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FAMILIES OF CURVES AND VARIATION IN MODULI

ALESSIO DEL PADRONE - ERNESTO MISTRETTA

In this paper we study the class of smooth complex projective varieties
B such that any modular morphism B → Mg is constant for any g ≥ 2,
giving structural properties and examples. Then we investigate the concept of the
moduli dimension of a variety B ; we bound it by the dimension of the maximal
rationally connected quotient of B . In the end we consider also (generically
smooth) families of curves of compact type over rational and elliptic curves.

Introduction.

In the theory of algebraic curves a powerful tool is the study of families,
which is particularly well framed in the theory of moduli spaces. In this
paper we deal with the variation of families of smooth complex projective
curves over a given base B , i. e., “how many” non isomorphic curves there
can be in a family over it. In particular we look for varieties over which
there are only isotrivial (smooth) families, that is, families where all curves
are isomorphic, or, at the other extreme, there are families with “maximal
variation in moduli”.
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Our starting point is the well known isotriviality of all families of
smooth curves over B = P

1, C, C
∗, and elliptic curves, recalled in the first

section. After fixing the notation and recalling the basic facts, we look at
two possible directions to generalize it: first allowing higher dimensional
bases, then by allowing some (mildly) singular curves in the family.

The second section is dedicated to show the “invariance” of families
of smooth curves under birational transformations of the (smooth complex
projective) base using an extension criterion of Abramovich and Vistoli
([2]) and Hironaka’s resolution of indeterminacy. This allow us to claim
the “birational invariance” of some of our results.

In the third section we investigate the class B0 of all (smooth complex
projective) varieties over which there are only isotrivial families. After
establishing some properties we give a list of examples of such varieties,
and among them some birational classes of surfaces. To complete the proof
of proposition 3.3 we provide a simplified proof of a (slightly weaker form
of a) recent result by Stix ([19]).

We look in the fourth part at how curves in a family over a given base
can vary: using the “moduli variation” of families we give some properties
of the “moduli dimension” of a variety and relate it to the dimension of its
maximal rationally connected quotient.

In the last section we show that in case B is P
1 or an elliptic curve

also families of compact type curves, with smooth generic member, with
no rational or elliptic components are isotrivial.

1. Notation and basic results.

By a variety we generally mean a smooth irreducible complex pro-
jective variety, unless explicity specified. A family of curves over a base
B is a flat morphism f : C → B of varieties with proper 1-dimensional
connected fibers; any such family, with smooth fibers, induces a morphism,
called modular map, ϕ f : B → Mg , where Mg is the coarse moduli space
of genus g smooth projective curves.

We recall that Mg is a coarse moduli space because morphisms ψ :
B → Mg do not correspond bijectively to families of curves over B , for
all B , via a “universal family” (i.e., in a functorial way). Not all morphisms
ψ : B → Mg are modular, and there are as well non isomorphic families
of curves over B inducing the same modular map B → Mg .

One way to overcome this unpleasant feature of Mg is working with
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[Mg], the (Deligne-Mumford) moduli stack of genus g smooth curves (see
[8]) and its fundamental group (as a stack) �π1(Mg). The moduli stack [Mg]
is a fine moduli space, hence morphisms ψ : B → [Mg] are, functorially,
in bijection with families C → B of smooth genus g curves over B .

Another useful device to deal with coarseness of Mg is the concept
of a m-level structure: for each integer m ≥ 3 there is an étale covering
p : M

(m)
g → [Mg], where the algebraic scheme M

(m)
g is the fine moduli

space for curves of genus g with m-level structure, see [17], Lecture 10,
and [10], pp. 37–38.

Albeit our main concern is with Mg , we will use [Mg] and M
(m)
g as

tools to state and proof some results.

Definition 1.1. Let C → B be a family of smooth curves over a scheme B .
We say that C is a trivial family if there exist a smooth curve C such that
C ∼= B × C as schemes over B . We say that C is an isotrivial family if for
all b ∈ B the fibers Cb are isomorphic.

Remark 1.2. To prove that a family of smooth curves is isotrivial it is
enough to show that all fibers in an open subset of B are isomorphic, in
fact a family f : C → B is isotrivial if and only if its modular map
ϕ f : B → Mg is constant.

