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ITERATED DIRICHLET PROBLEM FOR
THE HIGHER ORDER POISSON EQUATION

H. BEGEHR - T. VAITEKHOVICH

Convoluting the harmonic Green function with itself consecutively
leads to a polyharmonic Green function suitable to solve an iterated Diri-
chlet problem for the higher order Poisson equation. The procedure works
in any regular domain and is not restricted to two dimensions. In order
to get explicit expressions however the situation is studied in the complex
plane and sometimes in particular the unit disk is considered.

1. Polyharmonic Green Functions

Let D C C be a regular domain in the complex plane, i.e. bounded with
a (piecewise) smooth boundary. For such domains the Gauss theorem in the

forms
1

1
z—m/wa)(z)dz— E/D(%(z)dxdy,

1 _ 1
%ADm(Z)dZ__E/DwZ(Z)dXdy

holds for @ € C'(D; C) N C(D; C). Moreover the harmonic Green function
Gi(z, §) exists satisfying for any § € D
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e Gi(-,{) is harmonic in D\ {(},

(-
e Gi(z,{)+1log|¢ —z|* is harmonic for z € D,
(

o Gy 0 for z € D,

Gi(C,z)forz, €D, z# .

As follows from the maximum principle for harmonic functions G;(z, {) is
uniquely defined by the first three properties.

<y

)
)
)=
)=

Usually 3 G1(z,§) is called the harmonic Green function.

The Green function is the tool to solve the Dirichlet problem for the Poisson
equation
d,0-=finD,®=YyondD,

where f € L;(D;C), y € C(dD;C). The solution is unique and given by

1
w(z):—ﬁ/‘ma (2.8 ds¢——/G1 {)dédn, (1)

where 3v§ denotes the outward normal derivative and s the arc length parameter
1

on dD with respect to the variable {. The kernel ) 8V§G1 (z,8) is the Poisson

kernel. In case of the unit disk D =D = {|z| < 1} itis

1 1

81(z,6) = e

as in that case

l—zg

Gi(z,0) log‘

Because of its weak singularity G(z,{) can be inserted instead of f(z) in the
area integral in (1). Denoting

S / G1(z 0)Gi(E,8)dEdR 2)

and comparing this with formula (1) obviously Gz( -, ) is the solution to the
Dirichlet problem

9.9 G2(2,$) = Gi(z,) in D, Ga(z,§) =0 on 9D

for any { € D. That (2) in fact is the solution to this problem can be shown by

considering 1 N N N
—= | G1(28)9z9: G2(E,§)dEdn,

T JD,
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where D, = {{ € D: & < |{ — (|, & < | —z|} for small enough, positive
€ = (&1,&). Applying the Gauss theorem and letting the €’s tend to zero then
(2) follows.

Evaluating (2) for D = ID shows G, (z,8) =

—1¢-Plog| 2 [+ 0Py g [ LR L

This biharmonic Green function differs from [1, 2, 4-6]

—z
£ —

which is also a biharmonic Green function but not a primitive of G;(z,{) with
respect to the Laplacian d,d-. Both these functions satisfy

Gale,) = ¢~ atog| 2 [ — (1= 1eP)(1 - [¢P), )

e they are biharmonic in z € D\{{} forany { € D,

e adding |{ — z|*log|{ — z|?> produces a biharmonic function in z € D for
any §{ €D,

e they are symmetric in z and  for z # (.
However their boundary behaviors differ. While
-G2(2,8) =0, 0.0: Ga(z,§) =0 forz € D, { € D

instead
- Ga(z,8) =0, angz(z,C) =0forzedD,{eD

holds. From

Gale.§) =~ [ [toxIE ~<P1og | — P~ tog]E — e (€.) -

10g|C = &[2h1 (2, 8) + i (2, D) (S, )| dEdn

it is seen that
G2(z.8) = | — 2 log|{ — 2> + Ia(2, )

with a biharmonic 4 (z, {). This follows because —log |{ — z|? is a fundamental
solution to the Laplace operator d,d- and

9:0: |¢ — z*[log|¢ 2> — 2] = log|{ — 2.
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Hence, (A;z (z, &) is a smooth function, moreover it is obviously symmetric. Pro-
ceeding with G, as before with G| leads to

~

Gi(2.8) =~ [ Gi(e.DGa(E . )alan

being a solution to the Dirichlet problem

0.0- G3(2,8) = G1(z,{) in D, G3(z,{) =0 on 9D

for any fixed § € D. As

(az&z)zG3 (Z7 C) =G (Z7 C)

its boundary behavior is

' 63(27C) = 0) az&z 63(Z7 C) = 07 (az&z)z(/;\:i(za C) = 07 zZ€ aD) C €D.

