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ON THE DIMENSION OF THE MINIMAL VERTEX COVER
SEMIGROUP RING OF AN UNMIXED BIPARTITE GRAPH

CRISTINA BERTONE - VINCENZO MICALE

In a paper in 2008, Herzog, Hibi and Ohsugi introduced and studied
the semigroup ring associated to the set of minimal vertex covers of an
unmixed bipartite graph. In this paper we relate the dimension of this
semigroup ring to the rank of the Boolean lattice associated to the graph.

1. Introduction

Let G be a finite graph without loops, multiple edges and isolated vertices and
let M (G) be the set of minimal vertex covers of G. In [2, Section 3] the authors
introduce and study the semigroup ring associated to the minimal vertex covers
of an unmixed and bipartite graph G.

In this paper we relate the dimension of this semigroup ring to the rank of
the Boolean lattice associated to G.

In Section 2, we recall the concept of an unmixed bipartite graph G and we
give some preliminaries about the Boolean lattice associated to G. In particular,
we characterize those sublattices of the Boolean lattice which are associated
to G (cf. Theorem 2.3). Then, in the particular case of bipartite graphs, we
concentrate on the concept of vertex cover algebra.

In Section 3 we define the semigroup ring associated to the minimal vertex
covers of an unmixed and bipartite graph G and we prove that its dimension
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equals the rank of LG plus one (cf. Theorem 3.3). As a particular case of this
result we get that the dimension of the semigroup ring associated to the minimal
vertex covers of bipartite and Cohen-Macaulay graphs on 2n vertices is equal to
n+1 (cf. Corollary 3.4).

2. Preliminaries

Throughout this paper, graphs are assumed to be finite, loopless, without multi-
ple edges and isolated vertices. We denote by V (G) the set of vertices of G and
by E(G) the set of edges of G.

Definition 1. For a graph G, a subset C of the set of vertices V (G) is called a
vertex cover for G if every edge of E(G) is incident to at least one vertex from
C. C is a minimal vertex cover if for any C′ ( C, C′ is not a vertex cover for G.

Let M (G) denote the set of minimal vertex covers of G. In general, the minimal
vertex covers of a graph do not have the same cardinality.

Example 2.1. Let G be the graph with V (G) = {1,2,3,4,5} and

E(G) = {{1,2},{2,3},{3,4},{1,4},{4,5}}.

Then M (G) = {{2,4},{1,3,5}}.

Definition 2. A graph G is unmixed if all the elements of M (G) have the same
cardinality.

Example 2.2. The graph G with V (G) = {1,2,3,4} and E(G) = {{1,2},{2,3},
{3,4},{1,4}} is unmixed as M (G) = {{2,4},{1,3}}.

Definition 3. A graph G is bipartite if its set of vertices V (G) can be divided
in two disjoint subsets U and V such that, for all l ∈ E(G), we have |l ∩U | =
1 = |l∩V |.

In what follows G will be assumed to be bipartite and unmixed with respect
to the partition V (G) = U ∪V of its vertices, where U = {x1, . . . ,xm} and V =
{y1, . . . ,yn}.

Since G is unmixed and U and V are both minimal vertex cover for G, then
n = m.
Furthermore, let U ′ ⊆U and N(U ′) be the set of those vertices y j ∈V for which
there exist a vertex xi ∈ U ′ such that {xi,y j} ∈ E(G); then (cf.[1, p. 300]),
since (U \U ′)∪N(U ′) is a vertex cover of G for all subset U ′ of U and since
G is unmixed, it follows that |U ′| ≤ |N(U ′)| for all subset U ′ of U . Thus, the
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marriage theorem enable us to assume that {xi,yi} ∈ E(G) for i = 1, . . . ,n.
We can also assume that each minimal vertex cover of G is of the form

{xi1 , . . . ,xis ,yis+1 , . . . ,yin}

where {i1, . . . , in}= [n] = {1, . . . ,n}.
For a minimal vertex cover C = {xi1 , . . . ,xis ,yis+1 , . . . ,yin} of G, we set C′ =

{xi1 , . . . ,xis}. Let Ln denote the Boolean lattice of all the subset of {x1, . . . ,xn}
and let LG = {C′ |C is a minimal vertex cover of G }. One easily checks this is
a sublattice of Ln. Since Ln is a distributive lattice, any sublattice is distributive
as well.

