ON THE BOUNDARY BEHAVIOR OF THE HOLOMORPHIC SECTIONAL CURVATURE OF THE BERGMAN METRIC

ELISABETTA BARLETTA

Abstract

We obtain a conceptually new differential geometric proof of P. F. Klembeck's result (cf. [9]) that the holomorphic sectional curvature $k_{g}(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$ approaches $-4 /(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \rightarrow \partial \Omega$.

1. Introduction.

Given a smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$ C. R. Graham \& J. M. Lee studied (cf. [7]) the C^{∞} regularity up to the boundary for the solution to the Dirichlet problem $\Delta_{g} u=0$ in Ω and $u=f$ on $\partial \Omega$, where Δ_{g} is the Laplace-Beltrami operator of the Bergman metric g of Ω. If $\varphi \in C^{\infty}(U)$ is a defining function ($\Omega=\{z \in U: \varphi(z)<0\}$) their approach is to consider the foliation \mathcal{F} of a one-sided neighborhood V of the boundary $\partial \Omega$ by level sets $M_{\epsilon}=\{z \in V: \varphi(z)=-\epsilon\}(\epsilon>0)$. Then \mathcal{F} is a tangential CR foliation (cf. S. Dragomir \& S. Nishikawa, [4]) each of whose leaves is strictly pseudoconvex and one may express $\Delta_{g} u=0$ in terms of pseudohermitian invariants of the leaves and the transverse curvature $r=2 \partial \bar{\partial} \varphi(\xi, \bar{\xi})$ and
its derivatives (the meaning of ξ is explained in the next section). The main technical ingredient is an ambient linear connection ∇ on V whose pointwise restriction to each leaf of \mathcal{F} is the Tanaka-Webster connection (cf. S. Webster, [14], and N. Tanaka, [13]) of the leaf. An axiomatic description (and index free proof) of the existence and uniqueness of ∇ (referred to as the Graham-Lee connection of (V, φ)) was provided in [1]. As a natural continuation of the ideas in [7] one may relate the LeviCivita connection ∇^{g} of (V, g) to the Graham-Lee connection ∇ and compute the curvature R^{g} of ∇^{g} in terms of the curvature of ∇. Together with an elementary asymptotic analysis (as $\epsilon \rightarrow 0$) this leads to a purely differential geometric proof of the result of P. F. Klembeck, [9], that the sectional curvature of (Ω, g) tends to $-4 /(n+1)$ near the boundary $\partial \Omega$. The Author believes that one cannot overestimate the importance of the Graham-Lee connection (and that the identities (27) and (36) in Section 3 admit other applications as well, e.g. in the study of the geometry of the second fundamental form of a submanifold in $(\Omega, g))$.

2. The Levi-Civita versus the Graham-Lee connection.

Let Ω be a smoothly bounded strictly pseudoconvex domain in \mathbb{C}^{n} and $K(z, \zeta)$ its Bergman kernel (cf. e.g. [8], p. 364-371). As a simple application of C. Fefferman's asymptotic development (cf. [6]) of the Bergman kernel $\varphi(z)=-K(z, z)^{-1 /(n+1)}$ is a defining function for Ω (and $\Omega=\{\varphi<0\}$). Cf. A. Korányi \& H. M. Reimann, [11], for a proof. Let us set $\theta=\frac{i}{2}(\bar{\partial}-\partial) \varphi$. Then $d \theta=i \partial \bar{\partial} \varphi$. Let us differentiate $\log |\varphi|=-(1 /(n+1)) \log K$ (where K is short for $K(z, z))$ so that to obtain

$$
\frac{1}{\varphi} \bar{\partial} \varphi=-\frac{1}{n+1} \bar{\partial} \log K
$$

Applying the operator $i \partial$ leads to

$$
\begin{equation*}
\frac{1}{\varphi} d \theta-\frac{i}{\varphi^{2}} \partial \varphi \wedge \bar{\partial} \varphi=-\frac{i}{n+1} \partial \bar{\partial} \log K \tag{1}
\end{equation*}
$$

We shall need the Bergman metric $g_{j \bar{k}}=\partial^{2} \log K / \partial z^{j} \partial \bar{z}^{k}$. This is well known to be a Kähler metric on Ω.

Proposition 1. For any smoothly bounded strictly pseudoconvex domain
$\Omega \subset \mathbb{C}^{n}$ the Bergman metric g is given by

$$
\begin{equation*}
g(X, Y)=\frac{n+1}{\varphi}\left\{\frac{i}{\varphi}(\partial \varphi \wedge \bar{\partial} \varphi)(X, J Y)-d \theta(X, J Y)\right\} \tag{2}
\end{equation*}
$$

for any $X, Y \in \mathcal{X}(\Omega)$.
Proof. Let $\omega(X, Y)=g(X, J Y)$ be the Kähler 2-form of $(\underline{\Omega}, J, g)$, where J is the underlying complex structure. Then $\omega=-i \partial \bar{\partial} \log K$ and (1) may be written in the form (2). Q.e.d.

We denote by $M_{\epsilon}=\{z \in \Omega: \varphi(z)=-\epsilon\}$ the level sets of φ. For $\epsilon>0$ sufficiently small M_{ϵ} is a strictly pseudoconvex CR manifold (of CR dimension $n-1$). Therefore, there is a one-sided neighborhood V of $\partial \Omega$ which is foliated by the level sets of φ. Let \mathcal{F} be the relevant foliation and let us denote by $H(\mathcal{F}) \rightarrow V$ (respectively by $T_{1,0}(\mathcal{F}) \rightarrow V$) the bundle whose portion over M_{ϵ} is the Levi distribution $H\left(M_{\epsilon}\right)$ (respectively the CR structure $\left.T_{1,0}\left(M_{\epsilon}\right)\right)$ of M_{ϵ}. Note that

$$
T_{1,0}(\mathcal{F}) \cap T_{0,1}(\mathcal{F})=(0)
$$

$$
\left[\Gamma^{\infty}\left(T_{1,0}(\mathcal{F})\right), \Gamma^{\infty}\left(T_{1,0}(\mathcal{F})\right)\right] \subseteq \Gamma^{\infty}\left(T_{1,0}(\mathcal{F})\right)
$$

