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ON THE BOUNDARY BEHAVIOR OF THE HOLOMORPHIC

SECTIONAL CURVATURE OF THE BERGMAN METRIC

ELISABETTA BARLETTA

We obtain a conceptually new differential geometric proof of P. F.
Klembeck’s result (cf. [9]) that the holomorphic sectional curvature k g(z)
of the Bergman metric of a strictly pseudoconvex domain � ⊂ C n approaches
−4/(n + 1) (the constant sectional curvature of the Bergman metric of the
unit ball) as z → ∂�.

1. Introduction.

Given a smoothly bounded strictly pseudoconvex domain � ⊂ C
n

C. R. Graham & J. M. Lee studied (cf. [7]) the C∞ regularity up to
the boundary for the solution to the Dirichlet problem �gu = 0 in
� and u = f on ∂�, where �g is the Laplace-Beltrami operator of
the Bergman metric g of �. If ϕ ∈ C∞(U ) is a defining function
(� = {z ∈ U : ϕ(z) < 0}) their approach is to consider the foliation
F of a one-sided neighborhood V of the boundary ∂� by level sets
M� = {z ∈ V : ϕ(z) = −�} (� > 0). Then F is a tangential CR foliation
(cf. S. Dragomir & S. Nishikawa, [4]) each of whose leaves is strictly
pseudoconvex and one may express �gu = 0 in terms of pseudohermitian

invariants of the leaves and the transverse curvature r = 2 ∂∂ϕ(ξ, ξ) and
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its derivatives (the meaning of ξ is explained in the next section). The
main technical ingredient is an ambient linear connection ∇ on V whose
pointwise restriction to each leaf of F is the Tanaka-Webster connection
(cf. S. Webster, [14], and N. Tanaka, [13]) of the leaf. An axiomatic
description (and index free proof) of the existence and uniqueness of ∇

(referred to as the Graham-Lee connection of (V, ϕ)) was provided in
[1]. As a natural continuation of the ideas in [7] one may relate the Levi-
Civita connection ∇ g of (V, g) to the Graham-Lee connection ∇ and
compute the curvature Rg of ∇g in terms of the curvature of ∇ . Together
with an elementary asymptotic analysis (as � → 0) this leads to a purely
differential geometric proof of the result of P. F. Klembeck, [9], that the
sectional curvature of (�, g) tends to −4/(n+1) near the boundary ∂�.
The Author believes that one cannot overestimate the importance of the
Graham-Lee connection (and that the identities (27) and (36) in Section
3 admit other applications as well, e.g. in the study of the geometry of
the second fundamental form of a submanifold in (�, g)).

2. The Levi-Civita versus the Graham-Lee connection.

Let � be a smoothly bounded strictly pseudoconvex domain in C
n

and K (z, ζ ) its Bergman kernel (cf. e.g. [8], p. 364–371). As a simple
application of C. Fefferman’s asymptotic development (cf. [6]) of the
Bergman kernel ϕ(z) = −K (z, z)−1/(n+1) is a defining function for �

(and � = {ϕ < 0}). Cf. A. Korányi & H. M. Reimann, [11], for a

proof. Let us set θ =
i

2
(∂ − ∂)ϕ . Then dθ = i ∂∂ϕ . Let us differentiate

log |ϕ| = −(1/(n + 1)) log K (where K is short for K (z, z)) so that to
obtain

1

ϕ
∂ϕ = −

1

n + 1
∂ log K .

Applying the operator i ∂ leads to

(1)
1

ϕ
dθ −

i

ϕ2
∂ϕ ∧ ∂ϕ = −

i

n + 1
∂∂ log K .

We shall need the Bergman metric gjk = ∂2 log K/∂z j∂zk . This is well
known to be a Kähler metric on �.

Proposition 1. For any smoothly bounded strictly pseudoconvex domain
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� ⊂ C
n the Bergman metric g is given by

(2) g(X,Y ) =
n + 1

ϕ
{
i

ϕ
(∂ϕ ∧ ∂ϕ)(X, JY ) − dθ(X, JY )},

for any X,Y ∈ X(�).

