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CUMULATIVE HIERARCHIES AND
COMPUTABILITY OVER UNIVERSES OF SETS
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Various metamathematical investigations, beginning with Fraenkel’s
historical proof of the independence of the axiom of choice, called for
suitable definitions of hierarchical universes of sets. This led to the dis-
covery of such important cumulative structures as the one singled out by
von Neumann (generally taken as the universe of all sets) and Gödel’s
universe of the so-called constructibles. Variants of those are exploited
occasionally in studies concerning the foundations of analysis (accord-
ing to Abraham Robinson’s approach), or concerning non-well-founded
sets. We hence offer a systematic presentation of these many structures,
partly motivated by their relevance and pervasiveness in mathematics. As
we report, numerous properties of hierarchy-related notions such as rank,
have been verified with the assistance of the ÆtnaNova proof-checker.
Through SETL and Maple implementations of procedures which effec-
tively handle the Ackermann’s hereditarily finite sets, we illustrate a par-
ticularly significant case among those in which the entities which form
a universe of sets can be algorithmically constructed and manipulated;
hereby, the fruitful bearing on pure mathematics of cumulative set hier-
archies ramifies into the realms of theoretical computer science and algo-
rithmics.
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Introduction
Axiomatic set theory had already evolved (by the essential contributions of Zer-
melo [47], Fraenkel and Skolem) into today’s version ZF, when von Neumann
modeled it by his renowned cumulative hierarchy [33]. Having been conceived
downstream, after decades-long investigations on the foundations of mathe-
matics, that structure perhaps does not fully deserve the relevance of intended
model: suffice it to say that ZF admits, besides that model (having as its own
domain of support a proper class1 and encompassing sets whose cardinality ex-
ceeds the countable), also models of countable cardinality.2 Actually, Gödel
later proposed a model alternative to the one due to von Neumann, the universe
of constructibles [21], which comes to coincide with von Neumann’s model
only when a specific axiom so caters.

Anyway, the cumulative hierarchy is, for anybody who undertakes an ad-
vanced study on sets, a precious conceptual tool some preliminary exposure
to which—if only at an intuitive, but nonetheless rigorous, level—will pay off
when one arrives at the axiomatic formalization, traditionally based on first-
order predicate calculus.

One of the benefits that can ensue from placing the semantics before the
formal-logical description is the gradualness made possible by such approach.
Preparatory to the cumulative hierarchy in which, as proposed by von Neumann,
one level corresponds to every ordinal (even to each transfinite ordinal), this pa-
per will introduce similar but less demanding hierarchies. One of these struc-
tures, the one of the hereditarily finite sets, may be taken as a reference model
for an axiomatic theory close in spirit to the one due to Zermelo but focused
exclusively on finite sets [46]; other hierarchies, the so-called superstructures
play an important rôle in setting up the ground for non-standard analysis [14].
The study of these scaled-down versions of the von Neumann’s hierarchy brings
to light algorithmic manipulations which make sense insofar as one deals with
relatively simple sets only, but which bear a lot of significance for those whose
interests are more deeply oriented towards computer science than towards foun-
dational issues.3

Various hierarchies similar to the von Neumann’s one held a historically
crucial rôle in the investigations on axiomatic theories antithetic to ZF. Models
deserving attention in this more speculative framework were proposed for the
study on the independence of the axiom of choice and of the continuous hypoth-

1As we will belabor in Sections 11 and 13, a proper class differs from a set inasmuch as it
does not belong as an element to any other class.

2This constitutes the so called Skolem paradox.
3The importance of algorithms for the manipulation of nested sets is witnessed by the avail-

ability of sets (with their correlated associative maps) in several programming languages: SETL,
Maple, Python, etc..
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esis: a “cumulative proto-hierarchy” proposed by Fraenkel in the far 1922 [20]
and the already mentioned class of Gödel’s constructible sets. Moreover, as we
will examine on a “small scale” instance (referring to finite hypersets only), it is
easy to obtain models of theories of non well-founded sets [2, 5] from standard
hierarchies.

————
For the above-mentioned reasons, we deem it useful to revisit cumulative

hierarchies (as well as other structures akin to them) emerging in various fields
of mathematics and theoretical computer science. We do not intend to write an
erudition piece of work, but to set up the subject in useful terms, on the one
hand

• for anybody who wants to undertake the development of software libraries
for the management of sets (or maps, multi-sets, hypersets, etc.), with
full awareness of the principles lying behind applications (for instance—
as regards hypersets—applications to π-calculus [32, 44]); on the other
hand,

• for anybody who wants to develop with the appropriate degree of formal
rigor, in the form of reusable proofware, all basic proofs regarding such
hierarchies.