Moreover

~ 1
- G3(z,0) —Z|C—z\4log]é’—z|2is triharmonic inz € D, { € D.

But its symmetry in both variables is not obvious.

Inductively

=——/G1 (E,0)dEdn 5)

is defined for 2 < n. It has the properties

* Gi(z.0)+

e G,(+,¢) is polyharmonic of order n in D\{(},

I¢ - o)
(=17

log | — z|? is polyharmonic of order n for z € D,

o (0:0)4Gy(z,§) =0for0<p <n—1landz€dD

for any § € D.

For convenience G (z,{) = G (z,¢) is used.

Lemma 1.1. The polyharmonic Green function G, is symmetric in its variables.

Proof. That G is symmetric follows from the harmonicity of

Gi(z,8) —G1(L,z) forz € D.
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As G is a non-negative function, a consequence of the maximum principle

lim [G1(2.£) — G1(£.,2)] <0

for any { € D. Again using the maximum principle for harmonic functions the
symmetry follows after interchanging the roles of both variables. This immedi-
ately shows also G, to be symmetric. Assuming G,,_ is symmetric besides

9:0: Gu(2,) = Gu1(2,0)

from the symmetry of @n,l also

9, G, :——/Gl Gu2(€, £)dEdN = G120

follows. Hence G, (z, &) — G, (£, z) is harmonic in z € D for any { € D. Because
Gn—1(z, &) vanishes for § € dD this difference tends to zero if z approaches the
boundary,

lim [é\n(Z, &) — é\n(C7Z)] =0.

z—dD

By the maximum principle the symmetry follows. O

Theorem 1.2. Any ® € C*'(D;C)NC**~!(D;C), n € N, can be represented as
nooq R
=—) — [ 0 dr =) 1 dsg—
o0 =-¥ i || 96l )(0:0p)" 0 )dsg

+ [ Gule. 023 (g, ©

Proof. From the Gauss theorem

[ Gue 000y 0(E)dgan -

=37 {2616 0207 0(0))+ 241Gz, )27 )]+

—9¢(9¢ Gu(2,£)(9;9p)" ' ©(§)] = 99, Ga(2,§) (9 9)" ' 0(§)]+
+20;9;Gu(2.£)(9;3)" @(£) fdEdn =

=2 ] 2Gule )30 @ §)dsg+

— [ G )@ (§)dgdn
D
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is seen. Continuing inductively

[ Gue 000y () dgan -

n 1 . 1 R
_ s -t 1
"L || 0.Gule.§)(@:0 0(0)ds; — — [ Gi(z. )90 w(¢)dEdn
follows. Using formula (1) then (1.2) is a consequence. O
If the generalization of (4) for the n—harmonic operator G,(z,§) =

’C_Z|2n 1)

(n—1)1

_ n—1
log| LY Ligpitm ey - gpye
p=1 M

is generalized to an arbitrary regular domain D, it has the properties
e G,(-,{) is polyharmonic of order n in D\{{}, { € D,

|C7Z|2n 1)
NCEDER

(0,0:)4Gy(z,8) =0,0<2u <n—1,forz€ dD, { €D,

e Gy(z,8)— log |¢ —z|* is polyharmonic for z € D, { € D,

I, (0.0:)*Gy(z,§) =0,0<2u <n-—2,forz€ dD,{ €D,

Gu(z,8) = Gu({,z) forz,§ € D.

Using this function another representation formula is available.

Lemma 1.3. The polyharmonic Green function G, satisfies
(0:0:)" ' Ga(2,§) = log|§ — 2 +h(z,{)
with a function h being harmonic in z € D for any § € D. Also
(9¢97)" ' Gul(z,§) =log|§ —z* +h(z,€)
with a function h being harmonic in § € D for any z € D.