Here $T_{0,1}(\mathcal{F})=\overline{T_{1,0}(\mathcal{F})}$. For a review of the basic notions of CR and pseudohermitian geometry needed through this paper one may see S. Dragomir \& G. Tomassini, [5]. Cf. also S. Dragomir, [3]. By a result of J. M. Lee \& R. Melrose, [12], there is a unique complex vector field ξ on V, of type $(1,0)$, such that $\partial \varphi(\xi)=1$ and ξ is orthogonal to $T_{1,0}(\mathcal{F})$ with respect to $\partial \bar{\partial} \varphi$ i.e. $\partial \bar{\partial} \varphi(\xi, \bar{Z})=0$ for any $Z \in T_{1,0}(\mathcal{F})$. Let $r=2 \partial \bar{\partial} \varphi(\xi, \bar{\xi})$ be the transverse curvature of φ. Moreover let $\xi=\frac{1}{2}(N-i T)$ be the real and imaginary parts of ξ. Then

$$
\begin{gathered}
(d \varphi)(N)=2, \quad(d \varphi)(T)=0 \\
\theta(N)=0, \quad \theta(T)=1 \\
\partial \varphi(N)=1, \quad \partial \varphi(T)=i
\end{gathered}
$$

In particular T is tangent to (the leaves of) \mathcal{F}. Let g_{θ} be the tensor field given by

$$
\begin{equation*}
g_{\theta}(X, Y)=(d \theta)(X, J Y), \quad g_{\theta}(X, T)=0, \quad g_{\theta}(T, T)=1 \tag{3}
\end{equation*}
$$

for any $X, Y \in H(\mathcal{F})$. Then g_{θ} is a tangential Riemannian metric for \mathcal{F} i.e. a Riemannian metric in $T(\mathcal{F}) \rightarrow V$. Note that the pullback of g_{θ} to each leaf M_{ϵ} of \mathcal{F} is the Webster metric of M_{ϵ} (associated to the contact
form $j_{\epsilon}^{*} \theta$, where $j_{\epsilon}: M_{\epsilon} \subset V$). As a consequence of (2), $J T=-N$ and $i_{N} d \theta=r \theta$ (see also (8) below)

Corollary 1. The Bergman metric g of $\Omega \subset \mathbb{C}^{n}$ is given by

$$
\begin{gather*}
g(X, Y)=-\frac{n+1}{\varphi} g_{\theta}(X, Y), \quad X, Y \in H(\mathcal{F}) \tag{4}\\
g(X, T)=0, \quad g(X, N)=0, \quad X \in H(\mathcal{F}) \tag{5}\\
g(T, N)=0, \quad g(T, T)=g(N, N)=\frac{n+1}{\varphi}\left(\frac{1}{\varphi}-r\right) \tag{6}
\end{gather*}
$$

In particular $1-r \varphi>0$ everywhere in Ω.
Using (4)-(6) we may relate the Levi-Civita connection ∇^{g} of (V, g) to another canonical linear connection on V, namely the Graham-Lee connection of Ω. The latter has the advantage of staying finite at the boundary (it gives the Tanaka-Webster connection of $\partial \Omega$ as $z \rightarrow \partial \Omega$). We proceed to recalling the Graham-Lee connection. Let $\left\{W_{\alpha}: 1 \leq \alpha \leq n-1\right\}$ be a local frame of $T_{1,0}(\mathcal{F})$, so that $\left\{W_{\alpha}, \xi\right\}$ is a local frame of $T^{1,0}(V)$. We consider as well

$$
L_{\theta}(Z, \bar{W}) \equiv-i(d \theta)(Z, \bar{W}), \quad Z, W \in T_{1,0}(\mathcal{F})
$$

Note that L_{θ} and (the \mathbb{C}-linear extension of) g_{θ} coincide on $T_{1,0}(\mathcal{F}) \otimes$ $T_{0,1}(\mathcal{F})$. We set $g_{\alpha \bar{\beta}}=g_{\theta}\left(W_{\alpha}, W_{\bar{\beta}}\right)$. Let $\left\{\theta^{\alpha}: 1 \leq \alpha \leq n-1\right\}$ be the (locally defined) complex 1 -forms on V determined by

$$
\theta^{\alpha}\left(W_{\beta}\right)=\delta_{\beta}^{\alpha}, \quad \theta^{\alpha}\left(W_{\bar{\beta}}\right)=0, \quad \theta^{\alpha}(T)=0, \quad \theta^{\alpha}(N)=0
$$

Then $\left\{\theta^{\alpha}, \theta^{\bar{\alpha}}, \theta, d \varphi\right\}$ is a local frame of $T(V) \otimes \mathbb{C}$ and one may easily show that

$$
\begin{equation*}
d \theta=2 i g_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}}+r d \varphi \wedge \theta \tag{7}
\end{equation*}
$$

As an immediate consequence

$$
\begin{equation*}
i_{T} d \theta=-\frac{r}{2} d \varphi, \quad i_{N} d \theta=r \theta \tag{8}
\end{equation*}
$$

As an application of (7) we decompose [T,N] (according to $T(V) \otimes \mathbb{C}=$ $\left.T_{1,0}(\mathcal{F}) \oplus T_{0,1}(\mathcal{F}) \oplus \mathbb{C} T \oplus \mathbb{C} N\right)$ and obtain

$$
\begin{equation*}
[T, N]=i W^{\alpha}(r) W_{\alpha}-i W^{\bar{\alpha}}(r) W_{\bar{\alpha}}+2 r T \tag{9}
\end{equation*}
$$

where $W^{\alpha}(r)=g^{\alpha \bar{\beta}} W_{\bar{\beta}}(r)$ and $W^{\bar{\alpha}}(r)=\overline{W^{\alpha}(r)}$.
Let ∇ be a linear connection on V. Let us consider the $T(V)$-valued 1-form τ on V defined by

$$
\tau(X)=T_{\nabla}(T, X), \quad X \in T(V),
$$

where T_{∇} is the torsion tensor field of ∇. We say T_{∇} is pure if

$$
\begin{gather*}
T_{\nabla}(Z, W)=0, \quad T_{\nabla}(Z, \bar{W})=2 i L_{\theta}(Z, \bar{W}) T, \tag{10}\\
T_{\nabla}(N, W)=r W+i \tau(W), \tag{11}
\end{gather*}
$$

for any $Z, W \in T_{1,0}(\mathcal{F})$, and

$$
\begin{gather*}
\tau\left(T_{1,0}(\mathcal{F})\right) \subseteq T_{0,1}(\mathcal{F}), \tag{12}\\
\tau(N)=-J \nabla^{H} r-2 r T . \tag{13}
\end{gather*}
$$