1.1 Isotriviality over small genus curves.

All families of smooth curves, of genus at least two, over B = P
1,

C, C
∗, or an elliptic curve, are isotrivial (see [16] and [1], or [3], cf. also

[15], Corollary 2.3 and Remark 2.5). Here we recall the argument given by
Beauville in [3] (pag. 97), because it is an inspiration for us and we shall
explicity refer to it (see also [11], Lemma 5).

Theorem 1.3. Let f : C → B be a family of smooth curves of genus g ≥ 2.
If B is an elliptic curve or P

1, C or C
∗ , then the family f is isotrivial.

Proof. Let f̃ : �C → �B be the pullback of the family along the universal
covering space of B . Since the local system R1 f̃∗Z is constant over �B , then
the modular map composed with Torelli’s embedding �B → Mg �→ Ag

in the moduli space Ag of principally polarized Abelian varieties lifts to
the Siegel upper semispace Hg , which is hyperbolic. By the hypothesis on
B , its covering space �B is either P

1 or C. Hence any morphism �B → Hg

is constant, and the map B → Ag is constant as well. So the family is
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isotrivial by Torelli. �

Remark 1.4. The key point is the hyperbolicity of the universal cover, so
the same proof applies to show that on a projective space of any dimension,
as well as on any Abelian variety, all families are isotrivial.

Remark 1.5. Theorem 1.3 states, in particular, that for g ≥ 2 there are
no finite modular maps P

1 → Mg . But there exist g’s and rational curves
P

1 → Mg which are not modular, as was shown (in any characteristic) by
Oort ([15], Theorem 3.1).

Moreover, for all g > 1 there exist complete curves B and non-
isotrivial families of smooth genus g curves over B (examples by Kodaira,
see [10], pag. 56).

2. Families of curves and birational maps.

We study in this section the behaviour of families of curves above
birational varieties. We need a basic result about extending families of
curves defined on dense open subsets. Among the literature ([2], [7], [14],
[11], [18]), we have chosen the following lemma (see [2], section 2.4, and
also [14], Lemma 5.5).

Lemma 2.1. (Purity Lemma). Let [M] be a separated Deligne-Mumford
stack, [M] → M the coarse moduli space. Let X be a smooth variety,
and let f : X → M be a morphism. Let Z ⊂ X be a closed subset
of codimension at least 2, and U = X \ Z . Suppose there is a lifting
[ fU ] : U → [M] of f over U . Then the lifting extends uniquely to a
morphism X → [M].

[M]

��
U

[ fU ]
��

�
�

�
�

�
�

�
�

�
�

�
�

�
� �� X

��

f
�� M

Remark 2.2. Hence, if [M] = [Mg] is the moduli stack of smooth genus
g curves, any morphism φ : X → Mg which is modular on a “big” open
subset, i.e., U ⊂ X with X \ U of codimension at least two, is modular
itself; moreover the family of curves on X extending that on U is uniquely
determined by it. In this restricted setting, this is part of a result of Moret-
Bailly (see [11], Théorème).
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We show that families over birational bases can be identified by first
studying the special case of a blowing up with smooth center, and then
using Hironaka’s resolution of indeterminacy to handle arbitrary birational
maps.

Lemma 2.3. Any family C of smooth genus g curves over the blowing up
π : X̂ → X of a smooth projective variety X along a smooth center Z is a
pull-back of a unique family on X .

Proof. The proof goes as follows: we show that the modular map ϕ : X̂ →
Mg factors through a morphism ψ : X → Mg , then that this morphism is
a modular map, and it is induced by a family on X which pulls back to the
family C.

As the exceptional divisor E is a projective bundle over the smooth
center Z of the blowing up, the family C restricted to a fiber of the blowing
up, a projective space, is isotrivial by theorem 1.3. Hence, the modular map

ϕ : X̂ → Mg to the coarse moduli space is constant on any fiber of the

blowing up. As π∗OX̂
∼= OX and ϕ : X̂ → Mg contracts every fiber of

X̂ → X , ϕ factors through a morphism ψ : X → Mg ([6], Lemma 1.15).

We have to show that this morphism is modular, i.e., it comes from
a family on X , or, equivalently, it lifts to a morphism on the moduli

stack. The open subset U := X \ Z is isomorphic to X̂ \ E , where

ϕ : X̂ → Mg is induced by the family C, so there is a lifting of the
morphism U �→ X → Mg to a morphism U → [Mg]. The closed subset
Z has codimension at least 2 in X , hence ψ : X → Mg lifts to the moduli

stack by the purity lemma 2.1. The pull back to X̂ of this family is the

family C, as they coincide on the open subset X̂ \ E . �

Remark 2.4. This lemma is implied by a recent theorem of Stix, stating
that a family of curves on an open subset U of a normal variety X ,
extends uniquely to X if the injection U �→ X induces an isomorphism
π1(X )→̃π1(X ) on the fundamental groups (see [19]).