Proof. Let ω(X,Y ) = g(X, JY ) be the Kähler 2-form of (�, J, g), where
J is the underlying complex structure. Then ω = −i ∂∂ log K and (1)
may be written in the form (2). Q.e.d.

We denote by M� = {z ∈ � : ϕ(z) = −�} the level sets of ϕ . For
� > 0 sufficiently small M� is a strictly pseudoconvex CR manifold (of CR
dimension n−1). Therefore, there is a one-sided neighborhood V of ∂�

which is foliated by the level sets of ϕ . Let F be the relevant foliation and
let us denote by H(F ) → V (respectively by T1,0(F ) → V ) the bundle
whose portion over M� is the Levi distribution H(M�) (respectively the
CR structure T1,0(M�)) of M� . Note that

T1,0(F ) ∩ T0,1(F ) = (0),

[�∞(T1,0(F )), �∞(T1,0(F ))] ⊆ �∞(T1,0(F )).

Here T0,1(F ) = T1,0(F ). For a review of the basic notions of CR and
pseudohermitian geometry needed through this paper one may see S.
Dragomir & G. Tomassini, [5]. Cf. also S. Dragomir, [3]. By a result
of J. M. Lee & R. Melrose, [12], there is a unique complex vector field
ξ on V , of type (1, 0), such that ∂ϕ(ξ) = 1 and ξ is orthogonal to
T1,0(F ) with respect to ∂∂ϕ i.e. ∂∂ϕ(ξ, Z) = 0 for any Z ∈ T1,0(F ).
Let r = 2 ∂∂ϕ(ξ, ξ) be the transverse curvature of ϕ . Moreover let
ξ = 1

2
(N − iT ) be the real and imaginary parts of ξ . Then

(dϕ)(N ) = 2, (dϕ)(T ) = 0,

θ(N ) = 0, θ(T ) = 1,

∂ϕ(N ) = 1, ∂ϕ(T ) = i.

In particular T is tangent to (the leaves of) F . Let gθ be the tensor field
given by

(3) gθ (X,Y ) = (dθ)(X, JY ), gθ (X, T ) = 0, gθ (T , T ) = 1,

for any X,Y ∈ H(F ). Then gθ is a tangential Riemannian metric for F

i.e. a Riemannian metric in T (F ) → V . Note that the pullback of gθ to
each leaf M� of F is the Webster metric of M� (associated to the contact
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form j∗� θ , where j� : M� ⊂ V ). As a consequence of (2), JT = −N and
iN dθ = r θ (see also (8) below)

Corollary 1. The Bergman metric g of � ⊂ C
n is given by

(4) g(X,Y ) = −
n + 1

ϕ
gθ (X,Y ), X,Y ∈ H(F ).

(5) g(X, T ) = 0, g(X, N ) = 0, X ∈ H(F ),

(6) g(T , N ) = 0, g(T , T ) = g(N , N ) =
n + 1

ϕ

�
1

ϕ
− r

�

.

In particular 1 − rϕ > 0 everywhere in �.

Using (4)-(6) we may relate the Levi-Civita connection ∇ g of (V, g)

to another canonical linear connection on V , namely the Graham-Lee
connection of �. The latter has the advantage of staying finite at the
boundary (it gives the Tanaka-Webster connection of ∂� as z → ∂�). We
proceed to recalling the Graham-Lee connection. Let {Wα : 1 ≤ α ≤ n−1}
be a local frame of T1,0(F ), so that {Wα, ξ } is a local frame of T 1,0(V ).
We consider as well

Lθ (Z ,W ) ≡ −i(dθ)(Z ,W ), Z ,W ∈ T1,0(F ).

Note that L θ and (the C-linear extension of) gθ coincide on T1,0(F ) ⊗

T0,1(F ). We set g
αβ

= gθ (Wα,Wβ
). Let {θα : 1 ≤ α ≤ n − 1} be the

(locally defined) complex 1-forms on V determined by

θα(Wβ) = δα
β , θα(W

β
) = 0, θα(T ) = 0, θα(N ) = 0.