Here $\nabla^{H} r$ is defined by $\nabla^{H} r=\pi_{H} \nabla r$ and $g_{\theta}(\nabla r, X)=X(r), X \in T(\mathcal{F})$. Also $\pi_{H}: T(\mathcal{F}) \rightarrow H(\mathcal{F})$ is the projection associated to the direct sum decomposition $T(\mathcal{F})=H(\mathcal{F}) \oplus \mathbb{R} T$. We recall the following

Theorem 1. There is a unique linear connection ∇ on V such that i$)$ $T_{1,0}(\mathcal{F})$ is parallel with respect to ∇, ii) $\nabla L_{\theta}=0, \nabla T=0, \nabla N=0$, and iii) T_{∇} is pure.
∇ given by Theorem 1 is the Graham-Lee connection. Theorem 1 is essentially Proposition 1.1 in [7], pp. 701-702. The axiomatic description in Theorem 1 is due to [4] (cf. Theorem 2 there). An index-free proof of Theorem 1 was given in [1] relying on the following
Lemma 1. Let $\phi: T(\mathcal{F}) \rightarrow T(\mathcal{F})$ be the bundle morphism given by $\phi(X)=J X$, for any $X \in H(\mathcal{F})$, and $\phi(T)=0$. Then

$$
\begin{gathered}
\phi^{2}=-I+\theta \otimes T \\
g_{\theta}(X, T)=\theta(X) \\
g_{\theta}(\phi X, \phi Y)=g_{\theta}(X, Y)-\theta(X) \theta(Y),
\end{gathered}
$$

for any $X, Y \in T(\mathcal{F})$. Moreover, if ∇ is a linear connection on V satisfying the axioms (i)-(iii) in Theorem 1 then

$$
\begin{equation*}
\phi \circ \tau+\tau \circ \phi=0 \tag{14}
\end{equation*}
$$

along $T(\mathcal{F})$. Consequently τ may be computed as

$$
\begin{equation*}
\tau(X)=-\frac{1}{2} \phi\left(\mathscr{L}_{T} \phi\right) X \tag{15}
\end{equation*}
$$

for any $X \in H(\mathcal{F})$.
A rather lengthy but straightforward calculation (based on Corollary

1) leads to

Theorem 2. Let $\Omega \subset \mathbb{C}^{n}$ be a smoothly bounded strictly pseudoconvex domain, $K(z, \zeta)$ its Bergman kernel, and $\varphi(z)=-K(z, z)^{-1 /(n+1)}$. Then the Levi-Civita connection ∇^{g} of the Bergman metric and the Graham-Lee connection of (Ω, φ) are related by

$$
\begin{align*}
\nabla_{X}^{g} Y= & \nabla_{X} Y+\left\{\frac{\varphi}{1-\varphi r} g_{\theta}(\tau X, Y)+g_{\theta}(X, \phi Y)\right\} T- \tag{16}\\
& -\left\{g_{\theta}(X, Y)+\frac{\varphi}{1-\varphi r} g_{\theta}(X, \phi \tau \quad Y)\right\} N
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X}^{g} T=\tau X-\left(\frac{1}{\varphi}-r\right) \phi X-\frac{\varphi}{2(1-r \varphi)}\{X(r) T+(\phi X)(r) N\} \tag{17}
\end{equation*}
$$

(18) $\nabla_{X}^{g} N=-\left(\frac{1}{\varphi}-r\right) X+\tau \phi X+\frac{\varphi}{2(1-r \varphi)}\{(\phi X)(r) T-X(r) N\}$,
(19) $\nabla_{T}^{g} X=\nabla_{T} X-\left(\frac{1}{\varphi}-r\right) \phi X-\frac{\varphi}{2(1-r \varphi)}\{X(r) T+(\phi X)(r) N\}$,

$$
\begin{equation*}
\nabla_{N}^{g} X=\nabla_{N} X-\frac{1}{\varphi} X+\frac{\varphi}{2(1-r \varphi)}\{(\phi X)(r) T-X(r) N\} \tag{20}
\end{equation*}
$$

(21) $\nabla_{N}^{g} T=-\frac{1}{2} \phi \nabla^{H} r-\frac{\varphi}{2(1-r \varphi)}\left\{\left(N(r)+\frac{4}{\varphi^{2}}-\frac{2 r}{\varphi}\right) T+T(r) N\right\}$.
(22) $\nabla_{T}^{g} N=\frac{1}{2} \phi \nabla^{H} r-\frac{\varphi}{2(1-r \varphi)}\left\{\left(N(r)+\frac{4}{\varphi^{2}}-\frac{6 r}{\varphi}+4 r^{2}\right) T+T(r) N\right\}$,
(23) $\nabla_{T}^{g} T=-\frac{1}{2} \nabla^{H} r-\frac{\varphi}{2(1-r \varphi)}\left\{T(r) T-\left(N(r)+\frac{4}{\varphi^{2}}-\frac{6 r}{\varphi}+4 r^{2}\right) N\right\}$,

$$
\begin{equation*}
\nabla_{N}^{g} N=-\frac{1}{2} \nabla^{H} r+\frac{\varphi}{2(1-r \varphi)}\left\{T(r) T-\left(N(r)+\frac{4}{\varphi^{2}}-\frac{2 r}{\varphi}\right) N\right\} \tag{24}
\end{equation*}
$$

for any $X, Y \in H(\mathcal{F})$.