Proof. Rewriting

2(n—1) n—1
Gn(Z7C):|C(nZ|)|:10g|C—Z|2 22 1} (z,8)
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with a polyharmonic function 4, of order n in both variables, shows

n—2 1

loglg 2P —2 ¥ —| +2.0:h(z,)
u=1 M

£ =P

%2Gi(2:8) == T

and inductively

(0:0:)" ' Gu(2,§) =log | —z* +(9:0:)" " hu(z, {).-

O
Theorem 1.4. Any € C¥(D;C)NC* 1(D;C), n € N, is representable by
Bl-1 1
_ ,;0 E/(al)&vc@gaz)nfu* Gn(%C)(acaf)“w(C)dsfr
7] 1
; a7 oo (Be32)" G2, £)v () 0(§)dsc+
D

For the particular case of D =1 this representation is explicitly given in [7, 9].
For this formula for the upper half plane see [8, 10].

Proof. Proceeding as in the proof of (1.2) gives

[ Gl 0)(2c3 (g —

1

=i [ Gule. 0020 (00 (s +

b | G 033y @G+
L [ a0,6.00.0)00, 0(Cyazan =
n—2
= Z 41“/ { I Gu(z,§) v, (9,07)" () +

04, (30) Ga(z, ) (9 07" (£ s

1/(34%)”lGn(z,C)agafa)(C)dédn-

T JD
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Using the result of Lemma 2

o~

(9;9)" ' Gu(z.§) = Gi(2.8) +h(z, {)

with some function /(z, - ) harmonic in D. Then

— [@car Gu(e, L) 220 0dEdn =

1 —~
— — [[61G.0) +h(z 0102 (C)agan.
Applying formula (1) and

~9;[0¢h(z §)(£)) = o [h(z, O)o(§)] pdEdn

= [0 0(0) -, (&) Jase
then as G/ (z, ) vanishes for { on dD, w(z) =

—Lr/a,){avg G1(2,€) +h(z, £)]o(£) = [G1 (2, ) +h(z,€)]dh, @(C) s

_;/D(agaf)"IGn(z,C)agc%w(C)dédn

follows. This proves

n—1 1 o
o)=Y 5z || {00000 6ulz. ) 00, (0)+

(99 Gu(2,£)v, (2 ag)”*ﬂ*w(@)}dsw

= / Gz (§)dEdn. )

This is
n—1 1

= X a7 {9 @e0r Gt 0003 001+
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- (3§af)n717” Gul(z, C)av§ (agaf)“ o(f) }ds§+

— [ Ge. 000 0 agan,

which is
% i Ly o B2 Gl 0530 o E s
n—1 1
I N L S
k=1
— [ Gale )@, 0
because of the boundary behavior of G,. This is (7). 0

Obviously there are many more polyharmonic Green functions and related
integral representation formulas, see e.g. [3, 6]. An example of a tetraharmonic
hybrid Green function is the convolution of G, with G,

1 NN
Hi(e0) =~ [ 6:2.D6(C 0)dai.
Because G, is a fundamental solution of (9,0)? it is a solution to

(0:0-)*Hy(z,8) = Ga(z,¢) in D for any ¢ € D.

Moreover
Hy(z,8) =0, 9y Ha(z,§) =0forz€ dD, { € D.

As G, is a fundamental solution of (d¢ 83)2 it solves
(8gaf)2H4(z, {)=Gy(z,§)inDforany { € D
and satisfies
Hy(z,§) =0, dgdg Hy(z,8) = 0for C € D, z € D.
Hence Hy(z, {) has the properties

e Hy(z,§) is tetraharmonic for z € D\{{} and for { € D\{z},
\C - Z!6

i H4<Z7 g)

log |{ — z|? is tetraharmonic for z, { € D,
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o Hy(2,) =0, dyHa(z,£) = 0, (2.02Hy(2,C) = 0, (0.0 Hy(z,{) = 0
forze€ dD, { €D,

® Hy(z,{) =0, 09z Ha(z,§) = 0. (9;9¢)* Hu(z,§) =0,
8v§(8§8f)2H4(z, {)=0for{ €dD,z€D.

Obviously Hy(z, ) is not symmetric in its variables.