We can now see that the sets of families over birational projective
varieties are in bijection.

Corollary 2.5. Given a birational map of smooth projective varieties X
and Y , the restrictions to the open isomorphic subsets of X and Y induce
a bijection between the sets of families of smooth genus g curves over X
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and Y .

Proof. So far we have shown that the families on a blowing up (along
a smooth center) are in bijection with the families on the base; the general
case reduces to this one by means of Hironaka’s resolution of indeterminacy
([64], 0.5, Question E and Main Theorem II).

If q: X − − → Y is a birational map by Hironaka there exists a
sequence of blowings up of smooth projective varieties with smooth centers
π : �X = Xn → . . . → X0 = X such that q ◦ π : �X → Y is a regular
morphism (birational and surjective). Resolving also the indeterminacy of
the birational inverse of q we get a morphism �Y → Y fitting in the
following commutative diagram:

Given a family on X , we can pull it back to �X and then to �Y , and we
know that this last family comes from a unique family on Y . Vice-versa,
given a family on Y , we can pull it back to �X and we know it comes
from a unique family on X . By construction this is a bijection between
families over X and Y , and two such families in bijection coincide above
the isomorphic open sets of the birational map. �

3. Varieties admitting no non-isotrivial families.

Are there smooth projective varieties B such that all families of smooth
genus g > 1 curves over B are isotrivial?

Definition 3.1. We say that a variety B has moduli dimension 0 if for all
g > 1 all families of genus g smooth curves over B are isotrivial. The class
of smooth projective varieties of moduli dimension 0 is called B0.

We first state some “set-theoretic” properties of B0 and then we give a
list of varieties belonging to it.

Theorem 3.2. The class B0 has the following properties:

1. if a variety B is dominated by a variety B � ∈ B0 then B itself is in B0;
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2. the class B0 is closed under “fibrations with sections”: i.e., it contains
any variety B admitting a dominant morphism p : B → Y having a
section σ : Y → B, and such that the base Y and generic fiber of p
are in B0. In particular, B0 is closed under products;

3. The class B0 is closed under birational maps (of smooth projective
varieties).

Proof.

1. Just pull back any family to B �.

2. Let f : C → B be a family of curves over B , and let Cb := f −1(b)
be the fiber on a point b ∈ B . For a generic y ∈ Y the family
C|p−1(y) is isotrivial, then the fibers Cb and Cσ p(b) are isomorphic
for a generic b ∈ B . Furthermore the family C|σ(Y ) is isotrivial too,
since Y ∼= σ(Y ) ∈ B0. So given generic b1, b2 ∈ B we have
Cb1

∼= Cσ p(b1)
∼= Cσ p(b2)

∼= Cb2 .

3. Consider a birational map X −− → Y of smooth projective varieties
and assume X ∈ B0. By corollary 2.5 any family C of curves on Y
is an extension of one coming from X : hence it is isotrivial, being an
extension of an isotrivial family. �

We collect here some “examples” of varieties belonging to the class
B0. Note that this list is redundant, for instance rationally connected vari-
eties (point 3) and K3 surfaces (point 5) are simply connected (point 6), but
we can show that they belong to B0 without using it.

Proposition 3.3. The following varieties belong to B0:

1. curves of genus at most one;

2. Abelian varieties and projective spaces;

3. rationally connected varieties, in particular rational and unirational
varieties;

4. ruled surfaces over a curve of genus at most one;

5. surfaces of Kodaira dimension zero;

6. all varieties B with finite π1(B) (first homotopy group).

Proof.

1. This is theorem 1.3.

2. Any Abelian variety or projective space has respectively C
n or P

n as
universal cover, so the theorem follows by the very proof of 1.3.

3. Let B be a rationally connected variety, and C → B a family of curves.
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Any two points of B lie on a rational curve, hence the fibers upon them
are isomorphic by theorem 1.3.

