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SOME REMARKS ON THE STANLEY DEPTH FOR
MULTIGRADED MODULES

MIRCEA CIMPOEAS

We show that Stanley’s conjecture holds for any multigraded module
M over S, with sdepth(M) = 0, where S = K[x1, . . . ,xn]. Also, we give
some bounds for the Stanley depth of the powers of the maximal irrelevant
ideal in S.
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Introduction

Let K be a field and S = K[x1, . . . ,xn] the polynomial ring over K. Let M be
a finitely generated Zn-graded S-module. A Stanley decomposition of M is
a direct sum D : M =

⊕r
i=1 miK[Zi] as K-vector space, where mi ∈ M, Zi ⊂

{x1, . . . ,xn} such that miK[Zi] is a free K[Zi]-module. The latter condition is
needed, since the module M can have torsion. We define sdepth(D) = minr

i=1|Zi|
and sdepth(M) = max{sdepth(M)| D is a Stanley decomposition of M}. The
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number sdepth(M) is called the Stanley depth of M. Herzog, Vladoiu and Zheng
show in [9] that this invariant can be computed in a finite number of steps if
M = I/J, where J ⊂ I ⊂ S are monomial ideals. A computer implementation of
this algorithm, with some improvements, is given by Rinaldo in [14].

Let M be a finitely generated Zn-graded S-module. Stanley’s conjecture
says that sdepth(M) ≥ depth(M). The Stanley conjecture for S/I was proved
for n ≤ 5 and in other special cases, but it remains open in the general case.
See for instance, [4], [8], [10], [3] and [12]. Another interesting problem is to
explicitly compute the sdepth. This is difficult, even in the case of monomial
ideals! Some small progresses were made in [13], [9], [6], [7] and [15].

In the first section, we prove that the Stanley conjecture holds for modules
with sdepth(M) = 0, see Theorem 1.4. As a consequence, it follows that any
torsion free module M has sdepth(M) ≥ 1. In the second section, we give an
upper bound for the Stanley depth of the powers of the maximal ideal m =
(x1, . . . ,xn)⊂ S, see Theorem 2.2. We conjecture that sdepth(mk) =

⌈ n
k+1

⌉
, for

any positive integer k.

1. Stanley’s conjecture for modules with sdepth zero.

Let M be a finitely generated Zn-graded S-module. We use an idea of Herzog,
in order to obtain a decomposition of M, similar to the Janet decomposition
given in [2]. For any j ≥ 1, we have a natural surjective map ϕ j : M → x j

nM
given by the multiplication with x j

n. Obviously, ϕ j(xnM)⊂ x j+1
n M and therefore

ϕ j induces a natural surjection ϕ̄ j : M/xnM → x j
nM/x j+1

n M. We write L j =
Ker(ϕ̄ j).

Note that L j ⊂ L j+1 for any j, since we have a natural surjection

x j
nM/x j+1

n M→ x j+1
n M/x j+2

n M

given by multiplication with xn. As M/xnM is finitely generated, it follows that
there exists a nonnegative integer q such that Lq = Lq+1 = · · · and moreover
x j

nM/x j+1
n M ∼= x j+1

n M/x j+2
n M for any j ≥ q. Now, we can prove the following

Lemma.

Lemma 1.1. Let M be a finitely generated Zn-graded S-module and q such that
Lq = Lq+1 = · · · . Then we have the following decomposition of M , as K-vector
space:

M ∼= M/xnM⊕·· ·⊕ xq−1
n M/xq

nM⊕ xq
nM/xq+1

n M[xn].

Proof. Note that, since M is graded,
⋂

x j
nM = 0. Therefore, we have

M = M/xnM⊕ xnM = M/xnM⊕ xnM/x2
nM⊕ x2

nM = · · ·=
⊕
j≥0

x j
nM/x j+1

n M.
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Since x j
nM/x j+1

n M ∼= x j+1
n M/x j+2

n M for any j ≥ q, the proof of Lemma is com-
plete.