Then {θα, θα, θ, dϕ} is a local frame of T (V )⊗C and one may easily
show that

(7) dθ = 2ig
αβ

θα ∧ θβ + r dϕ ∧ θ.

As an immediate consequence

(8) iT dθ = −
r

2
dϕ, iN dθ = r θ.

As an application of (7) we decompose [T , N ] (according to T (V )⊗C =

T1,0(F ) ⊕ T0,1(F ) ⊕ CT ⊕ CN ) and obtain

(9) [T , N ] = i W α(r)Wα − i W α(r)Wα + 2rT ,
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where W α(r) = gαβW
β
(r) and W α(r) = W α(r).

Let ∇ be a linear connection on V . Let us consider the T (V )-valued
1-form τ on V defined by

τ(X ) = T∇(T , X ), X ∈ T (V ),

where T∇ is the torsion tensor field of ∇ . We say T∇ is pure if

(10) T∇(Z ,W ) = 0, T∇(Z ,W ) = 2i L θ (Z ,W )T ,

(11) T∇(N ,W ) = r W + i τ(W ),

for any Z ,W ∈ T1,0(F ), and

(12) τ(T1,0(F )) ⊆ T0,1(F ),

(13) τ(N ) = − J ∇Hr − 2r T .

Here ∇Hr is defined by ∇Hr = πH∇r and gθ (∇r, X ) = X (r), X ∈ T (F ).
Also πH : T (F ) → H(F ) is the projection associated to the direct sum
decomposition T (F ) = H(F ) ⊕ RT . We recall the following

Theorem 1. There is a unique linear connection ∇ on V such that i)
T1,0(F ) is parallel with respect to ∇ ,ii) ∇L θ = 0, ∇T = 0, ∇N = 0,
and iii) T∇ is pure.

∇ given by Theorem 1 is the Graham-Lee connection. Theorem 1 is
essentially Proposition 1.1 in [7], pp. 701–702. The axiomatic description
in Theorem 1 is due to [4] (cf. Theorem 2 there). An index-free proof
of Theorem 1 was given in [1] relying on the following

Lemma 1. Let φ : T (F ) → T (F ) be the bundle morphism given by
φ(X ) = J X , for any X ∈ H(F ), and φ(T ) = 0. Then

φ2 = −I + θ ⊗ T ,

gθ (X, T ) = θ(X ),

gθ (φX, φY ) = gθ (X,Y ) − θ(X )θ(Y ),

for any X,Y ∈ T (F ). Moreover, if ∇ is a linear connection on V
satisfying the axioms (i)-(iii) in Theorem 1 then

(14) φ ◦ τ + τ ◦ φ = 0

along T (F ). Consequently τ may be computed as
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(15) τ(X ) = −
1

2
φ(LTφ)X,

for any X ∈ H(F ).

A rather lengthy but straightforward calculation (based on Corollary
1) leads to

Theorem 2. Let � ⊂ C
n be a smoothly bounded strictly pseudoconvex

domain, K (z, ζ ) its Bergman kernel, and ϕ(z) = −K (z, z)−1/(n+1). Then
the Levi-Civita connection ∇ g of the Bergman metric and the Graham-Lee
connection of (�, ϕ) are related by

(16) ∇
g
XY = ∇XY +

�
ϕ

1 − ϕr
gθ (τ X,Y ) + gθ (X, φY )

�

T−

−

�

gθ (X,Y ) +
ϕ

1 − ϕr
gθ (X, φ τ Y )

�

N ,

(17) ∇
g
XT = τ X −

�
1

ϕ
− r

�

φX −
ϕ

2(1 − rϕ)

�
X (r)T + (φX )(r)N

�
,

(18) ∇
g
X N = −

�
1

ϕ
−r

�

X + τ φ X +
ϕ

2(1 − rϕ)
{(φX )(r)T − X (r) N },

(19) ∇
g
T X = ∇T X −

�
1

ϕ
− r

�

φX −
ϕ

2(1 − rϕ)
{X (r)T + (φX )(r)N },

(20) ∇
g
N X = ∇N X −

1

ϕ
X +

ϕ

2(1 − rϕ)
{(φX )(r)T − X (r)N },

(21) ∇
g
NT = −

1

2
φ ∇Hr −

ϕ

2(1 − rϕ)

��

N (r)+
4

ϕ2
−

2r

ϕ

�

T +T (r)N

�

.