In order to move towards the former of these goals, we have implemented
several Maple procedures which handle (as we report in the appendix Sec. 18)
the hereditarily finite sets; to move towards the latter, we have developed various
‘theories’4 within our automatic proof-verification system Referee/ÆtnaNova
[9, 11, 12, 35, 38, 39].

1. The simplest of all cumulative hierarchies

By analyzing mathematical arguments, logicians became convinced
that the notion of “set” is the most fundamental concept of mathe-
matics. This is not meant to detract from the fundamental charac-
ter of the integers. Indeed a very reasonable position would be to
accept the integers as primitive entities and then use sets to form
higher entities. However, it can be shown that even the notion of an
integer can be derived from the abstract notion of a set, and this is
the approach we shall take. [13, p. 50]

4Here the word theory has a very technical meaning, referring to the THEORY construct of
the verifier Referee.
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We take for granted a certain familiarity with sets, that includes the notions
of empty set, of formation of singletons, of union of (two or of a plurality of)
sets, of formation of the power set of a set.

We give here the sequence of definitions of

numbers: and levels:
0 =Def /0 , V0 =Def /0 ;
1 =Def{0} , V1 =Def P(V0) ;
2 =Def 1∪{1} , V2 =Def P(V1) ;
3 =Def 2∪{2} , V3 =Def P(V2) ;

. . . . . .

expanding which we can effectively determine the levels as follows:

V1 = {0}= 1 = {V0},
V2 = {0,1}= 2 = {0, V1},
V3 =

{
0,1,{1},2

}
=

{
0,1,{1},V2

}
,

V4 =
{

0,1,{1},2,
{
{1}

}
,
{

2
}
,
{

0,{1}
}
,
{

0,2
}
,
{

1,{1}
}
,
{

1,2
}
,{

0,1,{1}
}
,3,

{
{1},2

}
,
{

0,{1},2
}
,
{

1,{1},2
}
,V3

}
,

etc.

Note that (natural) numbers, intended as above, are just peculiar sets. Likewise,
all levels Vi, as well as the elements of each of these levels, are sets.

Every one of the levels Vi has finitely many elements—by precise assess-
ment of this number of elements, one discovers that it is (if i > 0) the hyperex-
ponential amount

2
···

2
}

i−1 times
.

Moreover, each Vi belongs to the next level Vi+1 and “boxes” (as subsets, be-
sides having them as elements) the V js of lower index; moreover the inclusion
of each Vi in Vi+1 is strict (i.e., Vi ( Vi+1), since each number i belongs to the
LAYER Vi+1 \Vi. Starting from V3, to which the set {1} belongs, the Vis own
elements which are not numbers.

If x belongs to Vi, both x and any of its elements is finite, and so are all the
elements of elements of x, etc.. In view of that, x is said to be HEREDITARILY

FINITE.
The CUMULATIVE HIERARCHY Vω of all PURE hereditarily finite sets (here

‘pure’is in the sense that their formation involves exclusively sets, all ultimately
founded over /0) consists of all those sets that enter as elements into Vi after a
finite number of steps of the preceding construction:



CUMULATIVE HIERARCHIES ... 35

ω =Def N =Def {0,1,2, . . .}
Vω =Def V0∪V1∪V2∪V3∪·· ·

(ad infinitum)5.

For every x in Vω , we call RANK of x the first value i for which x belongs to
Vi+1 (that is, x is included in Vi). Examples: every number i has rank i; the rank
of {0,2} is 3. One can see the rank of a set as a measure of how deeply nested /0
occurs within it when the set is written in primitive notation—for instance {0,2}
must be written as { /0,{ /0,{ /0}}}. The following recursive formula enables us to
determine the rank of any set X in Vω :

rk(X) =
⋃{

rk(y)∪{rk(y)} : y ∈ X
}

.

◦ /0
...
...

· · · · · · · · ·�
�
�
�
�
�
�
��

◦ i
Vi •

Vi+1 \Vi

{
B

B
B

B
B

B
B

BB

Figure 1: Cumulative hierarchy founded on the void

2. A few remarks about natural numbers

The notion of natural numbers seen above is due the Hungarian-American math-
ematician John (János) von Neumann (1903-1957). One might object that the
intuitive notion of number comes before sets can be conceived and is in some
sense presupposed in the construction of Vω seen above. A counter-objection is
that “being able to count” comes even earlier than the notion of number and this
is the only presupposed ability for the construction of Vω .