Note that each factor x j
nM/x j+1

n M naturally carries the structure of a multi-
graded S′-module, where S′ = K[x1, . . . ,xn−1]. Also, if M = S/I, where I ⊂ S is
a monomial ideal, the above decomposition is exactly the Janet decomposition
of S/I, with respect to the variable xn.

Lemma 1.2. Let M be a multigraded S-module. Then sdepth(M) = n if and
only if M is free.

Proof. If M is free, it follows that M ∼=
⊕r

i=1 S(−ai), where ai ∈ Zn are some
multidegrees. Therefore, M has a basis {e1, . . . ,en} where ei correspond to
1 ∈ S(−ai). Therefore M =

⊕
eiS is a Stanley decomposition of M and thus

sdepth(M) = n. Conversely, given a Stanley decomposition M =
⊕

eiS, it fol-
lows that M ∼=

⊕r
i=1 S(−ai), where deg(ei) = ai.

Lemma 1.3. Let M be a graded K[x]-module. Then, the following are equiva-
lent:

(1) M is free.
(2) M is torsion free.
(3) depth(M) = 1.
(4) sdepth(M) = 1.

Proof. The equivalences (1)⇔ (2)⇔ (3) are well known. (4)⇔ (1) is the case
n = 1 of the previous Lemma.

Let m = (x1, . . . ,xn)⊂ S be the maximal irrelevant ideal. Let M be a finitely
generated Zn-graded S-module. We denote sat(M) = (0 :M m∞) =

⋃
k≥1(0 :M

mk) the saturation of M. It is well known, that depth(M) = 0 if and only if
m ∈ Ass(M) if and only if sat(M) 6= 0. On the other hand, sat(M/sat(M)) = 0.
Note that if I ⊂ S is a monomial ideal, then sat(S/I) = Isat/I, where Isat = (I :
m∞) is the saturation of the ideal I. We prove the following generalization of [7,
Theorem 1.5].

Theorem 1.4. Let M be a multigraded S-modules. If sdepth(M) = 0 then
depth(M) = 0. Conversely, if depth(M) = 0 and dimK(Ma)≤ 1 for any a ∈ Zn,
then sdepth(M) = 0.

Proof. We use induction on n. If n = 1, then we are done by Lemma 1.3. Sup-
pose n > 1. We consider the decomposition

(∗) M ∼= M/xnM⊕·· ·⊕ xq−1
n M/xq

nM⊕ xq
nM/xq+1

n M[xn],
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given by Lemma 1.2. We define M j := x j
nM/x j+1

n M for j ∈ [q]. As sdepth(M) =
0, it follows that sdepth(M j) = 0 for some j < q. We have M j = sat(M j)⊕
M/sat(M j), where sat(M j) is the saturation of M j as a S′-module. If there
exists some nonzero element m ∈ sat(M j) such that x j

nm = 0, it follows that
m ∈ sat(M) and thus sat(M) 6= 0.

For the converse, we assume depth(M) > 0. It follows that xnsat(M j) ⊂
sat(M j+1) for any j < q. Since sat(M j/sat(M j)) = 0, by induction hypothesis,
it follows that sdepth(M j/sat(M j))≥ 1. Therefore, (∗) implies

(∗∗)M ∼=
q−1⊕
j=0

M j/sat(M j)⊕Mq/sat(Mq)[xn]⊕
q−1⊕
j=0

sat(M j)⊕ sat(Mq)[xn].

Also,
⊕q−1

j=0 sat(M j) ⊕ sat(Mq)[xn] =
⊕q

j=0
⊕

m̄∈sat(M j)/sat(M j−1) mK[xn] since
dimK(Ma) ≤ 1, and therefore, by (∗∗), we obtain a Stanley decomposition of
M with it’s sdepth≥ 1!

Corollary 1.5. If M is torsion free, then sdepth(M)≥ 1.

Proof. Obviously, since M is torsion free, we have depth(M)≥ 1.

