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CHARACTERIZATION OF THE ABSOLUTELY

SUMMING OPERATORS IN A BANACH SPACE USING

μ-APPROXIMATE l1 SEQUENCES

N. L. BRAHA

In this paper we will give a characterization of 1-absolutely summing
operators using μ-approximate l1 sequences. Exactly if (xn )∞n=1 is μ-
approximate l1 , basic and normalized sequence in Banach space X then
every bounded linear operator T from X into Banach space Y is 1-absolutely
summing if and only if Y is isomorphic to Hilbert space

Introduction.

In the following we will denote by X a Banach space with norm ||.||.
Some notations which are usefull in the sequel.

Definition 1. [3] Let (xi)i∈N be a sequence of unit vectors in a Banach space
X (where I = {1, 2, ..., n}orI = N ), and let μ ≥ 0. We say that (xi) is a
μ-approximate l1 system if∥∥∥∥

∑
i∈A

±xi
∥∥∥∥ ≥ k(A) − μ

for all finite sets A ⊂ I and for all choices of signs, where k(A) denotes the
cardinal number of the set A.
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Definition 2. [1] An operator T ∈ L(X, Y ) is called p-absolutely summing if
there is a constant K so that, for every choice of an integer n and vectors (xi )ni=1
in X, we have

( n∑
i=1

∥∥T xi∥∥p
) 1

p ≤ K sup
||x∗ ||≤1

( n∑
i=1

|x∗(xi)|p
) 1

p

All other notations are like as in [1].

Theorem 1. [4] Every bounded linear operator T from l1 into l2 is absolutely
summing and π1(T ) ≤ KG||T ||.

Theorem 2. [5] (Ideal property of p-summing operators) Let 1 ≤ p < ∞ and
let v ∈ �p(X, Y ), then the composition of v with any bounded linear operator
is p-summing .

Results.

Lemma 3. Let (xi )ni=1 be a sequence of unit vectors in Banach space X. Then
for any finite number of scalars {a1, a2, . . . , an}, the following is true

(1)
∥∥a1 · x1 + · · · + an · xn

∥∥ ≤ max
1≤i≤n

{∣∣ai ∣∣}∥∥x1 + · · · + xn
∥∥

Proof. In the sequel we will prove the above fact using the mathematical
induction and it’s enough to prove it for two terms. Let us consider vectors
x and y from X and a, b scalars such that a > b, then from Hahn-Banach
Theorem there exists x∗ ∈ X ∗ such that

∥∥x∗∥∥ = 1

and
x∗(a · x + b · y) = ∥∥a · x + b · y∥∥.

On the other hand
|x∗(x + y)| ≤ ||x∗|| · ||x + y||

From the above relations we will have

|ax∗(x )+ ax∗(y)| ≤ |a| · ||x + y|| ⇒ |ax∗(x )+ ax∗(y)+ bx∗(y)− bx∗(y)|
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≤ |a| · ||x + y||
Respectively

(2)

∣∣∣∣∥∥ax + by
∥∥ + (a − b)x∗(y)

∣∣∣∣ ≤ |a| · ||x + y||

In the following we will distinguish two cases

I) 0 < x∗(y) < 1,then relation (1) follows directly from (2)
II)−1 < x∗(y) < 0,then from relation (2) we will have this estimate

||ax + by|| − |(a − b)||x∗(y)| ≤
∣∣∣∣||ax + by|| + (a − b)x∗(y)

∣∣∣∣
from which again it follows that (1) is valid .

Lemma 4. Let (xn)n∈N be sequence of normalized and μ-approximate l1 vec-
tors in Banach space X. Then the relation∥∥∥∥

∑
i≤n

ai xi

∥∥∥∥ ≥ K
∑
i≤n

|ai |

is true for any finite sequence (ai ) of scalars and K positive constant.

Proof. Let us start from the relation
∥∥∥∥

n∑
i=1

aixi

∥∥∥∥ =
∥∥∥∥

n∑
i=1

|ai | · sgn(ai) · xi
∥∥∥∥

Then from Hanh-Banach Theorem there exists a functional f ∈ X ∗, such that

f

( n∑
i=1

|ai | · sgn(ai) · xi
)

=
∥∥∥∥

n∑
i=1

|ai | · sgn(ai) · xi
∥∥∥∥

and
∥∥ f ∥∥ = 1. From this it follows that

n∑
i=1

|ai | · f (sgn(ai) · xi ) =
∥∥∥∥

n∑
i=1

|ai |yi
∥∥∥∥

where yi = sgn(ai) · xi . On the other hand ,let us consider |ai | 	= 0,
∀ i ∈ {1, 2, · · ·, n}