4. A ruled surface is a smooth projective surface S birationally equivalent
to C×P

1, with C a smooth projective curve ([4], Definition III.1). Here
we assume that C has genus at most one, so S is in B0 by proposition
2.5 and part 2 of theorem 3.2.

5. By the birational classification of smooth projective surfaces and part
3 of theorem 3.2 we can restrict to minimal surfaces.

Any minimal surface of Kodaira dimension zero belongs to one of the
following classes ([4], Theorem VIII.2): Abelian surfaces, K3 surfaces,
Enriques surfaces, bielliptic surfaces. By what shown before Abelian
surfaces and bielliptic surfaces, being quotients of products of elliptic
curves, are in B0. Enriques surfaces are dominated by K3 surfaces ([4],
Proposition VIII.17), therefore the claim follows showing that these
last are in B0.

Let B be a K3 surface. In the Appendix of [13] there is a proof of a
theorem, due independently to Bogomolov and Mumford, stating that
every such B contains a (in general singular) rational curve C0 and
a 1-dimensional family of (in general singular) elliptic curve Et (see
also [5], VIII.23). Given a family on B , by theorem 1.3 its moduli map
ϕ : B → Mg is constant on C0 and on each Et . As C0 meets the
elliptic curves, ϕ is a regular morphism constant on a Zariski-dense
subset, hence it is constant on B , i.e., the family is isotrivial.

6. Any projective variety B with finite fundamental group admits a pro-
jective universal cover (which dominates B). Hence we can restrict to
the case π1(B) = 0. The claim follows by a special case of a recent
result of Stix [19] that will be proven in theorem 3.6. �

In order to complete the proof of the last point of proposition 3.3 we
will work with the moduli stack of smooth complete curves [Mg] of genus
g > 1. Roughly speaking we are allowed to pretend that the moduli space
is smooth and admits a universal family: morphisms to [Mg] are exactly
those induced by families of smooth connected curves of genus g.

We need some concepts from algebraic topology and a couple of
lemmas.

Lemma 3.4. Let f : X → Z be a morphism from an irreducible projective
curve X to a quasiprojective variety Z . Then f is constant if and only if for
each ample line bundle L on Z we have deg( f ∗(L)) = 0.
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Proof. Being X an irreducible projective curve, f is non constant if and
only if f is finite, and ample line bundles on X are exactly those of positive
degree. The lemma follows from the facts that the pull-back of an ample
line bundle by a finite morphism is ample and that there are ample line
bundles on Z , as it is quasiprojective. �

We recall that our varieties have the homotopy type of CW-complexes.
In particular, by Riemann uniformization theorem, curves C of positive
genus have contractible universal covering space. Hence they are clas-
sifying spaces for their first homotopy group ([20], Example 6.10.8);
being CW-complexes (up to homotopy) this is equivalent to say they
are Eilenberg-Mac Lane spaces of type K (π, 1), that is πn(C) = 0
for all n �= 1. The singular cohomology of a K (π, 1) CW-complex
Z is naturally isomorphic to the group cohomology of π1(Z), that is,
Hn(Z , Z) ˜−→Hn(π1(Z), Z) (see [20], 6.10, and [12], IV.11).

Lemma 3.5. Let f : X → Z be a morphism from a curve X to a quasi-
projective variety Z . If Z is a K (π, 1)-space, and π1( f ) : π1(X ) → π1(Z)

is constant, then f itself is constant.

Proof. Up to passing to a (possibly ramified) covering of X, we can suppose
that X is a curve of genus g ≥ 1, hence X itself is a K (π, 1)-space.

We will apply lemma 3.4. If L is a line bundle on Z then

deg( f ∗(L)) = c1( f
∗(L)) = f ∗(c1(L)),

where c1 : Pic(X ) → H 2(X, Z) ∼= Z and c1 : Pic(Z) → H 2(Z , Z) are the
first Chern class maps on X and Z respectively.

Being X and Z spaces of type K (π, 1), the singular cohomology
homomorphism f ∗ : H 2(Z , Z) → H2(X, Z) is naturally isomorphic to
the group cohomology homomorphism (π1( f ))

∗:

the second line being trivial because π1( f ) is trivial by assumption. Hence
f ∗(c1(L)) = 0 for any line bundle on Z , and we can apply lemma 3.4. �

What follows is a special case of a result of Stix (see [19], Corollary
4.11).
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Theorem 3.6. Let X be a smooth projective variety and let ϕ : X →
[Mg] be a morphism such that the induced group homomorphism π1(ϕ) :
π1(X ) → �π1(Mg) is trivial. Then the morphism ϕ : X → [Mg] is constant.