Example 1.6. (Dorin Popescu, [12]) The condition dimK(Ma)≤ 1 is essential in
the second part of Theorem 1.4. Let S = K[x1,x2] and consider the module M :=
(Se1⊕Se2)/(x1z,x2z, where z = x1e2− x2e1. M is multigraded with deg(e1) =
deg(x1) = (1,0) and deg(e2) = deg(x2) = (0,1). Note that dimK(Ma) = 1 for
any a ∈ Z2 \ {(1,1)} and dimK(M(1,1)) = 2. Since z ∈ Soc(M), it follows that
depth(M) = 0. We have a Stanley decomposition of M,

M = ē1K[x2]⊕ ē1x1K[x1]⊕ ē2K[x1]⊕ ē2x2K[x2]⊕ ē1x1x2K[x1,x2],

where ē1, ē2 are the images of e1 and e2 in M. It follows that sdepth(M)≥ 1 and
thus sdepth(M) = 1, since M is not free.

Remark 1.7. Let M be a torsion free finitely generated Zn-graded S-module.
Then we have an inclusion 0→ M → F , where F is a free module with the
same rank as M. Let Q := F/M. Is it true that sdepth(M)≥ sdepth(Q)+1? In
particular, if I ⊂ S is a monomial ideal, is it true that sdepth(I)≥ sdepth(S/I)+
1?

If this result were true, then by depth(M) = depth(Q) + 1, if Q satisfy
Stanley’s conjecture, then M also satisfy Stanley’s conjecture. Note that, in
general we cannot expect that sdepth(M) = sdepth(Q) + 1. Take for instance
M = m = (x1, . . . ,xn) ⊂ S and Q = k = S/m. It is known from [9] and [5] that
sdepth(m) =

⌈n
2

⌉
, but sdepth(k) = 0. It would be interesting to characterize

those modules M with sdepth(M) = sdepth(Q)+1. Or, at least, the monomials
ideals I ⊂ S with sdepth(I) = sdepth(S/I)+1.
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We end this section with the following example.

Example 1.8. Let Mi := syzi(K) the i-th syzygy module of K. It is known that
depth(Mi) = i for all 0 ≤ i ≤ n. The problem of computing sdepth(Mi) is a
chellenging problem. Obviously, sdepth(M0) = sdepth(K) = 0. On the other
hand, sdepth(M1) = sdepth(m) =

⌈n
2

⌉
. Also, sdepth(Mn) = sdepth(S) = n. We

claim that sdepth(Mn−1) = n−1.
Indeed, Mn−1 = Coker(S

ψ−→ Sn), where we define Sn =
⊕n

i=1 Sei and we
set ψ(1) := x1e1 + · · ·+ xnen. Therefore, Mn−1 := Sē1 + · · ·+ Sēn, where ēi

are the class of ei in Mn−1 for all i ∈ [n]. Note that ē1, . . . , ēn−1 are linearly
independent in Mn−1, since the only relation in Mn−1 is x1ē1 + · · ·+ xn−1ēn =
−xnēn. It follows that, Mn−1 = Sē1⊕·· ·⊕Sēn−1⊕K[x1, . . . ,xn−1]ēn, and there-
fore sdepth(Mn−1)≥ n−1. On the other hand, sdepth(Mn−1)≤ n−1, since M
is not free. Thus sdepth(Mn−1) = n−1.

2. Bounds for the sdepth of powers of the maximal irrelevant ideal

Let m = (x1, . . . ,xn) be the maximal irrelevant ideal of S. Let k≥ 1 be an integer.
In this section, we will give some upper bounds for sdepth(mk). In order to do
so, we consider the following poset, associated to mk,

P := {u ∈mk monomial : u|xk
1xk

2 · · ·xk
n},

where u ≤ v if and only if u|v. For any u ∈ P, we denote ρ(u) = |{ j : xk
j|u}|.