∥∥∥∥
n∑
i=1

±xi
∥∥∥∥ =

∥∥∥∥
n∑
i=1

±ai · xi · 1
ai

∥∥∥∥ =
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=
∥∥∥∥

n∑
i=1

|ai | · xi · sgn(ai)±ai
∥∥∥∥ ≤ max

1≤i≤n
1

| ± ai | ·
∥∥∥∥

n∑
i=1

|ai |yi
∥∥∥∥

(from lemma 3)

= max
1≤i≤n

1

|ai | ·
n∑
i=1

|ai | · f (yi ) ≤ max
1≤i≤n

1

|ai | · max
1≤i≤n

|ai |
n∑
i=1

f (yi )

(again from lemma 3) so it is true that

∥∥∥∥
n∑
i=1

±xi
∥∥∥∥ ≤ M ·

n∑
i=1

f (yi)

where M = max1≤i≤n 1
|ai | ·max1≤i≤n |ai |.

Now we will have this estimate

M ·
n∑
i=1

f (yi ) ≥
∥∥∥∥

n∑
i=1

±xi
∥∥∥∥ ≥ n − μ

The last relation is possible if and only if

f (yi ) ≥ 1− δi

M
, ∀ i ∈ {1, 2, · · · , n},

n∑
i=1

δi = μ

and 0 < δi < 1. From this it follows

f (yi ) ≥ 1− δi

M
≥ 1− δ

M
, where δ = max

1≤i≤n
δi .

Finally

∥∥∥∥
n∑
i=1

ai xi

∥∥∥∥ =
n∑
i=1

|ai | · f (yi ) ≥
n∑
i=1

|ai | · 1− δ

M
= K ·

n∑
i=1

|ai |

where K is constant and K = 1−δ
M .

Theorem 5. Let (xn)n∈N be a normalized, basic sequence in X that is,a μ-
approximate l1 system, too. Then every bounded linear operator from X into
l2 is 1-absolutely summing .
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Proof. Let H be the operator defined from l1 into X as follows

H : x =
∑
i

ai ei →
∑
i

ai xi

from the above it follows that H is bijective and bounded with it’s inverse.
Boundedness follows from

∥∥Hx∥∥ =
∥∥∥∥

∑
i

ai xi

∥∥∥∥ ≤
∑
i

|ai | ≤ 1

K

∥∥∥∥
∑
i

ai xi

∥∥∥∥ = 1

K

∥∥x∥∥

(from lemma 4). H is onto ,let y = ∑
i bi xi any element from X, then

z = ∑
i bi ei belongs to l

0
1 , indeed,∥∥∥∥

∑
i

bi ei

∥∥∥∥ =
∑
i

∣∣bi∣∣ <
1

K

∥∥∥∥
∑
i

bi xi

∥∥∥∥ < ∞,

from which it also follows that H (z) = y . From the above it follows that H−1
also is bounded: let t = ∑

i ti xi ∈ X , then

∥∥H−1t
∥∥ =

∥∥∥∥H−1
(∑

i

ti xi

)∥∥∥∥ =
∥∥∥∥

∑
i

tiei

∥∥∥∥ =
∑
i

|ti | ≤ 1

K

∥∥∥∥
∑
i

ti xi

∥∥∥∥

= 1

K

∥∥t∥∥
Let us denote by T any bounded linear operator from Banach space X into
l2, then operator K = T · H is defined from l1 into l2 and is bounded, so
1-absolutely summing (from Theorem 1). Finaly using the ideal propertis of
operators in Theorem 2 and the fact that K · H−1 = T ,it follows that T is an
absolutely summing operator.

Lemma 6. Let (xn)n∈N be a normalized, basic sequence in X that is, a μ-
approximate l1 system, too. Then (xn)n∈N is an unconditional basic sequence in
X.

Proof. It’s enough to prove that for any x , y and any finite disjoint subsets
A, B ∈ N relation ∥∥x + y

∥∥ ∼ ∥∥x − y
∥∥

is true for x ∈ span {xi : i ∈ A} and y ∈ span {xi : i ∈ B}, where a ∼ b means
that there exists constant c1 and c2 such that c1 · a ≤ b ≤ c2 · a (see [7]). From
the definition of μ-approximate l1 sequences it follows that

∥∥x + y
∥∥ =

∥∥∥∥
∑
i∈A

ai xi +
∑
i∈B

bi xi

∥∥∥∥ ≥
∥∥∥∥

∑
i∈A

ai xi

∥∥∥∥ −
∥∥∥∥

∑
i∈B

bi xi

∥∥∥∥ ≥
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K

(∑
i∈A

∣∣ai∣∣
)

−
∑
i∈B

∣∣bi ∣∣
∥∥x + y

∥∥ ≤
∑
i∈A

∣∣ai ∣∣ +
∑
i∈B

∣∣bi ∣∣;
from the other hand

∥∥x − y
∥∥ =

∥∥∥∥
∑
i∈A

ai xi −
∑
i∈B

bi xi

∥∥∥∥ ≥
∥∥∥∥

∑
i∈A

ai xi

∥∥∥∥ −
∥∥∥∥

∑
i∈B

bi xi

∥∥∥∥ ≥

K

(∑
i∈A

∣∣ai∣∣
)

−
∑
i∈B

∣∣bi ∣∣

and ∥∥x + y
∥∥ ≤

∑
i∈A

∣∣ai ∣∣ +
∑
i∈B

∣∣bi ∣∣

from the above relations it follows that (xn)n∈N is an unconditional sequence in
X.