3. Klembeck's theorem.

The original proof of the result by P. F. Klembeck (cf. Theorem 1 in [9], p. 276) employs a formula of S. Kobayashi, [10], expressing the components $R_{j k \bar{k} \bar{s}}$ of the Riemann-Christoffel 4-tensor of (Ω, g) as

$$
\begin{aligned}
& -\frac{1}{2} R_{j \bar{k} r \bar{s}}=g_{j \bar{k}} g_{r \bar{s}}+g_{j \bar{s}} g_{r \bar{k}}-\frac{1}{K^{2}}\left\{\begin{array}{l}
\left.K K_{j \bar{k} r \bar{s}}-K_{j r} K_{\bar{k} \bar{s}}\right\}+ \\
\end{array}\right.
\end{aligned}
$$

where $K=K(z, z)$ and its indices denote derivatives. However the calculation of the inverse matrix $\left[g^{j \bar{k}}\right]=\left[g_{j \bar{k}}\right]^{-1}$ turns out to be a difficult problem and [9] only provides an asymptotic formula as $z \rightarrow \partial \Omega$. Our approach is to compute the holomorphic sectional curvature of (Ω, g) by deriving an explicit relation among the curvature tensor fields R^{g} and R of the Levi-Civita and Graham-Lee connections respectively. We start by recalling a pseudohermitian analog to holomorphic curvature (built by S. M. Webster, [14]).

Let M be a nondegenerate CR manifold of type $(n-1,1)$ and θ a contact form on M. Let $G_{1}(H(M))_{x}$ consist of all 2-planes $\sigma \subset T_{x}(M)$ such that i) $\sigma \subset H(M)_{x}$ and ii) $J_{x}(\sigma)=\sigma$. Then $G_{1}(H(M))$ (the disjoint union of all $G_{1}(H(M))_{x}$) is a fibre bundle over M with standard fibre $\mathbb{C} P^{n-2}$. Let R^{∇} be the curvature of the Tanaka-Webster connection ∇ of (M, θ). We define a function $k_{\theta}: G_{1}(H(M)) \rightarrow \mathbb{R}$ by setting

$$
k_{\theta}(\sigma)=-\frac{1}{4} R_{x}^{\nabla}\left(X, J_{x} X, X, J_{x} X\right)
$$

for any $\sigma \in G_{1}(H(M))$ and any linear basis $\left\{X, J_{x} X\right\}$ in σ satisfying $G_{\theta}(X, X)=1$. It is a simple matter that the definition of $k_{\theta}(\sigma)$ does not depend upon the choice of orthonormal basis $\left\{X, J_{x} X\right\}$, as a consequence of the following properties

$$
\begin{aligned}
& R^{\nabla}(Z, W, X, Y)+R^{\nabla}(Z, W, Y, X)=0, \\
& R^{\nabla}(Z, W, X, Y)+R^{\nabla}(W, Z, X, Y)=0 .
\end{aligned}
$$

k_{θ} is referred to as the (pseudohermitian) sectional curvature of (M, θ).
As mentioned above the notion is due to S. M. Webster, [14], who also gave examples of pseudohermitian space forms (pseudohermitian manifolds (M, θ) with k_{θ} constant). Cf. also [2] for a further study of contact forms of constant pseudohermitian sectional curvature. With respect to an arbitrary (not necessarily orthonormal) basis $\left\{X, J_{x} X\right\}$ of the 2-plane σ the sectional curvature $k_{\theta}(\sigma)$ is also expressed by

$$
k_{\theta}(\sigma)=-\frac{1}{4} \frac{R_{x}^{\nabla}\left(X, J_{x} X, X, J_{x} X\right)}{G_{\theta}(X, X)^{2}} .
$$

To prove this statement one merely applies the definition of $k_{\theta}(\sigma)$ for the orthonormal basis $\left\{U, J_{x} U\right\}$, with $U=G_{\theta}(X, X)^{-1 / 2} X$. As $X \in H(M)_{x}$ there is $Z \in T_{1,0}(M)_{x}$ such that $X=Z+\bar{Z}$. Thus

$$
k_{\theta}(\sigma)=\frac{1}{4} \frac{R_{x}(Z, \bar{Z}, Z, \bar{Z})}{g_{\theta}(Z, \bar{Z})^{2}} .
$$

The coefficient $1 / 4$ is chosen such that the sphere $S^{2 n-1} \subset \mathbb{C}^{n}$ has constant curvature +1 . Cf. [5], Chapter 1. With the notations in Section 2 let us set $f=\varphi /(1-\varphi r)$. Then

$$
X(f)=f^{2} X(r), \quad X \in T(\mathcal{F}) .
$$

Let R^{g} and R be respectively the curvature tensor fields of the linear connections ∇^{g} and ∇ (the Graham-Lee connection). For any $X, Y, Z \in H(\mathcal{F})$ (by (16))

$$
\begin{aligned}
\nabla_{X}^{g} \nabla_{Y}^{g} Z= & \nabla_{X}^{g}\left(\nabla_{Y} Z+\left\{f g_{\theta}(\tau(Y), Z)+g_{\theta}(Y, \phi Z)\right\} T-\right. \\
& \left.-\left\{g_{\theta}(Y, Z)+f g_{\theta}(Y, \phi \tau(Z))\right\} N\right)=
\end{aligned}
$$

by $\nabla_{Y} Z \in H(\mathcal{F})$ together with (16)

$$
\begin{gathered}
=\nabla_{X} \nabla_{Y} Z+\left\{f g_{\theta}\left(\tau(X), \nabla_{Y} Z\right)+g_{\theta}\left(X, \phi \nabla_{Y} Z\right)\right\} T- \\
-\left\{g_{\theta}\left(X, \nabla_{Y} Z\right)+f g_{\theta}\left(X, \phi \tau\left(\nabla_{Y} Z\right)\right)\right\} N+ \\
+\left\{f g_{\theta}(\tau(Y), Z)+g_{\theta}(Y, \phi Z)\right\} \nabla_{X}^{g} T+ \\
+\left\{X(f) g_{\theta}(\tau(Y), Z)+f X\left(g_{\theta}(\tau(Y), Z)\right)+X\left(g_{\theta}(Y, \phi Z)\right)\right\} T- \\
-\left\{g_{\theta}(Y, Z)+f g_{\theta}(Y, \phi \tau(Z))\right\} \nabla_{X}^{g} N+ \\
-\left\{X\left(g_{\theta}(Y, Z)\right)+X(f) g_{\theta}(Y, \phi \tau(Z))+f X\left(g_{\theta}(Y, \phi \tau(Z))\right)\right\} N=
\end{gathered}
$$

