summing operators) Let $1 \le p < \infty$ and let $v \in \prod_p(X, Y)$, then the composition of v with any bounded linear operator is *p*-summing.

Results.

Lemma 3. Let $(x_i)_{i=1}^n$ be a sequence of unit vectors in Banach space X. Then for any finite number of scalars $\{a_1, a_2, \ldots, a_n\}$, the following is true

(1)
$$||a_1 \cdot x_1 + \dots + a_n \cdot x_n|| \le \max_{1 \le i \le n} \{|a_i|\} ||x_1 + \dots + x_n||$$

Proof. In the sequel we will prove the above fact using the mathematical induction and it's enough to prove it for two terms. Let us consider vectors x and y from X and a, b scalars such that a > b, then from Hahn-Banach Theorem there exists $x^* \in X^*$ such that

 $||x^*|| = 1$

and

$$x^*(a \cdot x + b \cdot y) = \|a \cdot x + b \cdot y\|.$$

On the other hand

$$|x^*(x+y)| \le ||x^*|| \cdot ||x+y||$$

From the above relations we will have

 $|ax^{*}(x) + ax^{*}(y)| \le |a| \cdot ||x + y|| \Rightarrow |ax^{*}(x) + ax^{*}(y) + bx^{*}(y) - bx^{*}(y)|$

 $\leq |a| \cdot ||x + y||$

Respectively

(2)
$$||ax + by|| + (a - b)x^*(y)| \le |a| \cdot ||x + y||$$

In the following we will distinguish two cases

I) $0 < x^*(y) < 1$, then relation (1) follows directly from (2) II) $-1 < x^*(y) < 0$, then from relation (2) we will have this estimate

$$||ax + by|| - |(a - b)||x^{*}(y)| \le \left| ||ax + by|| + (a - b)x^{*}(y) \right|$$

from which again it follows that (1) is valid.

Lemma 4. Let $(x_n)_{n \in \mathbb{N}}$ be sequence of normalized and μ -approximate l_1 vectors in Banach space X. Then the relation

$$\left\|\sum_{i\leq n}a_ix_i\right\|\geq K\sum_{i\leq n}|a_i|$$

is true for any finite sequence (a_i) of scalars and K positive constant.

Proof. Let us start from the relation

$$\left\|\sum_{i=1}^{n} a_i x_i\right\| = \left\|\sum_{i=1}^{n} |a_i| \cdot sgn(a_i) \cdot x_i\right\|$$

Then from Hanh-Banach Theorem there exists a functional $f \in X^*$, such that

$$f\left(\sum_{i=1}^{n} |a_i| \cdot sgn(a_i) \cdot x_i\right) = \left\|\sum_{i=1}^{n} |a_i| \cdot sgn(a_i) \cdot x_i\right\|$$

and ||f|| = 1. From this it follows that

$$\sum_{i=1}^{n} |a_i| \cdot f(sgn(a_i) \cdot x_i) = \left\| \sum_{i=1}^{n} |a_i| y_i \right\|$$

where $y_i = sgn(a_i) \cdot x_i$. On the other hand ,let us consider $|a_i| \neq 0$, $\forall i \in \{1, 2, \dots, n\}$

$$\left\|\sum_{i=1}^{n} \pm x_i\right\| = \left\|\sum_{i=1}^{n} \pm a_i \cdot x_i \cdot \frac{1}{a_i}\right\| =$$

N. L. BRAHA

$$= \left\| \sum_{i=1}^{n} |a_i| \cdot x_i \cdot \frac{sgn(a_i)}{\pm a_i} \right\| \le \max_{1 \le i \le n} \frac{1}{|\pm a_i|} \cdot \left\| \sum_{i=1}^{n} |a_i| y_i \right\|$$

(from lemma 3)

$$= \max_{1 \le i \le n} \frac{1}{|a_i|} \cdot \sum_{i=1}^n |a_i| \cdot f(y_i) \le \max_{1 \le i \le n} \frac{1}{|a_i|} \cdot \max_{1 \le i \le n} |a_i| \sum_{i=1}^n f(y_i)$$

(again from lemma 3) so it is true that

$$\left\|\sum_{i=1}^{n} \pm x_i\right\| \le M \cdot \sum_{i=1}^{n} f(y_i)$$

where $M = \max_{1 \le i \le n} \frac{1}{|a_i|} \cdot \max_{1 \le i \le n} |a_i|$.

Now we will have this estimate

$$M \cdot \sum_{i=1}^{n} f(y_i) \ge \left\| \sum_{i=1}^{n} \pm x_i \right\| \ge n - \mu$$

The last relation is possible if and only if

$$f(y_i) \ge \frac{1-\delta_i}{M}, \quad \forall i \in \{1, 2, \cdots, n\}, \sum_{i=1}^n \delta_i = \mu$$

and $0 < \delta_i < 1$. From this it follows

$$f(y_i) \ge \frac{1-\delta_i}{M} \ge \frac{1-\delta}{M}$$
, where $\delta = \max_{1 \le i \le n} \delta_i$.