Actually, there is a one to one correspondence between the graphs we are
studying and the sublattices of Ln containing /0 and {x1, . . . ,xn}:

Theorem 2.3. [2, Theorem 1.2] Let L be a subset of Ln. Then there exists
a (unique) unmixed bipartite graph G on {x1, . . . ,xn} ∪ {y1, . . . ,yn} such that
L = LG if and only if /0 and {x1, . . . ,xn} belong to L and L is a sublattice of
Ln.

2.1. Cohen-Macaulay bipartite graphs

Let A be the polynomial ring K[z1, . . . ,zN ] over a field K. To any graph G on
vertex set [N], let I(G) be the ideal of A, called the edge ideal of G, generated
by the quadratic monomials ziz j such that {i, j} ∈ E(G).

Definition 4. A graph G is Cohen-Macaulay if the quotient ring A/I(G) is
Cohen-Macaulay.

Let, as before, Ln denote the Boolean sublattice on {x1, . . . ,xn}.

Definition 5. The rank of a sublattice L of Ln, rankL , is the non-negative
integer l where l + 1 is the maximal cardinality of a chain of L . A sublattice
L of Ln is called full if rankL = n.

Theorem 2.4. [2, Theorem 2.2] A subset L of Ln is a full sublattice of Ln if
and only if there exists a Cohen-Macaulay bipartite graph G on {x1, . . . ,xn}∪
{y1, . . . ,yn} with L = LG.

2.2. Vertex cover algebra

Let G be a bipartite and unmixed graphs on the set of vertices {x1, . . . ,xn} ∪
{y1, . . . ,yn} and with minimal vertex cover C = {xi1 , . . . ,xis ,yis+1 , . . . ,yin}. It is
useful to notice that xi ∈C if and only if yi /∈C.

We can identify C with the (0,1)-vector, bC ∈ N2n such that
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bC( j) =


1 if 1≤ j ≤ n and x j ∈C
1 if n+1≤ j ≤ 2n and y j−n ∈C
0 otherwise

where bC( j) denotes the j-th coordinate of the vector bC.
In this way, we can associate to each minimal vertex cover C of G a square-

free monomial in the polynomial ring S = K[x1, . . . ,xn,y1, . . . ,yn] with degxi =
degyi = 1; in fact, we first associate to C its vector bC and then we consider the
monomial uC = xbC(1)

1 · · ·xbC(n)
n ybC(n+1)

1 · · ·ybC(2n)
n .

Definition 6. The vertex cover algebra of the bipartite graph G is the subal-
gebra A(G) of S[t] generated, over S, by the monomials uCt for every minimal
vertex cover C of G, that is A(G) = S[uCt, C ∈M (G)].

By [3, Theorem 4.2 and Corollary 4.4], we have, in particular, that A(G) is a
finitely generated, graded, normal, Gorenstein S-algebra.

Moreover, in [3, Theorem 5.1], the authors show that A(G) is generated in
degree ≤ 2 and that it is standard graded.

3. The dimension of A(G)

We now introduce the object of our study in this paper.
Let m be the maximal graded ideal of S. For a bipartite unmixed graph G,

we consider the standard graded K-algebra

A(G) := A(G)/mA(G)∼= K[uCt, C ∈M (G)]∼= K[uC, C ∈M (G)].

Hence A(G) is the semigroup ring generated by all monomials uC such that
C ∈M (G). This object has been introduced and studied in [2, Section 3], where
the authors proved, in particular, that A(G) is a normal and Koszul semigroup
ring (cf. [2, Corollary 3.2]).