(22) ∇
g
T N =

1

2
φ∇Hr−

ϕ

2(1 − rϕ)

��

N (r)+
4

ϕ2
−

6r

ϕ
+4r 2

�

T+T (r)N

�

,

(23) ∇
g
T T =−

1

2
∇Hr−

ϕ

2(1 − rϕ)

�

T (r)T−

�

N (r)+
4

ϕ2
−

6r

ϕ
+4r 2

�

N

�

,
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(24) ∇
g
N N = −

1

2
∇Hr +

ϕ

2(1 − rϕ)

�

T (r)T −

�

N (r) +
4

ϕ2
−

2r

ϕ

�

N

�

,

for any X,Y ∈ H(F ).

3. Klembeck’s theorem.

The original proof of the result by P. F. Klembeck (cf. Theorem 1
in [9], p. 276) employs a formula of S. Kobayashi, [10], expressing the
components Rjkrs of the Riemann-Christoffel 4-tensor of (�, g) as

−
1

2
Rjkrs = gjkgrs + gjsgrk −

1

K 2
{K Kjkrs − Kjr Kk s}+

+
1

K 4

�

�,m

g�m{K Kjr� − Kjr K�
}{K Kk sm − Kk sKm}

where K = K (z, z) and its indices denote derivatives. However the

calculation of the inverse matrix [g jk] = [gjk]
−1 turns out to be a difficult

problem and [9] only provides an asymptotic formula as z → ∂�. Our
approach is to compute the holomorphic sectional curvature of (�, g) by
deriving an explicit relation among the curvature tensor fields Rg and R
of the Levi-Civita and Graham-Lee connections respectively. We start by
recalling a pseudohermitian analog to holomorphic curvature (built by S.
M. Webster, [14]).

Let M be a nondegenerate CR manifold of type (n − 1, 1) and θ a
contact form on M . Let G1(H(M))x consist of all 2-planes σ ⊂ Tx(M)

such that i) σ ⊂ H(M)x and ii) Jx(σ ) = σ . Then G1(H(M)) (the disjoint
union of all G1(H(M))x ) is a fibre bundle over M with standard fibre
CPn−2. Let R∇ be the curvature of the Tanaka-Webster connection ∇ of
(M, θ). We define a function kθ : G1(H(M)) → R by setting

kθ (σ ) = −
1

4
R∇
x (X, Jx X, X, Jx X )

for any σ ∈ G1(H(M)) and any linear basis {X, Jx X } in σ satisfying
Gθ (X, X ) = 1. It is a simple matter that the definition of kθ (σ ) does not
depend upon the choice of orthonormal basis {X, Jx X }, as a consequence
of the following properties

R∇(Z ,W, X,Y ) + R∇(Z ,W, Y, X ) = 0,

R∇(Z ,W, X,Y ) + R∇(W, Z , X,Y ) = 0.
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kθ is referred to as the (pseudohermitian) sectional curvature of (M, θ).

As mentioned above the notion is due to S. M. Webster, [14], who
also gave examples of pseudohermitian space forms (pseudohermitian
manifolds (M, θ) with kθ constant). Cf. also [2] for a further study
of contact forms of constant pseudohermitian sectional curvature. With
respect to an arbitrary (not necessarily orthonormal) basis {X, Jx X } of
the 2-plane σ the sectional curvature kθ (σ ) is also expressed by

kθ (σ ) = −
1

4

R∇
x (X, Jx X, X, Jx X )

Gθ (X, X )2
.