by (17), (18)

$$
\begin{gathered}
=\nabla_{X} \nabla_{Y} Z+\left\{X(\Omega(Y, Z))+\Omega\left(X, \nabla_{Y} Z\right)+\right. \\
\left.+X(f) A(Y, Z)+f\left[X(A(Y, Z))+A\left(X \nabla_{Y} Z\right)\right]\right\} T- \\
-\left\{X\left(g_{\theta}(Y, Z)\right)+g_{\theta}\left(X, \nabla_{Y} Z\right)+\right. \\
\left.+X(f) \Omega(Y, \tau(Z))+f\left[X(\Omega(Y, \tau(Z)))+\Omega\left(X, \tau\left(\nabla_{Y} Z\right)\right)\right]\right\} N+ \\
+\{f A(Y, Z)+\Omega(Y, Z)\}\left\{\tau(X)-\frac{1}{f} \phi X-\frac{f}{2}(X(r) T+(\phi X)(r) N)\right\}- \\
-\left\{g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\right\} \times \\
\times\left\{-\frac{1}{f} X+\tau(\phi X)+\frac{f}{2}((\phi X)(r) T-X(r) N)\right\}
\end{gathered}
$$

where we have set as usual $A(X, Y)=g_{\theta}(\tau(X), Y)$ and $\Omega(X, Y)=$ $g_{\theta}(X, \phi Y)$. We may conclude that
(25) $\nabla_{X}^{g} \nabla_{Y}^{g} Z=\nabla_{X} \nabla_{Y} Z+[f A(Y, Z)+\Omega(Y, Z)]\left(\tau(X)-\frac{1}{f} \phi X\right)+$

$$
+\left[g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\right]\left(\frac{1}{f} X-\tau(\phi X)\right)+
$$

$$
+\left\{X(\Omega(Y, Z))+\Omega\left(X, \nabla_{Y} Z\right)+f\left[X(A(Y, Z))+A\left(X, \nabla_{Y} Z\right)\right]+\right.
$$

$$
+\frac{f}{2}[X(r)(f A(Y, Z)-\Omega(Y, Z))-
$$

$$
\left.\left.-(\phi X)(r)\left(g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\right)\right]\right\} T-
$$

$$
-\left\{X\left(g_{\theta}(Y, Z)\right)+g_{\theta}\left(X, \nabla_{Y} Z\right)+f\left[X(\Omega(Y, \tau(Z)))+\Omega\left(X, \tau\left(\nabla_{Y} Z\right)\right)\right]-\right.
$$

$\left.-\frac{f}{2}\left[X(r)\left(g_{\theta}(Y, Z)-f \Omega(Y, \tau(Z))\right)-(\phi X)(r)(f A(Y, Z)+\Omega(Y, Z))\right]\right\} N$ for any $X, Y, Z \in H(\mathcal{F})$. Next we use the decomposition $[X, Y]=$ $\pi_{H}[X, Y]+\theta([X, Y]) T$ and (16), (19) to calculate

$$
\begin{gathered}
\nabla_{[X, Y]}^{g} Z=\nabla_{\pi_{H}[X, Y]}^{g} Z+\theta([X, Y]) \nabla_{T}^{g} Z= \\
=\nabla_{\pi_{H}[X, Y]} Z+\left\{f g_{\theta}\left(\tau\left(\pi_{H}[X, Y]\right), Z\right)+g_{\theta}\left(\pi_{H}[X, Y], \phi Z\right)\right\} T- \\
-\left\{g_{\theta}\left(\pi_{H}[X, Y], Z\right)+f g_{\theta}\left(\pi_{H}[X, Y], \phi \tau(Z)\right)\right\} N+ \\
+\theta([X, Y])\left\{\nabla_{T} Z-\frac{1}{f} \phi Z-\frac{f}{2}(Z(r) T+(\phi Z)(r) N)\right\}
\end{gathered}
$$

so that (by $\tau(T)=0$)

$$
\begin{equation*}
\nabla_{[X, Y]}^{g} Z=\nabla_{[X, Y]} Z-\frac{1}{f} \theta([X, Y]) \phi Z+ \tag{26}
\end{equation*}
$$

$$
\begin{gathered}
+\left\{f A([X, Y], Z)+\Omega([X, Y], Z)-\frac{f}{2} \theta([X, Y]) Z(r)\right\} T- \\
-\left\{g_{\theta}([X, Y], Z)+f \Omega([X, Y], \tau(Z))+\frac{f}{2} \theta([X, Y])(\phi Z)(r)\right\} N
\end{gathered}
$$

for any $X, Y, Z \in H(\mathcal{F})$. Consequently by (25)-(26) (and by $\nabla g_{\theta}=0$, $\nabla \Omega=0$) we may compute

$$
R^{g}(X, Y) Z=\nabla_{X}^{g} \nabla_{Y}^{g} Z-\nabla_{Y}^{g} \nabla_{X}^{g} Z-\nabla_{[X, Y]}^{g} Z
$$

so that to obtain

$$
\begin{equation*}
R^{g}(X, Y) Z=R(X, Y) Z+\frac{1}{f} \theta([X, Y]) \phi Z+ \tag{27}
\end{equation*}
$$

$$
+(f A(Y, Z)+\Omega(Y, Z))\left(\tau(X)-\frac{1}{f} \phi X\right)-
$$

$$
-(f A(X, Z)+\Omega(X, Z))\left(\tau(Y)-\frac{1}{f} \phi Y\right)+
$$

$$
+\left(g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\left(\frac{1}{f} X-\tau(\phi X)\right)\right)-
$$