Proof. The proof will follow considering the case where X is a smooth
projective curve of genus at least 1. In fact if X is a curve of smaller genus
we can consider a (possibly ramified) covering of X of genus at least 1. If
X is a higher dimensional variety, and x, y ∈ X are two points, we can
consider any smooth curve passing through x and y , and prove that ϕ is
constant along this curve.

For each integer m ≥ 3 there is an étale covering p : M
(m)
g → [Mg]

where M
(m)
g is a level structure (see [17], Lecture 10), and is a K (π, 1)

space.

By base change we have a commutative square

�X
ϕ�

��

p�

��

M
(m)
g

p

��

X
ϕ

�� [Mg]

with p� and p étale coverings. Passing to fundamental groups,

π1(�X)
π1(ϕ

�)
��

π1(p
�)

��

π1(M
(m)
g )

π1(p)

��
π1(X )

π1(ϕ)
�� π̃1(Mg)

we see that π1(ϕ
�) is constant, because π1(p

�) and π1(p) are injective
homomorphisms, and π1(ϕ) is constant by hypothesis.

Since �X is a curve and π1(ϕ
�) is trivial, we deduce from lemma 3.5 that

ϕ� is constant, hence ϕ is constant. �

Corollary 3.7. Let B be a simply connected smooth complex projective
variety, then any family of smooth curves on B is trivial.

Proof. By 3.6 any map B → [Mg] is constant, hence any family on B is
not only isotrivial, but actually trivial. �
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4. Moduli dimension of varieties.

We have seen some cases of varieties admitting no non-isotrivial family
of curves of genus g > 1. We can go further and investigate which kind of
varieties admits no families of maximal variation in moduli.

Definition 4.1. Let B be smooth quasiprojective variety. We call moduli
variation of a family f : C → B of genus g curves, the dimension of the
image ϕ f (B) of B in Mg . We say that a family f : M → B has maximal
variation in moduli if its moduli variation is equal to min (dim B , dim M g ).
Given a variety B , the maximum moduli variation of families of smooth
projective curves on B of genus at least 2 is called moduli dimension of the
variety B , and is noted

Mdim(B): = sup{dimϕ f (B)| f : C → B family of curves of genus ≥ 2}

We note Bi the class of all varieties with moduli dimension i .

In the precedent paragraph we studied the properties of the class B0.
We want to investigate here the classes Bi . At first we can observe:

Lemma 4.2. The moduli dimension is a birational invariant (for projective
varieties).

Proof. Let X −− → Y be a birational map. It follows from corollary
2.5 that all families on Y are obtained as extensions of families coming
from an open subset of X isomorphic to an open subset of Y , so have the
same moduli variation of the families on X . Hence, as this construction is a
bijection on the sets of families, Mdim(Y ) = Mdim(X ). �

Remark 4.3. We have M dim(X ) ≤ M dim(U ) for all open dense subset
U ⊂ X (by restriction to U of families on X ). This inequality can be strict.
For example, consider a non-isotrivial smooth family obtained by removing
the singular fibers from a non-isotrivial family on P

1 with generic smooth
fiber.

As in the case of the class B0, we look now for some properties of the
classes Bi , and some examples.

Proposition 4.4. Let X be a variety admitting a dominant morphism
X → Y with smooth fibers in B0, then the moduli dimension of X is at
most dim Y .

This follows from the more general:
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Proposition 4.5. Let π : X → Y be a dominant morphism with smooth
generic fibers. If there exists an open subset U ⊂ Y such that the fibers X y
have moduli dimension at most i for all y ∈ U, then the moduli dimension
of X is at most i + dim Y .

Proof. Let C → X be a family of smooth genus g curves on X . Let
S be the image of X in Mg via the moduli map ϕ f : X → Mg , we
want to bound the dimension of S. Consider a generic point s ∈ S. Then
dim X = dim S + dim ϕ−1

f (s). The point s ∈ S being generic we can chose

a point in x ∈ ϕ−1
f (s) and posing y := π(x) and Xy := π−1(y), we have

dim X = dimY + dim Xy , and

dim Xy = dim ϕ f (Xy) + dim(ϕ−1
f (s) ∩ Xy) ≤ i + dim(ϕ−1

f (s) ∩ Xy).