To prove this statement one merely applies the definition of kθ (σ )

for the orthonormal basis {U, JxU }, with U = Gθ (X, X )−1/2X . As
X ∈ H(M)x there is Z ∈ T1,0(M)x such that X = Z + Z . Thus

kθ (σ ) =
1

4

Rx(Z , Z , Z , Z)

gθ (Z , Z)2
.

The coefficient 1/4 is chosen such that the sphere S2n−1 ⊂ C
n has

constant curvature +1. Cf. [5], Chapter 1. With the notations in Section
2 let us set f = ϕ/(1 − ϕr). Then

X ( f ) = f 2 X (r), X ∈ T (F ).

Let Rg and R be respectively the curvature tensor fields of the
linear connections ∇g and ∇ (the Graham-Lee connection). For any
X,Y, Z ∈ H(F ) (by (16))

∇
g
X∇

g
Y Z = ∇

g
X

�
∇Y Z +

�
f gθ (τ(Y ), Z) + gθ (Y, φZ)

�
T−

−
�
gθ (Y, Z) + f gθ (Y, φτ(Z))

�
N

�
=

by ∇Y Z ∈ H(F ) together with (16)

= ∇X∇Y Z +
�
f gθ (τ(X ),∇Y Z) + gθ (X, φ∇Y Z)

�
T−

−
�
gθ (X,∇Y Z) + f gθ (X, φτ(∇Y Z))

�
N+

+
�
f gθ (τ(Y ), Z) + gθ (Y, φZ)

�
∇

g
XT+

+
�
X ( f )gθ (τ(Y ), Z) + f X (gθ(τ(Y ), Z)) + X (gθ(Y, φZ))

�
T−

−
�
gθ (Y, Z) + f gθ (Y, φτ(Z))

�
∇

g
X N+

−
�
X (gθ(Y, Z)) + X ( f )gθ (Y, φτ(Z)) + f X (gθ (Y, φτ(Z)))

�
N =
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by (17), (18)

= ∇X∇Y Z +
�
X (�(Y, Z)) + �(X,∇Y Z)+

+X ( f )A(Y, Z) + f
�
X (A(Y, Z)) + A(X ∇Y Z)

��
T−

−
�
X (gθ(Y, Z)) + gθ (X,∇Y Z)+

+X ( f )�(Y, τ(Z)) + f
�
X (�(Y, τ(Z))) + �(X, τ(∇Y Z))

��
N+

+
�
f A(Y, Z) + �(Y, Z)

�
�

τ(X ) −
1

f
φX −

f

2

�
X (r)T + (φX )(r)N

�
�

−

−
�
gθ (Y, Z) + f �(Y, τ(Z))

�
×

×

�

−
1

f
X + τ(φX ) +

f

2

�
(φX )(r)T − X (r)N

�
�

where we have set as usual A(X,Y ) = gθ (τ(X ),Y ) and �(X,Y ) =

gθ (X, φY ). We may conclude that

(25) ∇
g
X∇

g
Y Z = ∇X∇Y Z + [ f A(Y, Z) + �(Y, Z)]

�

τ(X ) −
1

f
φX

�

+

+[gθ (Y, Z) + f �(Y, τ(Z))]

�
1

f
X − τ(φX )

�

+

+
�
X (�(Y, Z)) + �(X,∇Y Z) + f

�
X (A(Y, Z)) + A(X,∇Y Z)

�
+

+
f

2

�
X (r)( f A(Y, Z) − �(Y, Z))−

−(φX )(r)(gθ(Y, Z) + f �(Y, τ(Z)))
��
T−

−
�
X (gθ (Y, Z)) + gθ (X,∇Y Z) + f

�
X (�(Y, τ(Z))) + �(X, τ(∇Y Z))

�
−

−
f

2

�
X (r)(gθ(Y, Z)− f �(Y, τ(Z)))−(φX )(r)( f A(Y, Z)+�(Y, Z))

��
N

for any X,Y, Z ∈ H(F ). Next we use the decomposition [X,Y ] =

πH [X,Y ] + θ([X,Y ])T and (16), (19) to calculate

∇
g
[X,Y ]Z = ∇

g
πH [X,Y ]Z + θ([X,Y ])∇

g
T Z =

= ∇πH [X,Y ]Z +
�
f gθ (τ(πH [X,Y ]), Z) + gθ (πH [X,Y ], φZ)