$$
-\left(g_{\theta}(X, Z)+f \Omega(X, \tau(Z))\right)\left(\frac{1}{f} Y-\tau(\phi Y)\right)+
$$

$$
+\left\{f\left[\left(\nabla_{X} A\right)(Y, Z)-\left(\nabla_{Y} A\right)(X, Z)\right]+\right.
$$

$$
+\frac{f}{2}[X(r)(f A(Y, Z)-\Omega(Y, Z))-Y(r)(f A(X, Z)-\Omega(X, Z))-
$$

$$
-(\phi X)(r)\left(g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\right)+(\phi Y)(r)\left(g_{\theta}(X, Z)+\right.
$$

$$
+f \Omega(X, \tau(Z)))+Z(r) \theta([X, Y])]\} T-\left\{f \left[\Omega\left(Y,\left(\nabla_{X} \tau\right) Z\right)-\Omega\left(X,\left(\nabla_{Y} \tau\right) Z\right)-\right.\right.
$$

$$
-\frac{f}{2}\left[X(r)\left(g_{\theta}(Y, Z)-f \Omega(Y, \tau(Z))\right)-Y(r)\left(g_{\theta}(X, Z)-f \Omega(X, \tau(Z))\right)-\right.
$$

$$
-(\phi X)(r)(f A(Y, Z)+\Omega(Y, Z))+(\phi Y)(r)(f A(X, Z)+\Omega(X, Z))+
$$ $+(\phi Z)(r) \theta([X, Y])]\} N$

for any $X, Y, Z \in H(\mathcal{F})$. Let us take the inner product of (27) with $W \in H(\mathcal{F})$ and use (4)-(5). We obtain

$$
\left.\left.\begin{array}{c}
g\left(R^{g}(X, Y) Z, W\right)-\frac{n+1}{\varphi}\left\{g_{\theta}(R(X, Y) Z, W)-\frac{1}{f} \theta([X, Y]) \Omega(Z, W)+\right. \\
+[f A(Y, Z)+\Omega(Y, Z)]\left[A(X, W)+\frac{1}{f} \Omega(X, W)\right]- \\
-[f A(X, Z)+\Omega(X, Z)]\left[A(Y, W)+\frac{1}{f} \Omega(Y, W)\right]+ \\
+ \\
{\left[g_{\theta}(Y, Z)+f \Omega(Y, \tau(Z))\right]\left[\frac{1}{f} g_{\theta}(X, W)+\Omega(X, \tau(W))\right]-} \\
-
\end{array}\right]\left[g_{\theta}(X, Z)+f \Omega(X, \tau(Z))\right]\left[\frac{1}{f} g_{\theta}(Y, W)+\Omega(Y, \tau(W))\right]\right\} .
$$

In particular for $Z=Y$ and $W=X($ as $\Omega=-d \theta)$

$$
\begin{gathered}
g\left(R^{g}(X, Y) Y, X\right)=-\frac{n+1}{\varphi}\left\{g_{\theta}(R(X, Y) Y, X)+\right. \\
+\frac{2}{f} \Omega(X, Y)^{2}+f A(X, X) A(Y, Y)-\frac{1}{f}\left[f^{2} A(X, Y)^{2}-\Omega(X, Y)^{2}\right]+ \\
+\frac{1}{f}\left[g_{\theta}(X, X)+f \Omega(X, \tau(X))\right]\left[g_{\theta}(Y, Y)+f \Omega(Y, \tau(Y))\right]- \\
\left.-\frac{1}{f}\left[g_{\theta}(X, Y)+f \Omega(X, \tau(Y))\right]^{2}\right\} .
\end{gathered}
$$

Note that

$$
\begin{gathered}
A(\phi X, \phi X)=g_{\theta}(\tau(\phi X), \phi X)=-g_{\theta}(\phi \tau X, \phi X)=-A(X, X), \\
\Omega(\phi X, \tau(\phi X))=g_{\theta}(\phi X, \phi \tau(\phi X))=g_{\theta}(X, \tau(\phi X))= \\
=-g_{\theta}(X, \phi \tau(X))=-\Omega(X, \tau(X)), \\
\Omega(X, \tau(\phi X))=g_{\theta}(X, \phi \tau(\phi X))=-g_{\theta}\left(X, \tau\left(\phi^{2} X\right)\right)= \\
=g_{\theta}(X, \tau(X))=A(X, X) .
\end{gathered}
$$

Hence
(28) $g\left(R^{g}(X, \phi X) \phi X, X\right)=-\frac{n+1}{\varphi}\left\{g_{\theta}(R(X, \phi X) \phi X, X)+\right.$

$$
\left.+\frac{4}{f} g_{\theta}(X, X)^{2}-2 f\left[A(X, X)^{2}+A(X, \phi X)^{2}\right]\right\} .
$$

Let $\sigma \subset T(\mathcal{F})_{z}$ be the 2-plane spanned by $\left\{X, \phi_{z} X\right\}$ for $X \in H(\mathcal{F})_{z}$, $X \neq 0$. By (4) if $Y=\phi_{z} X$ then

$$
g_{z}(X, X) g_{z}(Y, Y)-g_{z}(X, Y)^{2}=
$$

$=\left(\frac{n+1}{\varphi(z)}\right)^{2}\left\{g_{\theta, z}(X, X) g_{\theta, z}(Y, Y)-g_{\theta, z}(X, Y)\right\}=\left(\frac{n+1}{\varphi(z)}\right)^{2} g_{\theta, z}(X, X)^{2}$
so that (by (28)) the sectional curvature $k_{g}(\sigma)$ of the 2-plane σ is expressed by (for $Y=\phi_{z} X$)

$$
\begin{gathered}
k_{g}(\sigma)=\frac{g_{z}\left(R_{z}^{g}(X, Y) Y, X\right)}{g_{z}(X, X) g_{z}(Y, Y)-g_{z}(X, Y)^{2}}= \\
=-\frac{\varphi(z)}{n+1}\left\{-4 k_{\theta}(\sigma)+\frac{4}{f(z)}-2 f(z) \frac{A_{z}(X, X)^{2}+A_{z}\left(X, \phi_{z} X\right)^{2}}{g_{\theta, z}(X, X)^{2}}\right\}
\end{gathered}
$$