However if, on the side of the numbers, “counting” means reiterating the
operation

X +17−→ X ∪{X}
of unitary increment, on the side of sets it is the much more elaborate operation

X 7−→ P(X)

5It is almost superfluous to say that the infinity we are referring to is the one consisting of
natural numbers only.
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of power set formation that gets repeated.
Notice that for numbers intended à la von Neumann the ordering relation,

traditionally designated by the symbols < and 6, mixes up with the ones of
membership and inclusion among sets, of which it comes to be a special case.
Actually, when i and j are numbers, we have

i < j iff i ∈ j,
i < j iff i ( j,
i6 j iff i⊆ j,
max(i, j) = i∪ j,
min(i, j) = i∩ j.

3. Transitive sets and lexicographic orderings

Besides numbers, other sets exist for which the distinction between membership
and inclusion is also tenuous. Indeed, innumerable other sets S satisfy the con-
dition6

when x ∈ S then x⊂ S,
or, equivalently, the condition of being TRANSITIVE according to the definition

Trans(S) ↔Def S⊂ P(S) ,

or, yet equivalently,7 the condition that⋃
S ⊆ S .

Just to see an example, each one of the levels Vi is transitive.

Suppose that a transitive family of sets S (even one which is not encom-
passed by the limited universe Vω seen so far) is endowed with a total ordering
C. If we consider an element x of S, the fact that x is also a subset of S allows us
to put its elements in the order induced by C and therefore to single out, in case
x is finite and non-null, the maximum among them: maxC(x). We will say that
the order C is LEXICOGRAPHIC if whenever xC y, with x and y finite elements
of S, one of the following three situations hold:

6In this condition, as well as in the subsequent definition of Trans( ), it is immaterial whether
⊂ is intended as ⊆ or as (, if one excludes—as it normally happens—that any set S may satisfy
self-membership S ∈ S. Without relying on the assumption that S /∈ S, the seminal paper [47]
whence axiomatic set theory draws its origin provided an agile proof of the fact that P(S) 6⊆ S:
the key idea was that {x ∈ S| x /∈ x} ∈ P(S)\S.

7If S ⊂ P(S), then any y ∈
⋃

S also satisfies y ∈ S, because y ∈ x and x ⊆ S hold for some
x ∈ S. Conversely, if

⋃
S⊆ S and x ∈ S, then x⊆

⋃
S, and thus x⊆ S: therefore, x ∈ P(S).
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• x = /0; or

• x 6= /0, y 6= /0 and maxC(x)CmaxC(y); or

• x 6= /0, y 6= /0, maxC(x) = maxC(y) and
x\{maxC(x)}C y\{maxC(x)}.

Put otherwise, the ordering C is lexicographic if, for every pair x,y of finite
sets in S, it turns out that xC y when either

• x ( y; or

• x 6⊆ y, y 6⊆ x and, assuming that x = {x0, . . . ,xn}, y = {y0, . . . ,ym}, x0C
· · ·C xn, and y0C · · ·C ym, it is found that xhC ym−(n−h) holds in the last
position h for which xh 6= ym−(n−h).

At first one might suppose that there is just one lexicographic ordering over
a transitive set S; this is indeed the case (as we will examine closely in Sec. 7) as
long as S ∈ Vω or even S = Vω , but the situation changes when S owns some in-
finite elements, because no constraint is imposed by the lexicographic condition
regarding the comparison with such sets.

Perhaps it would be more appropriate to call antilexicographic an ordering
C which meets the property stated above, as the comparison between two finite
sets does not proceed from the “left” but from the “right”; we prefer the shortest
word, though, also for historical reasons. Concerning the reason for proceeding
from the right, we observe that if we proceeded in the opposite direction, we
would be forced to place, for example, {0,2} before {1}, although {1} appears
at a lower level of the cumulative hierarchy seen above; on the contrary, if we
carry out the lexicographic comparison from right to left, this will ensure that
the sets belonging to one layer precede those of any subsequent layer.