Theorem 7. Let (xn)n∈N be normalized ,basic and μ-approximate l1 sequence
in X, such that every bounded linear operator T from X into Y is 1-absolutely
summing. Then X is isomorphic to l1 and Y is isomorphic to Hilbert space .

Proof. From Lemma 6 it follows that (xn)n∈N is an unconditional basis in X.
Now the proof of Theorem is similar to that of Theorem 4.2 in [6].

Theorem 8. Let X and Y be two infinite dimensional Banach spaces ,and
(xn)n∈N basic, normalized and μ-approximate l1 sequence in X. Then every
bounded linear operator T from X into Y is 1-absolutely summing if and only
if Y is isomorphic to a Hilbert space.

Proof. The forward direction follows from Theorem 7 and converse direction
from Theorem 5.

Proposition 9. Let (xn)n∈N be basic, normalized and μ-approximate l1 se-
quence of vectors in X. Regardless of the measure μ, every bounded linear
operator T from X into L2(μ), is 1-absolutely summing.

Proof. Let us show that X is an L1,υ space for some υ . For any finite
dimensional subspace E of X, let us say that dim E = n, E = span{xi :
i = 1, · · · , n}. There exist a finite dimensional subspace F of X, such that
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F = span{xi : i = 1, . . . , n + 1}, E ⊂ F and an isomorphism H : x =∑n+1
i=1 ai xi ∈ F → ∑n+1

i=1 aiei ∈ ldim F
1 such that

∥∥H∥∥ · ∥∥H−1∥∥ ≤ υ . Hence

∥∥Hx∥∥ =
∥∥∥∥

∑
i

ai xi

∥∥∥∥ ≤
∑
i

|ai | ≤ 1

K

∥∥∥∥
∑
i

ai xi

∥∥∥∥ = 1

K

∥∥x∥∥

so
∥∥H∥∥ ≤ 1

K and a similar estimate
∥∥H−1∥∥ ≤ 1

K holds, where K is like as in
Lemma 4. υ = ( 1K )

2 > 1, because

M = max
1≤i≤n

1

|ai | · max
1≤i≤n

|ai | = max1≤i≤n |ai |
min1≤i≤n |ai | ≥ 1,

K = 1−δ
M ≤ 1 and with this was proved that X is an L1,υ -space. Now proof of

the Theorem follows from Theorems 3.1, 3.2 and 3.4 in [5].

Proposition 10. Let (xn)n∈N be basic, normalized and μ-approximate l1 se-
quence of vectors in X. Then every infinite dimensional subspace Y of X is iso-
morphic to X and complemented in X.

Proof. Let H be an operator defined from the Banach space X into the space l1
by

H : x =
∑
i

ai xi →
∑
i

aiei .

This operator is invertible (exactly as in Theorem 5). Let Y be any infinite
dimensional subspace of X and let us denote by Y1 = H (Y ), a subspace of l1 .
From the decomposition method of Pelczynski (see [2]) it follows that

l1 = Y1 ⊕ B

for some Banach space B. Let x ∈ X , then H (x ) = y ∈ l1 and y has unique
representation

(3) y = a + b

for suitable a ∈ Y1 and b ∈ B . From this there is a a1 ∈ Y, H (a1) = a

y = H (a1)+ b ⇒ H−1(y) = H−1(Ha1) + H−1(b) ⇒

(4) x = a1 + H−1(b)
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and the last representation of x is unique, because if we will use another one
x = a

′
1 + H−1(b′

), then H (x ) = H (a
′
1)+ b

′ ⇒
(5) y = H (a

′
1)+ b

′

But relation (5) is in contradiction with relation (3). So every x ∈ X has unique
representation through space Y, and we can use notation

X = Y ⊕ C

for some Banach space C, with Y isomorphic to X. H (Y ) = Y1 is isomorphic to
l1; let us denote by A that isomorphism between them, then A(l1) = AH (X ) =
Y1 ⇒ AH (X ) = H (Y ) and from this follows that H−1 · A · H is isomorphism
between spaces X and Y, with which was proved proposition.

Corollary 11. Let (xn)n∈N be basic, normalized and μ-approximate l1 se-
quence of vectors in X. Then X is a prime space.

Proof. of corollary follows directly from the above proposition.
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