The aim of the paper is to relate the dimension of A(G) to rankLG (cf.
Theorem 3.3).

Let d = |M (G)| and BG be the d× 2n matrix whose rows are exactly the
vectors bC. Since C1 = {x1, . . . ,xn} and C2 = {y1, . . . ,yn} are always in M (G),
we can assume that the first and the last rows of BG are bC1 and bC2 respectively.
Finally, let b̃C be the n-vector containing only the first n entries of bC and let B̃G

be the d×n matrix whose rows are the vectors b̃C.

Lemma 3.1. rankBG = rank B̃G +1.
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Proof. Let C1, . . . ,C2n be the column vectors of BG (note that the columns of B̃G

are exactly C1, . . . ,Cn) and let C̃ be the column vector with d entries each equals
to 1. Since Cn+ j = C̃−C j for every j = 1, . . . ,n, then we have that

〈C1, . . . ,Cn,C̃〉K = 〈C1, . . . ,Cn,Cn+1, . . . ,Cn〉K .

as K-vector spaces.
Finally, since the last entry in each column C1, . . . ,Cn is 0, it follows that

C̃ /∈ 〈C1, . . . ,Cn〉K , that is

dimK〈C1, . . . ,Cn,C̃〉K = dim〈C1, . . . ,Cn〉K +1.

Lemma 3.2. rank B̃G = rankLG

Proof. Let rankLG = m and consider a chain of maximal length m + 1 in the
sublattice LG. We note that, by Theorem 2.3, /0 and [n] are in this chain. Each
element of this maximal chain corresponds to a row of the matrix B̃G. Let denote
with v1, . . . ,vm+1 the row vectors associated to this maximal chain, where v1 is
the vector associated to the element at the top of the chain, v2 is the vector
associated to the element of the chain just below the top, and so on for the
remaining vectors v3, . . . ,vm+1. With this notation we have that v1 is the vector
with all 1’s and vm+1 is the vector with all 0’s. We note that if i > j, then the
numbers of 1’s in vi is strictly less than the number of 1’s in v j and that if 0 is
the l-th coordinate of vi, then 0 is the l-th coordinate of v j. This two facts imply
that v1, . . . ,vm are linearly indipendent. So we have rank B̃G ≥ m.

In order to prove that equality holds, we show that all the other rows of B̃G

are linear combination of the m rows associated to v1, . . . ,vm. With an abuse of
notation, we now identify the elements of the lattice LG with their associated
vectors. Since LG is a lattice containing [n] and /0, following the maximal chain
in the lattice containing the vectors v1, . . . ,vm, we have, at a certain height, the
situation depicted in the picture
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where vi,vi+1,vi+2 are in the maximal chain.
But LG is a distributive lattice and, in terms of the vectors, this means that

we can obtain v from the other vectors in the picture: in fact (vectorially)

v = vi− vi+1 + vi+2.

Repeating this in each analogous situation, we have that all the possible
vectors representing elements of the lattice which are not in the chosen maximal
chain, can be obtained by a linear combination of the vectors v1, . . . ,vm. In terms
of the matrix B̃G, this means that rank B̃G ≤ m.

Theorem 3.3. Let G be an unmixed, bipartite graph on 2n vertices with no
isolated vertices and let LG be the associated sublattice of Ln. Then

dim A(G) = rankLG +1.

Proof. By [4, Proposition 7.1.17], we have that dim A(G) = rank BG. By Lem-
mas 3.1 and 3.2, we get the proof.

Corollary 3.4. Let G be a Cohen-Macaulay bipartite graph on 2n vertices.
Then

dim A(G) = n+1

Proof. By [4, Proposition 6.1.21], G is unmixed. Furthermore, by Theorem 2.4,
Cohen-Macaulay graphs correspond to full sublattices. Hence, by Theorem 3.3,
we get the thesis.
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