Finally

$$\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| = \sum_{i=1}^{n} |a_{i}| \cdot f(y_{i}) \ge \sum_{i=1}^{n} |a_{i}| \cdot \frac{1-\delta}{M} = K \cdot \sum_{i=1}^{n} |a_{i}|$$

where K is constant and $K = \frac{1-\delta}{M}$.

Theorem 5. Let $(x_n)_{n \in \mathbb{N}}$ be a normalized, basic sequence in X that is, a μ -approximate l_1 system, too. Then every bounded linear operator from X into l_2 is 1-absolutely summing.

124

Proof. Let H be the operator defined from l_1 into X as follows

$$H: x = \sum_{i} a_{i} e_{i} \to \sum_{i} a_{i} x_{i}$$

from the above it follows that H is bijective and bounded with it's inverse. Boundedness follows from

$$||Hx|| = \left\|\sum_{i} a_{i}x_{i}\right\| \le \sum_{i} |a_{i}| \le \frac{1}{K} \left\|\sum_{i} a_{i}x_{i}\right\| = \frac{1}{K} ||x||$$

(from lemma 4). H is onto ,let $y = \sum_i b_i x_i$ any element from X, then $z = \sum_i b_i e_i$ belongs to l_1^0 , indeed,

$$\left\|\sum_{i} b_{i} e_{i}\right\| = \sum_{i} \left|b_{i}\right| < \frac{1}{K} \left\|\sum_{i} b_{i} x_{i}\right\| < \infty,$$

from which it also follows that H(z) = y. From the above it follows that H^{-1} also is bounded: let $t = \sum_{i} t_i x_i \in X$, then

$$\|H^{-1}t\| = \|H^{-1}\left(\sum_{i} t_{i} x_{i}\right)\| = \|\sum_{i} t_{i} e_{i}\| = \sum_{i} |t_{i}| \le \frac{1}{K} \|\sum_{i} t_{i} x_{i}\|$$
$$= \frac{1}{K} \|t\|$$

Let us denote by T any bounded linear operator from Banach space X into l_2 , then operator $K = T \cdot H$ is defined from l_1 into l_2 and is bounded, so 1-absolutely summing (from Theorem 1). Finally using the ideal properties of operators in Theorem 2 and the fact that $K \cdot H^{-1} = T$, it follows that T is an absolutely summing operator.

Lemma 6. Let $(x_n)_{n \in \mathbb{N}}$ be a normalized, basic sequence in X that is, a μ -approximate l_1 system, too. Then $(x_n)_{n \in \mathbb{N}}$ is an unconditional basic sequence in X.

Proof. It's enough to prove that for any x, y and any finite disjoint subsets $A, B \in \mathbb{N}$ relation

$$\|x+y\| \sim \|x-y\|$$

is true for $x \in \text{span} \{x_i : i \in A\}$ and $y \in \text{span} \{x_i : i \in B\}$, where $a \sim b$ means that there exists constant c_1 and c_2 such that $c_1 \cdot a \leq b \leq c_2 \cdot a$ (see [7]). From the definition of μ -approximate l_1 sequences it follows that

$$||x + y|| = \left\|\sum_{i \in A} a_i x_i + \sum_{i \in B} b_i x_i\right\| \ge \left\|\sum_{i \in A} a_i x_i\right\| - \left\|\sum_{i \in B} b_i x_i\right\| \ge$$

$$K\left(\sum_{i\in A} |a_i|\right) - \sum_{i\in B} |b_i|$$
$$\|x + y\| \le \sum_{i\in A} |a_i| + \sum_{i\in B} |b_i|;$$

from the other hand

$$\|x - y\| = \left\|\sum_{i \in A} a_i x_i - \sum_{i \in B} b_i x_i\right\| \ge \left\|\sum_{i \in A} a_i x_i\right\| - \left\|\sum_{i \in B} b_i x_i\right\| \ge K\left(\sum_{i \in A} |a_i|\right) - \sum_{i \in B} |b_i|$$

and

$$||x + y|| \le \sum_{i \in A} |a_i| + \sum_{i \in B} |b_i|$$

from the above relations it follows that $(x_n)_{n \in \mathbb{N}}$ is an unconditional sequence in X.

Theorem 7. Let $(x_n)_{n \in \mathbb{N}}$ be normalized ,basic and μ -approximate l_1 sequence in X, such that every bounded linear operator T from X into Y is 1-absolutely summing. Then X is isomorphic to l_1 and Y is isomorphic to Hilbert space.

Proof. From Lemma 6 it follows that $(x_n)_{n \in \mathbb{N}}$ is an unconditional basis in X. Now the proof of Theorem is similar to that of Theorem 4.2 in [6].

Theorem 8. Let X and Y be two infinite dimensional Banach spaces ,and $(x_n)_{n \in \mathbb{N}}$ basic, normalized and μ -approximate l_1 sequence in X. Then every bounded linear operator T from X into Y is 1-absolutely summing if and only if Y is isomorphic to a Hilbert space.

Proof. The forward direction follows from Theorem 7 and converse direction from Theorem 5.

Proposition 9. Let $(x_n)_{n \in \mathbb{N}}$ be basic, normalized and μ -approximate l_1 sequence of vectors in X. Regardless of the measure μ , every bounded linear operator T from X into $L_2(\mu)$, is 1-absolutely summing.