So
dim S = dim X − dim ϕ−1

f (s) = dim Y + dim Xy − dim ϕ−1
f (s)

≤ dimY − dim ϕ−1
f (s) + i + dim(ϕ−1

f (s) ∩ Xy) ≤ dim Y + i. �

Remark 4.6. As we have only used a dimension count, this result is still
valid when the varieties are not complete, as long as we can bound the
moduli dimension of the fibers X y .

Theorem 4.7. All smooth projective surfaces in B2 are of general type.

Proof. We have to show that surfaces not of general type do not admit
families with maximal variation in moduli.

We have shown in proposition 3.3 that surfaces of Kodaira dimension 0
belong to B0. Surfaces of Kodaira dimension −∞ or 1 are all birational to
fibrations over curves with generic fibers of genus 0 or 1, hence they have
moduli dimension at most 1 by lemma 4.2 and proposition 4.5 above. �

Remark 4.8. There exist surfaces in B2. And more generally for any i > 0
there exist i -dimensional varieties in Bi (see [10], Theorem 2.33).

Question 4.9. Are all n-dimensional varieties in Bn of general type, i.e., of
Kodaira dimension n?

We show now that the moduli dimension of a variety is bounded by the
dimension of its maximal rationally connected quotient (MRCQ). First we
recall the definition and the basic properties of the MRCQ.

Definition 4.10. Let X be a variety. A maximal rationally connected
quotient (MRCQ) is a dominant rational map f : X − − → Y with
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rationally connected fibers, such that any other rational map with rationally
connected fibers g : X − − → Z factors through f .

Remark 4.11. Any variety admits a maximal rationally connected quotient
f : X − − → Y , and the map f has complete generic fibers (see [6],
theorem 5.13).

Proposition 4.12. For any variety X , the moduli dimension of X is at most
the dimension of its maximal rationally connected quotient (MRCQ).

Proof. Let f : X − − → Y be a MRCQ. Then f is regular on an open
subset U ⊂ X where all fibers are complete rationally connected varieties,
hence belong to B0. So we can apply proposition 4.5 to f : U → Y , and

M dim(X ) ≤ M dim(U ) ≤ dim(Y ). �

Remark 4.13. This inequality can be strict. The moduli dimension of a K3
surface is 0, but its MRCQ, being the surface itself, has dimension 2.

5. Compact type curves.

We try now to generalize Beauville’s theorem in the other direction,
i.e., allowing some kind of singular fibers.

Proposition 5.1. Let B be a curve of genus at most 1, then all families of
compact type curves over B of genus g > 1 with smooth generic fiber are
isotrivial.

Proof. Consider the coarse moduli space of compact type curves M
ct
g ⊂

Mg . Since all compact type curves have a generalized Jacobian (as defined,
e.g., at pag. 249 of [10]), which is a principally polarized Abelian variety,
we still have a Torelli-like map M

ct
g → Ag . This map is not necessarily

injective, (as follows, for instance, by the exact sequence at pag. 250 of
[10]) but it is injective when restricted to the locus of smooth curves.

So given a family of compact type curves over B we have the composed
map B → M

ct
g → Ag , and arguing as in theorem 1.3 we see that

it is constant. But as the generic fiber is smooth, and the jacobian map
M

ct
g → Ag is injective on the smooth locus, the map B → M

ct
g is constant

on an open subset of B , hence it is constant. �

Remark 5.2. The hypothesis of compact type is necessary and cannot be
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replaced by stability, in fact there are non-isotrivial families of curves over
P

1 with smooth generic fiber and at least 3 stable singular fibers (see [3],
pag. 97).

Question 5.3. Let B be a complete smooth curve of genus at most 1, are
there non-isotrivial families of compact type curves over B , such that all
irreducible components of the generic fiber have genus at least 2?

Remark 5.4. The hypothesis on the irreducible components of the generic
fiber is necessary. In fact, we can construct non-isotrivial families of stable
compact type singular curves over any curve B of genus at most 1: take an
elliptic curve E , and attach a fixed stable curve C of genus g > 1, through
a fixed point x ∈ C to a point p ∈ E . Letting the point p vary, we obtain a
non-isotrivial family of compact type stable curves parametrized by E .

In the same way, attaching 4 genus g > 1 curves to P
1, in 4 points,

and letting the 4 points vary, we obtain a non-isotrivial family of singular
compact type curves over P

1.
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