�
T−

−
�
gθ (πH [X,Y ], Z) + f gθ (πH [X,Y ], φτ(Z))

�
N+

+θ([X,Y ])

�

∇T Z −
1

f
φZ −

f

2
(Z(r)T + (φZ)(r)N )

�
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so that (by τ(T ) = 0)

(26) ∇
g
[X,Y ]Z = ∇[X,Y ]Z −

1

f
θ([X,Y ])φZ+

+

�

f A([X,Y ], Z) + �([X,Y ], Z) −
f

2
θ([X,Y ])Z(r)

�

T−

−

�

gθ ([X,Y ], Z) + f �([X,Y ], τ(Z)) +
f

2
θ([X,Y ])(φZ)(r)

�

N

for any X,Y, Z ∈ H(F ). Consequently by (25)-(26) (and by ∇gθ = 0,
∇� = 0) we may compute

Rg(X,Y )Z = ∇
g
X∇

g
Y Z − ∇

g
Y∇

g
X Z − ∇

g
[X,Y ]Z

so that to obtain

(27) Rg(X,Y )Z = R(X,Y )Z +
1

f
θ([X,Y ])φZ+

+( f A(Y, Z) + �(Y, Z))

�

τ(X ) −
1

f
φX

�

−

−( f A(X, Z) + �(X, Z))

�

τ(Y ) −
1

f
φY

�

+

+(gθ (Y, Z) + f �(Y, τ(Z))

�
1

f
X − τ(φX ))

�

−

−(gθ (X, Z) + f �(X, τ(Z)))

�
1

f
Y − τ(φY )

�

+

+
�
f
�
(∇X A)(Y, Z) − (∇Y A)(X, Z)

�
+

+
f

2
[X (r)( f A(Y, Z) − �(Y, Z)) − Y (r)( f A(X, Z) − �(X, Z))−

−(φX )(r)(gθ(Y, Z) + f �(Y, τ(Z))) + (φY )(r)(gθ(X, Z)+

+f �(X, τ(Z)))+Z(r)θ([X,Y ])]}T−{ f [�(Y, (∇Xτ)Z)−�(X, (∇Y τ)Z)]−

−
f

2
[X (r)(gθ(Y, Z)− f �(Y, τ(Z)))−Y (r)(gθ (X, Z)− f �(X, τ(Z)))−

−(φX )(r)( f A(Y, Z) + �(Y, Z)) + (φY )(r)( f A(X, Z) + �(X, Z))+

+(φZ)(r)θ([X,Y ])]
�
N
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for any X,Y, Z ∈ H(F ). Let us take the inner product of (27) with
W ∈ H(F ) and use (4)-(5). We obtain

g(Rg(X,Y )Z ,W ) −
n + 1

ϕ
{gθ (R(X,Y )Z ,W ) −

1

f
θ([X,Y ])�(Z ,W )+

+[ f A(Y, Z) + �(Y, Z)][A(X,W ) +
1

f
�(X,W )]−

−[ f A(X, Z) + �(X, Z)][A(Y,W ) +
1

f
�(Y,W )]+

+[gθ (Y, Z) + f �(Y, τ(Z))][
1

f
gθ (X,W ) + �(X, τ(W ))]−

−[gθ (X, Z) + f �(X, τ(Z))][
1

f
gθ (Y,W ) + �(Y, τ(W ))]}.

In particular for Z = Y and W = X (as � = −dθ )

g(Rg(X,Y )Y, X ) = −
n + 1

ϕ
{gθ (R(X,Y )Y, X )+

+
2

f
�(X,Y )2 + f A(X, X )A(Y,Y ) −

1

f
[ f 2 A(X,Y )2 − �(X,Y )2]+

+
1

f
[gθ (X, X ) + f �(X, τ(X ))][gθ (Y,Y ) + f �(Y, τ(Y ))]−

−
1

f
[gθ (X,Y ) + f �(X, τ(Y ))]2}.