Proof. Let us show that X is an $L_{1,v}$ space for some v. For any finite dimensional subspace E of X, let us say that dim E = n, $E = span\{x_i : i = 1, \dots, n\}$. There exist a finite dimensional subspace F of X, such that

 $F = span\{x_i : i = 1, ..., n + 1\}, E \subset F \text{ and an isomorphism } H : x = \sum_{i=1}^{n+1} a_i x_i \in F \to \sum_{i=1}^{n+1} a_i e_i \in l_1^{\dim F} \text{ such that } ||H|| \cdot ||H^{-1}|| \le \upsilon. \text{ Hence}$

$$||Hx|| = \left\|\sum_{i} a_{i}x_{i}\right\| \le \sum_{i} |a_{i}| \le \frac{1}{K} \left\|\sum_{i} a_{i}x_{i}\right\| = \frac{1}{K} ||x||$$

so $||H|| \le \frac{1}{K}$ and a similar estimate $||H^{-1}|| \le \frac{1}{K}$ holds, where K is like as in Lemma 4. $\upsilon = (\frac{1}{K})^2 > 1$, because

$$M = \max_{1 \le i \le n} \frac{1}{|a_i|} \cdot \max_{1 \le i \le n} |a_i| = \frac{\max_{1 \le i \le n} |a_i|}{\min_{1 \le i \le n} |a_i|} \ge 1,$$

 $K = \frac{1-\delta}{M} \le 1$ and with this was proved that X is an $L_{1,\upsilon}$ -space. Now proof of the Theorem follows from Theorems 3.1, 3.2 and 3.4 in [5].

Proposition 10. Let $(x_n)_{n \in \mathbb{N}}$ be basic, normalized and μ -approximate l_1 sequence of vectors in X. Then every infinite dimensional subspace Y of X is isomorphic to X and complemented in X.

Proof. Let H be an operator defined from the Banach space X into the space l_1 by

$$H: x = \sum_{i} a_{i} x_{i} \to \sum_{i} a_{i} e_{i}.$$

This operator is invertible (exactly as in Theorem 5). Let Y be any infinite dimensional subspace of X and let us denote by $Y_1 = H(Y)$, a subspace of l_1 . From the decomposition method of Pelczynski (see [2]) it follows that

$$l_1 = Y_1 \oplus B$$

for some Banach space B. Let $x \in X$, then $H(x) = y \in l_1$ and y has unique representation

$$(3) y = a + b$$

for suitable $a \in Y_1$ and $b \in B$. From this there is a $a_1 \in Y$, $H(a_1) = a$

$$y = H(a_1) + b \Rightarrow H^{-1}(y) = H^{-1}(Ha_1) + H^{-1}(b) \Rightarrow$$

(4)
$$x = a_1 + H^{-1}(b)$$

and the last representation of x is unique, because if we will use another one $x = a'_1 + H^{-1}(b')$, then $H(x) = H(a'_1) + b' \Rightarrow$

(5)
$$y = H(a_1') + b$$

But relation (5) is in contradiction with relation (3). So every $x \in X$ has unique representation through space Y, and we can use notation

$$X = Y \oplus C$$

for some Banach space C, with Y isomorphic to X. $H(Y) = Y_1$ is isomorphic to l_1 ; let us denote by A that isomorphism between them, then $A(l_1) = AH(X) = Y_1 \Rightarrow AH(X) = H(Y)$ and from this follows that $H^{-1} \cdot A \cdot H$ is isomorphism between spaces X and Y, with which was proved proposition.

Corollary 11. Let $(x_n)_{n \in \mathbb{N}}$ be basic, normalized and μ -approximate l_1 sequence of vectors in X. Then X is a prime space.

Proof. of corollary follows directly from the above proposition.

REFERENCES

- [1] J. Lindenstrauss L. Tzafriri, *Classical Banach Spaces*, Part I, Springer-Verlag Berlin Heildelberg New York (1979).
- [2] A. Pelczynski, *Projections in certain Banach spaces*, Studia Math. 19, (1960) pp. 209–228.
- [3] S.J. Dilworth D. Kutzarova P. Wojtaszczyk, On Approximate l₁ systems in Banach Spaces, J. Approx. Theory, 114 (2002), pp. 214–241.
- [4] A. Grothendieck, *Resumé de la theorie metrique des produits tensoriels topologiques*, Bol. Soc. Mat. Sao Paulo, 8 (1956), pp. 1–79.
- [5] J. Diestel H. Jarchow A. Tonge, *Absolutely summing operators*, Cambridge University Press, (1995).
- [6] J. Lindenstrauss A. Pelczynski, Apsolutely summing operators in L_p-spaces and their applications, Studia Math. T., 29 (1968) pp. 275–326.
- [7] Lihua Yang, Unconditional basic sequences in $L_p(\mu)$ and its l_p stability, Proc. Amer. Math. Soc, 127 (1999), pp. 455–464.

Department of Mathematics and Computer Sciences, University of Prishtina-Kosova e-mail: nbraha@yahoo.com