where k_{θ} restricted to a leaf of \mathcal{F} is the pseudohermitian sectional curvature of the leaf. Note that k_{θ} and A stay finite at the boundary (and give respectively the pseudohermitian sectional curvature and the pseudohermitian torsion of ($\partial \Omega, \theta$), in the limit as $z \rightarrow \partial \Omega$). On the other hand $f(z) \rightarrow 0$ and $\varphi(z) / f(z) \rightarrow 1$ as $z \rightarrow \partial \Omega$. We may conclude that $k_{g}(\sigma) \rightarrow-4 /(n+1)$ as $z \rightarrow \partial \Omega$. To complete the proof of Klembeck's result we must compute the sectional curvature of the 2-plane $\sigma_{0} \subset T_{z}(\Omega)$ spanned by $\left\{N_{z}, T_{z}\right\}$ (remember that $J N=T$). Note first that

$$
N(f)=f^{2}\left(\frac{2}{\varphi^{2}}+N(r)\right)
$$

Let us set for simplicity

$$
g=N(r)+\frac{4}{\varphi^{2}}-\frac{2 r}{\varphi}, \quad h=N(r)+\frac{4}{\varphi^{2}}-\frac{6 r}{\varphi}+4 r^{2} .
$$

We these notations let us recall that (by (23))

$$
\begin{equation*}
\nabla_{T}^{g} T=-\frac{1}{2} X_{r}-\frac{f}{2}\{T(r) T-h N\} \tag{29}
\end{equation*}
$$

where $X_{r}=\nabla^{H} r$. Using also (20) for $X=X_{r}$ we obtain

$$
\begin{gathered}
-2 \nabla_{N}^{g} \nabla_{T}^{g} T=\nabla_{N} X_{r}-\frac{1}{\varphi} X_{r}+\frac{f}{2}\left\{\left(\phi X_{r}\right)(r) T-X_{r}(r) N\right\}+ \\
+N(f)\{T(r) T-h N\}+f\left\{N(T(r)) T+T(r) \nabla_{N}^{g} T-N(h) N-h \nabla_{N}^{g} N\right\} .
\end{gathered}
$$

Let us recall that (by (21) and (24))

$$
\begin{align*}
\nabla_{N}^{g} T & =-\frac{1}{2} \phi X_{r}-\frac{f}{2}\{g T+T(r) N\} \tag{30}\\
\nabla_{N}^{g} N & =-\frac{1}{2} X_{r}+\frac{f}{2}\{T(r) T-g N\} \tag{31}
\end{align*}
$$

Using these identities and the expression of $N(f)$ gives (after some simplifications)

$$
\begin{align*}
& +\frac{f}{2}\left\{2 f\left(\frac{2}{\varphi^{2}}+N(r)\right) T(r)+2 N(T(r))-f(g+h) T(r)\right\} T- \tag{32}\\
- & \frac{f}{2}\left\{g_{\theta}\left(X_{r}, X_{r}\right)+2 f h\left(\frac{2}{\varphi^{2}}+N(r)\right)+2 N(h)+f\left[T(r)^{2}-g h\right]\right\} N
\end{align*}
$$

because of

$$
\begin{gathered}
\left(\phi X_{r}\right)(r)=g_{\theta}\left(\nabla r, \phi X_{r}\right)=g_{\theta}\left(X_{r}, \phi X_{r}\right)=0, \\
X_{r}(r)=g_{\theta}\left(\nabla^{H} r, X_{r}\right)=g_{\theta}\left(X_{r}, X_{r}\right) .
\end{gathered}
$$

Similarly

$$
\begin{gather*}
-2 \nabla_{T}^{g} \nabla_{N}^{g} T=\nabla_{T} \phi X_{r}+\left(\frac{1}{f}-\frac{f g}{2}\right) X_{r}+\frac{f}{2} T(r) \phi X_{r}+ \tag{33}\\
+\frac{f}{2}\{2 T(g)+f(g-h) T(r)\} T+ \\
+\frac{f}{2}\left\{g_{\theta}\left(X_{r}, X_{r}\right)+2 T^{2}(r)+f\left[T(r)^{2}+g h\right]\right\} N .
\end{gather*}
$$

Here $T^{2}(r)=T(T(r))$. Let us set $\tau\left(W_{\alpha}\right)=A_{\alpha}^{\bar{\beta}} W_{\bar{\beta}}$. To compute the last term in the right hand member of

$$
\begin{equation*}
R^{g}(N, T) T=\nabla_{N}^{g} \nabla_{T}^{g} T-\nabla_{T}^{g} \nabla_{N}^{g} T-\nabla_{[N, T]}^{g} T \tag{34}
\end{equation*}
$$

note first that $T(f)=f^{2} T(r)$. On the other hand we may use the decomposition (9) so that

$$
\nabla_{[N, T]}^{g} T=r X_{r}+f r T(r) T-\frac{f}{2}\left\{g_{\theta}\left(X_{r}, X_{r}\right)+2 r h\right\} N+
$$

$$
+\left(i r^{\bar{\alpha}} A_{\bar{\alpha}}^{\beta}-\frac{1}{f} r^{\beta}\right) W_{\beta}-\left(i r^{\alpha} A_{\alpha}^{\bar{\beta}}+\frac{1}{f} r^{\bar{\beta}}\right) W_{\bar{\beta}}
$$

(where $A_{\bar{\alpha}}^{\beta}=\overline{A_{\alpha}^{\bar{\beta}}}$) and by taking into account that

$$
\left(i r^{\bar{\alpha}} A_{\bar{\alpha}}^{\beta}-\frac{1}{f} r^{\beta}\right) W_{\beta}-\left(i r^{\alpha} A_{\alpha}^{\bar{\beta}}+\frac{1}{f} r^{\bar{\beta}}\right) W_{\bar{\beta}}=-\frac{1}{f} X_{r}-\tau\left(\phi X_{r}\right)
$$

we may conclude that

$$
\begin{gather*}
\nabla_{[N, T]}^{g} T=\left(r-\frac{1}{f}\right) X_{r}-\tau\left(\phi X_{r}\right)+ \tag{35}\\
+f r T(r) T-\frac{f}{2}\left\{g_{\theta}\left(X_{r}, X_{r}\right)+2 r h\right\} N
\end{gather*}
$$