Note that

A(φX, φX ) = gθ (τ(φX ), φX ) = −gθ (φτ X, φX ) = −A(X, X ),

�(φX, τ(φX )) = gθ (φX, φτ(φX )) = gθ (X, τ(φX )) =

= −gθ (X, φτ(X )) = −�(X, τ(X )),

�(X, τ(φX )) = gθ (X, φτ(φX )) = −gθ (X, τ(φ2X )) =

= gθ (X, τ(X )) = A(X, X ).

Hence

(28) g(Rg(X, φX )φX, X ) = −
n + 1

ϕ
{gθ (R(X, φX )φX, X )+

+
4

f
gθ (X, X )2 − 2 f [A(X, X )2 + A(X, φX )2]}.
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Let σ ⊂ T (F )z be the 2-plane spanned by {X, φz X } for X ∈ H(F )z ,
X �= 0. By (4) if Y = φz X then

gz(X, X )gz(Y,Y ) − gz(X,Y )2 =

=

�
n + 1

ϕ(z)

�2

{gθ,z(X, X )gθ,z(Y,Y ) − gθ,z(X,Y )} =

�
n + 1

ϕ(z)

�2

gθ,z(X, X )2

so that (by (28)) the sectional curvature kg(σ ) of the 2-plane σ is expressed
by (for Y = φz X )

kg(σ ) =
gz(R

g
z (X,Y )Y, X )

gz(X, X )gz(Y,Y ) − gz(X,Y )2
=

= −
ϕ(z)

n + 1
{−4kθ (σ ) +

4

f (z)
− 2 f (z)

Az(X, X )2 + Az(X, φz X )2

gθ,z(X, X )2
}

where kθ restricted to a leaf of F is the pseudohermitian sectional
curvature of the leaf. Note that kθ and A stay finite at the boundary
(and give respectively the pseudohermitian sectional curvature and the
pseudohermitian torsion of (∂�, θ), in the limit as z → ∂�). On the other
hand f (z) → 0 and ϕ(z)/ f (z) → 1 as z → ∂�. We may conclude that
kg(σ ) → −4/(n + 1) as z → ∂�. To complete the proof of Klembeck’s
result we must compute the sectional curvature of the 2-plane σ0 ⊂ Tz(�)

spanned by {Nz, Tz} (remember that J N = T ). Note first that

N ( f ) = f 2
�

2

ϕ2
+ N (r)

�

.

Let us set for simplicity

g = N (r) +
4

ϕ2
−

2r

ϕ
, h = N (r) +

4

ϕ2
−

6r

ϕ
+ 4r 2 .

We these notations let us recall that (by (23))

(29) ∇
g
T T = −

1

2
Xr −

f

2

�
T (r)T − hN

�

where Xr = ∇Hr . Using also (20) for X = Xr we obtain

−2∇
g
N∇

g
T T = ∇N Xr −

1

ϕ
Xr +

f

2

�
(φXr)(r)T − Xr(r)N

�
+

+N ( f ){T (r)T − hN } + f
�
N (T (r))T + T (r)∇

g
NT − N (h)N − h∇

g
N N

�
.
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Let us recall that (by (21) and (24))

(30) ∇
g
NT = −

1

2
φ Xr −

f

2

�
gT + T (r)N

�
,

(31) ∇
g
N N = −

1

2
Xr +

f

2

�
T (r)T − gN

�
.

Using these identities and the expression of N ( f ) gives (after some
simplifications)

(32) −2∇
g
N∇

g
T T = ∇N Xr +

�
f h

2
−

1

ϕ

�

Xr −
f

2
T (r) φXr+

+
f

2

�

2 f

�
2

ϕ2
+ N (r)

�

T (r) + 2N (T (r)) − f (g + h)T (r)

�

T−

−
f

2

�

gθ (Xr, Xr) + 2 f h

�
2

ϕ2
+ N (r)

�

+ 2N (h) + f [T (r)2 − gh]

�

N

because of

(φXr)(r) = gθ (∇r, φXr) = gθ (Xr, φXr) = 0,

Xr(r) = gθ (∇
Hr, Xr) = gθ (Xr, Xr).