Theorem 1.5. Any @ € C*(D;C)NC?*(D;C) can be represented as

1

0@) =3 [ {200 iz Hw(6)+

—(9;%>3H4<z,c>8v¢w(c>+8vga¢<%H4( c)(aga?)zw@)

o Hale, £)(9 0 0 (§) b — / Ha(z (O)dédn ()

and as

o) =~ | {2(0;0PHuE.2)0(0) + 2, (950 PHu(E,2)0; 0008+

C4m

+0y, 0 9 Ha(§,2) (99 0 (§)+

O£ 2)0h (0972 0(8) Jas — 1 [ Ha(§.,2)(0c3p) (O,
(10)

Proof. In the same way as (8) the representations
3 1 3
0(0) == X0 7 [, { % 0c00 e )0c0) o0+

—(9¢0¢)" Ha(z, ), (9 &)Hw(@)}dsw

W/H4 (2,0)(3:9;) o ({)dEdn

and
3 1 B
o0 =-% & | {on 000116200, Ho(0)+

—(9¢0g)" Ha(G,2)9v, (9 9)* H0(§) s+
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1
[ B8990 0(E)aEan
D
follows. Taking the boundary behavior of Hy into account

00) = 7= [ {312 0)(0;3) 0(0) + 20, 03¢t (2,£) (99 P (&) +

+v, (99 Ha(z, ) 0(0) — (9, Halz, )b 0(0) bsg+

— [ (e 000 o) agan
and o(z) =
= —41ﬂ/aD{avg9gafH4(Cvz)(9gaf)2w(§) — 9707 Ha(8,2) 9y, (97 97)* @ (§) +
+3vg(3gaf)2H4(C’Z)ag%w(C)+9vg(9g3f)3H4(C,Z)w(C)}ng+

[ #8239 0(azan

are seen. ]

2. Dirichlet Problems.

The above representation formulas leads to different boundary value problems.
Inserting the respective boundary values in the boundary integrals and the inho-
mogeneity of the higher order Poisson differential equation obviously provides
a weak solution to the Poisson equation. However the boundary behavior has to
be verified. As is well known e.g. from the Cauchy integral not every boundary
integral representation formula attains its layer function as boundary values.

Theorem 2.1. The unique solution to the Dirichlet problem
(0,07)"®w = finD, (d;0:)"0=7y,,0<pu<n—1ondD,
feLi(D;C),y € C(dD;C),0 < pu <n—1,is given by

00 =-Y 1 | 2.GueOm1Qase 1 [ Gate)s(@)agan

u=1
(11)
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Proof. For the Poisson kernel

tim - [ 3,610 Or()ds; = V&), & e oD

=

is known for y € C(dD;C) and smooth dD.

From
(@) o =— Y T47r/ 3y, Gu—p (2 )1 (O)dsg+
u=p+1
- / Gup(2,0)f({)dEdn
it follows

lim (9:0:)P @(z) = (&), §o € 9D.

=&

Theorem 2.2. The Dirichlet problem

(2.0 0= f in D, (9.9 @ == . 0 < 2 < n—1, 4. (2.0)"0 = T, 0 <
2u <n—2, on D, for f € Li(D;C), y, € C"2*(dD;C), 0 <2u <n—1,
Yu € C"172H(9D;C), 0 < 2u < n—2 is uniquely solvable by

o(z) =— uz::o 4m aDan(aCaf)niuflGn(ZvC)?’M(C)dsC+

(23] 4
— n—p—1 ~
* #go 4w /th(agaf) G"(Z7 C)’}/IJ(C)CISQI—F

2 [ 6ile @30z (12)

As G, are not related by a recursion scheme the proof is not obvious. That
(12) provides a weak solution to the differential equation follows from the prop-
erties of G,. Uniqueness also follows immediately from (12). If the solution
exists it is of the form (12) as follows from the representation formula (7). In
particular the solution to the related homogeneous problem is identically zero.
The existence proof is achieved by verifying (12) to satisfy the boundary con-
ditions. In the particular case of the unit disk [8] and the upper half plane [10]
this is done.
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Theorem 2.3. The Dirichlet problem
(0:0) 0 = finD, @ =%, 0@ =1, (3,0’ =, (9:0:)’ @ = 13, on 9D,

is uniquely solvable for f € Li(D;C), v € C*(dD;C), y1 € C1(dD;C), 1, 15 €
C(dD;C) by

o(z) = —417T/aD{avg(acaf)SHzt(Z,C)?’o(C) —(9;9)*Ha(z, {)n ({)
0y, ;07 Ha(2, 0)a(0) + Oy Ha(z. §) s dsC—— / Ha(z, ) f(C)dEdn.