Finally (by plugging into (34) from (32)-(33) and (35))

$$
\begin{gathered}
\text { (36) } \quad-2 R^{g}(N, T) T=\nabla_{N} X_{r}-\nabla_{T} \phi X_{r}-f T(r) \phi X_{r}-2 \tau\left(\phi X_{r}\right)+ \\
+\left(2 r+\frac{f}{2}(g+h)-\frac{1}{\varphi}-\frac{3}{f}\right) X_{r}+ \\
+f\left\{f\left(\frac{2}{\varphi^{2}}+N(r)\right) T(r)+N(T(r))-T(g)+(2 r-f g) T(r)\right\} T- \\
-f\left\{2\left\|X_{r}\right\|^{2}+f h\left(\frac{2}{\varphi^{2}}+N(r)\right)+N(h)+f T(r)^{2}+T^{2}(r)+2 r h\right\} N .
\end{gathered}
$$

Here $\left\|X_{r}\right\|^{2}=g_{\theta}\left(X_{r}, X_{r}\right)$. Let us take the inner product of (36) with N and use (4)-(6). We obtain

$$
\begin{gathered}
2 g\left(R^{g}(N, T) T, N\right)= \\
=\frac{n+1}{\varphi}\left\{2\left\|X_{r}\right\|^{2}+f h\left(\frac{2}{\varphi^{2}}+N(r)\right)+N(h)+f T(r)^{2}+T^{2}(r)+2 r h\right\}
\end{gathered}
$$

and dividing by

$$
g(N, N) g(T, T)-g(N, T)^{2}=\frac{1}{f^{2}}\left(\frac{n+1}{\varphi}\right)^{2}
$$

leads to

$$
\begin{gathered}
2 \frac{g\left(R^{g}(N, T) T, N\right)}{g(N, N) g(T, T)-g(N, T)^{2}}= \\
=\frac{f^{2} \varphi}{n+1}\left\{2\left\|X_{r}\right\|^{2}+T^{2}(r)+f T(r)^{2}+2 h r+N(h)+f h N(r)+2 \frac{f h}{\varphi^{2}}\right\}
\end{gathered}
$$

It remains that we perform an elementary asymptotic analysis of the right hand member of the previous identity when $z \rightarrow \partial \Omega$ (equivalently when $\varphi \rightarrow 0$). As $r \in C^{\infty}(\bar{\Omega})$ (cf. [12]) the terms $\left\|X_{r}\right\|^{2}, T^{2}(r), T(r)^{2}$ and $N(r)$ stay finite at the boundary. Also (by recalling the expression of h) $f^{2} \varphi h \rightarrow 0$ as $\varphi \rightarrow 0$. Moreover

$$
\begin{gathered}
2 \frac{f^{2} \varphi}{n+1} \frac{f h}{\varphi^{2}}=\frac{2}{n+1} \frac{f}{\varphi}\left[f^{2} N(r)+\frac{4}{(1-r \varphi)^{2}}-\frac{6 f^{2} r}{\varphi}+4 f^{2} r^{2}\right] \rightarrow \frac{8}{n+1} \\
N(h)=N^{2}(r)+4 N\left(r^{2}\right)-\frac{16}{\varphi^{3}}+\frac{12 r}{\varphi^{2}}-\frac{6}{\varphi} N(r) \\
\frac{f^{2} \varphi}{n+1} N(h) \rightarrow-\frac{16}{n+1}
\end{gathered}
$$

as $\varphi \rightarrow 0$ hence

$$
k_{g}\left(\sigma_{0}\right) \rightarrow-\frac{4}{n+1}, \quad z \rightarrow \partial \Omega
$$

Klembeck's theorem is proved.

REFERENCES

[1] E. Barletta, S. Dragomir, H. Urakawa, Yang-Mills fields on CR manifolds, J. Math. Phys., (1) 47 (2006), pp. 1-41.
[2] E. Barletta, S. Dragomir, Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds, Kodai Math. J., 29 (2006), pp. 405-453.
[3] S. Dragomir, A survey of pseudohermitian geometry, The Proceedings of the Workshop on Differential Geometry and Topology Palermo (Italy), June 3-9, 1996, in Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 49 (1997), pp. 101-112.
[4] S. Dragomir, S. Nishikawa, Foliated CR manifolds, J. Math. Soc. Japan, (4) 56 (2004), pp. 1031-1068.
[5] S. Dragomir, G. Tomassini, Differential Geometry and Analysis on $C R$ Manifolds, Progress in Mathematics, vol. 246, Birkhäuser, Boston-Basel-Berlin, 2006.
[6] C. Fefferman, The Bergman kernel and biholomorphic equivalence of pseudoconvex domains, Invent. Math., 26 (1974), pp. 1-65.
[7] C. R. Graham, J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., (3) 57 (1988), pp. 697-720.
[8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[9] P. F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana University Math. J., (2) 27 (1978), pp. 275-282.
[10] S. Kobayashi, Geometry of bounded domains Trans. Amer. Math. Soc., 92 (1959), pp. 267-290.
[11] A. Korányi, H. M. Reimann, Contact transformations as limits of symplectomorphisms, C. R. Acad. Sci. Paris, 318 (1994), pp. 1119-1124.
[12] J. M. Lee, R. Melrose, Boundary behaviour of the complex Monge-Ampère equation, Acta Mathematica, 148 (1982), pp. 159-192.
[13] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co., Ltd., Kyoto, 1975.
[14] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry, 13 (1978), pp. 25-41.

Università degli Studi della Basilicata, Dipartimento di Matematica, Contrada Macchia Romana, 85100 Potenza, Italy, e-mail: barletta@unibas.it