Note that, by [9, Theorem 2.4], there exists a partition of P =
⊕r

i=1[ui,vi],
i.e. a disjoint sum of intervals [ui,vi] = {u ∈ P : ui|u and u|vi}, such that
minr

i=1{ρ(vi)}= sdepth(mk).
We write Pd = {u ∈ P : deg(u) = d}, where k ≤ d ≤ kn, and αd := |Pd |.

First, we want to compute the numbers αd .

Lemma 2.1. We the above notations, we have:

αd = ∑
i≥0

(−1)i
(

n
i

)(
n+d− i(k +1)−1

n−1

)
.

Proof. We fix d ≥ k. For any j ∈ [n], we write A j := {u ∈ S : deg(u) = d,
xk+1

j |u}. Obviously, Pd := Sd \ (A1 ∪A2 ∪ ·· · ∪An), where Sd is the set of all
monomials of degree d in S. For any nonempty subset I ⊂ [n], we write AI :=⋂

i∈I Ai. By inclusion-exclusion principle,

|A1∪·· ·∪An|= ∑
/06=I⊂[n]

(−1)|I|−1|AI|.

Note that a monomial u ∈ AI can be written as u = w ·∏i∈I xk+1
i . Therefore,

|AI|=
(n+d−i(k+1)−1

n−1

)
. Now, one can easily get the required conclusion.
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Theorem 2.2. Let a≤
⌈n

2

⌉
be a positive integer. Then sdepth(mk)≤

⌈ n
k+1

⌉
. In

particular, if k ≥ n−1, then sdepth(mk) = 1.

Proof. Let a =
⌈ n

k+1

⌉
and assume, by contradiction, that sdepth(mk) ≥ a + 1.

Obviously, by Lemma 2.1, αk =
(n+k−1

n−1

)
and αk+1 =

(n+k
n−1

)
−n. We consider a

partition of P : Pn,k =
⋃r

i=1[x
ci ,xdi ] with sdepth(D(P)) = a+1. Note that mk is

minimally generated by all the monomials of degree k in S. We can assume that
Sk = {xci |i = 1, . . . ,N}, where N =

(n+k−1
n−1

)
. We consider an interval [xci ,xdi ]. If

ci = xk
j, then by ρ(xdi) ≥ a + 1, it follows that in [xci ,xdi ] are at least a distinct

monomials of degree k + 1. If ci( j) < k for all j ∈ [n], then, in [xci ,xdi ] are at
least a+1 distinct monomials of degree k +1.

We assume that k ≥
⌈n−a

a

⌉
. Since P : Pn,k =

⋃r
i=1[x

ci ,xdi ] is a partition
of Pn,k, by above considerations, it follows that αk+1 ≥ na + (αk− n)(a + 1).
Therefore,

(n+k
k−1

)
≥ (a + 1)

(n+k−1
n−1

)
. This implies n + k ≥ (k + 1)(a + 1)≥ (k +

1)( n
k+1 +1) = n+ k +1, a contradiction.

We conjecture that sdepth(mk)≤
⌈ n

k+1

⌉
. Using the computer, see [14], one

can prove that this conjecture is true for small n. Also, the conjecture is true for
k = 1, from [9], [5]. We end this section with the following proposition.

Proposition 2.3. Let I ⊂ S be a monomial ideal. Then sdepth(mkI) = 1 for
k� 0.

Proof. We consider the K-algebra A :=
⊕

i≥0 miI/mi+1I and denote Ai the ith

graded component of A. Note that H(A, i) := dimK(Ai) = |G(miI)|, where
G(miI) is the set of minimal monomial generators of miI. Since A is a finitely
generated K-algebra, it follows that the Hilbert function H(A, i) is polynomial
for i� 0.

Therefore, limi→∞H(A, i)/H(A, i + 1) = 1. Note that there are exactly
H(A, i +1) monomials of degree i +1 in miI. Suppose sdepth(miI)≥ 2. As in
the proof of Theorem 2.2, it follows that H(A, i+1)≥ 2(H(A, i)−n)+n, which
is false for i� 0, since it contradicts that limi→∞ H(A, i)/H(A, i+1) = 1.
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