(13)

Proof. The proof is given only for the particular case of the unit disk ID. The
solution (13) can be written as

= _7/H4 dédn)

1

@) === [ {30:07Ga(z.y(0) 90 Gale. OM(D)+

+0v, 09 Ha(z, SV (6) + v o (2, D)5.(0) s (a4

and @ — @y is a particular solution to the inhomogeneous equation satisfying the
respective homogeneous boundary conditions.
1. As

300 Gale. ) =tog 2 a2 611 D),

3y, 007 Ga(2.4) =

S e S ORI ()

which for |{| =1 are
aé‘%GZ(LC) =81 (LC)(I - ’Z|2)7

8VC8¢8fG2(z, C) = _(1 + |Z‘2)gl (Z, C) - (1 - |Z|2)g2(Z7 C)v

and

905 Hs(e,§) = —— [ Ga(2.0), 0,97 Ga(E, ),
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Oy, Hi(z, :—f/c;2 $)oh, Go(€, £)dEa,

i @(2) = 30(&) + lim = [ (1= 2P)ga(a. Om(0) F = 0(6)

=& = 4T
for |{o| = 1. Here

i [ (1= et () =0

z—& 2T

because

1 1— |72 dg 1 1=z 5 w(§)\ds
2m/am>(1 zC)ZY()(C)C __2m/¢9u)z(1—z§)a€< 4 )f_

1 1—|2> ¢~z (w(8)\d¢
_2ni/am>|1—zC|2 z ‘94( ¢ )?

_ 1,2
with the Poisson kernel H_Z,"z
2. Differentiating (14) gives on |z| =1
1
0.0() =~ | {8.00,0:0:6:22.011(0) - 2.9:9,Ga(z. M (O +
dg
+3vzav¢ ag(;szl (Za C)?’Z(C) + 3\/:8\/41‘14 <Z7 C)’}/?’ (C) } f (15)

From

9.0 095 Ga(z,§) = —281(2,0) — (1+ ) [82(2.§) = 1(2, §)] +282(2,§)+

—2(1—2*)[g3(z,8) — 82(2,8)] =
=—(1—z2")g1(z, &) +3(1 — [z)g2(z. &) —2(1 = z]*)g3(z, §),
Oy, 0¢ 9 Ga(z, ) = —(1 — |2*)[82(2.8) — 81(2. §)] +2]2%81(2,§) =

= (1+]2*)81(2,§) — (1= [z1*)g2(z, ),
0000t 2. 0) = [ ANalw. 8120, 00 Go(E. O,
Qe 0) = = [ 2.Gale, D)3 GalE, O)TaE T

withon |z| =1

.Ga(2,¢) = —[e({—2)+2({ - 1og(
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Z Z zf Z
+ = Ci — ZC,
-z ¢—z 1-z¢ 1-7Z¢
follows for |§y| =1

+|¢ -z L2120 1EP) =0

lim dy.0(z) = 1 (&)-

=&

Here because of y; € C!(dD;C)

i = |- EPaEOn©% =0
and . J
tin = | - EPsE N0 =0

as y € C*(dD;C). R
3. From (14) and because of (9,0;)*Hy(z,{) = G2(z,{)

(81&1)2(0(1) = _%ﬂi aD{avgaCazé\Z(Za C)’YZ(C) + an 62(2’ C),}@(C)}dgg
= [ {36 OR© + 28RO e
follows. As
v, Gi(z,§) = —281(z,¢)
and for |{| =1

anGZ(Z’C):—2|C—Z|2g1(z,C)—2(1—|Z|2) log(lzc_ZC)_l_IOg(lZC—ZC)}

taking limits shows
lim (9.0:)*0(z) = 12(%o)-

=&

4. Finally, differentiating (14) again gives

22700 =4 [ 3 GieOnOF
from what
lim (9.0 0(6) = (%)
follows. O

Remark 2.4. The special assumption D = ID is only used in steps 1 and 2. The
last two steps hold in a similar way for any regular domain.
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