Similarly

(33) −2∇
g
T∇

g
NT = ∇TφXr +

�
1

f
−

f g

2

�

Xr +
f

2
T (r) φXr+

+
f

2

�
2T (g) + f (g − h)T (r)

�
T+

+
f

2

�
gθ (Xr, Xr) + 2T 2(r) + f [T (r)2 + gh]

�
N .

Here T 2(r) = T (T (r)). Let us set τ(Wα) = Aβ
αWβ

. To compute the last
term in the right hand member of

(34) Rg(N , T )T = ∇
g
N∇

g
T T − ∇

g
T∇

g
NT − ∇

g
[N,T ]T

note first that T ( f ) = f 2 T (r). On the other hand we may use the
decomposition (9) so that

∇
g
[N,T ]T = r Xr + f rT (r)T −

f

2
{gθ (Xr, Xr) + 2rh}N+
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+

�

irαA
β

α
−

1

f
rβ

�

Wβ −

�

irαAβ
α +

1

f
rβ

�

W
β

(where A
β

α
= A

β
α ) and by taking into account that

�

irαA
β

α
−

1

f
rβ

�

Wβ −

�

irαAβ
α +

1

f
rβ

�

W
β

= −
1

f
Xr − τ(φXr)

we may conclude that

(35) ∇
g
[N,T ]T =

�

r −
1

f

�

Xr − τ(φXr)+

+ f rT (r)T −
f

2
{gθ (Xr, Xr) + 2rh}N .

Finally (by plugging into (34) from (32)-(33) and (35))

(36) −2Rg(N , T )T = ∇N Xr − ∇TφXr − f T (r)φXr − 2τ(φXr)+

+

�

2r +
f

2
(g + h) −

1

ϕ
−

3

f

�

Xr+

+ f

�

f

�
2

ϕ2
+ N (r)

�

T (r) + N (T (r)) − T (g) + (2r − f g)T (r)

�

T−

− f

�

2�Xr�
2 + f h

�
2

ϕ2
+ N (r)

�

+ N (h) + f T (r)2 + T 2(r) + 2rh

�

N .

Here �Xr�
2 = gθ (Xr, Xr). Let us take the inner product of (36) with N

and use (4)-(6). We obtain

2g(Rg(N , T )T , N ) =

=
n + 1

ϕ

�

2�Xr�
2 + f h

�
2

ϕ2
+ N (r)

�

+ N (h) + f T (r)2 + T 2(r) + 2rh
�

and dividing by

g(N , N )g(T ,T ) − g(N , T )2 =
1

f 2

�
n + 1

ϕ

�2

leads to

2
g(Rg(N , T )T , N )

g(N , N )g(T ,T ) − g(N , T )2
=

=
f 2ϕ

n + 1

�

2�Xr�
2 + T 2(r) + f T (r)2 + 2hr + N (h) + f hN (r) + 2

f h

ϕ2

�

.
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It remains that we perform an elementary asymptotic analysis of the right
hand member of the previous identity when z → ∂� (equivalently when
ϕ → 0). As r ∈ C∞(�) (cf. [12]) the terms �Xr�

2, T 2(r), T (r)2 and
N (r) stay finite at the boundary. Also (by recalling the expression of h)
f 2ϕh → 0 as ϕ → 0. Moreover

2
f 2ϕ

n + 1

f h

ϕ2
=

2

n + 1

f

ϕ

�

f 2N (r)+
4

(1 − rϕ)2
−

6 f 2r

ϕ
+4 f 2r2

�

→
8

n + 1
,

N (h) = N 2(r) + 4N (r 2) −
16

ϕ3
+

12r

ϕ2
−

6

ϕ
N (r),

f 2ϕ

n + 1
N (h) → −

16

n + 1
,

as ϕ → 0 hence

kg(σ0) → −
4

n + 1
, z → ∂�.

Klembeck’s theorem is proved.
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