4. Superstructures

However, starting with nothing but the empty set is rather tedious
and unnatural, especially when you want to apply set theory outside
mathematics. We want to be able to have sets of sticks, stones, and
broken bones, as well as more abstract objects like numbers and
whatnot. [5, p. 21]

We are about to introduce an obvious generalization of the cumulative hier-
archy seen above. Rather than from the empty basis V0 = /0, this time we start
from a basis of INDIVIDUALS intended as “ur-elements” (or “atoms”) plainly
distinguishable from sets (and hence, in particular, distinct from /0), usable as
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members in the formation of sets. Denoting by B such a basis, we must retouch
the definition of the Vis if we want to preserve the boxing of each level of the
hierarchy in the subsequent ones:

V B
0 =Def B ;

V B
1 =Def P(V B

0 )∪B ;

V B
2 =Def P(V B

1 )∪B ;

etc.

The infinite family

V B
ω =Def V B

0 ∪V B
1 ∪V B

2 ∪V B
3 ∪·· · (ad inf.)

of sets and individuals is sometimes called SUPERSTRUCTURE generated by B.
Obviously we have

V B
i = Vi when B = /0,

as can be proved by a simple inductive argument. When B⊇ B′, then the inclu-
sion V B

i ⊇ V B′
i ∪B holds: in particular

V B
i ) Vi when B 6= /0.

Consequenly—still assuming that B 6= /0—, we will have V B
ω ) Vω .

There is no guarantee anymore, with this modified cumulative hierarchy,
that all the sets that enter into it (as members of any level V B

i ) are finite. Actu-
ally, in case B is infinite, the level V B

1 already includes an infinity of sets, every
one of which is endowed with an infinity of elements: the following among
others

B, B\{b0}, B\{b0,b1}, B\{b0,b1,b2}, . . . ,

if we suppose the b js to be pairwise distinct elements of B. If we want to
limit ourselves to HEREDITARILY FINITE sets, as we have done in the hierarchy
seen at the beginning, we must alter the construction as follows. Instead of the
constructor P(X), that produces the family of all subsets of X , we use F(X),
that produces the family of the finite subsets; thus we obtain

H B
0 =Def B ;

H B
1 =Def F(H B

0 )∪B ;

H B
2 =Def F(H B

1 )∪B ;

etc.,

to conclude with

H B
ω =Def H B

0 ∪H B
1 ∪H B

2 ∪H B
3 ∪·· · (ad inf.).
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It is obvious that
H B

i = V B
i when the basis B is finite.

Let us recall here from [14, pp. 12-15], where they are inventoried and
proved in detail, various closure properties of the superstructures. First of all, in
a superstructure each level is “transitive”, in the sense that

V B
i \B ( P(V B

i ) ( V B
ω \B ( P(V B

ω ) for i ∈ ω ;

moreover

when x ∈ V B
ω \B then P(x) ∈ V B

ω \B and
⋃

(x\B) ∈ V B
ω \B ,

when x1, . . . ,xk ∈ V B
ω then {x1, . . . ,xk} ∈ V B

ω \B ,

when x1, . . . ,xk ∈ V B
ω \B then x1∪·· ·∪ xk ∈ V B

ω \B ,

when x1, . . . ,xk ∈ V B
ω and k > 2 then 〈x1, . . . ,xk〉 ∈ V B

ω \B ,

when x,y ∈ V B
ω \B then x× y ∈ V B

ω \B ,

if we intend the ORDERED PAIR à la Kuratowski,8 or—as we prefer to do [19]—
as

〈X ,Y 〉 =Def

{
{X ,Y},{Y}\{X}

}
(so that U×V =Def {〈x,y〉 : x ∈U,y ∈V}), and recursively we put

〈x1, . . . ,xk+1〉 =Def

〈
x1,〈x2, . . . ,xk+1〉

〉
, for k > 2 .

Thanks to the hierarchical constitution of V B
ω , no descending infinite chain

· · · ∈ x2 ∈ x1 ∈ x0

exists originating from any x0 ∈ V B
ω \B. Therefore it is possible to define an

operation
x 7−→ arb(x)

in such a way that

• when x ∈ V B
ω \ (B∪{ /0}), then arb(x) ∈ x and

arb(x) /∈ B → arb(x)∩ x = /0 ;

• when x ∈ B∪{ /0} then arb(x) = x.

8Kazimierz Kuratowski (1896–1980), who in 1922 defined the ordered pair as 〈X ,Y 〉 =
Def

{
{X},{X ,Y}

}
.
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Thus we have, obviously, that

arb(x) ∈ V B
ω for every x ∈ V B

ω .

We can, finally, define multi-images and single images of any set f (neglect-
ing possible elements of f that are not ordered pairs), by putting:

f � v =Def {y : 〈x,y〉 ∈ f | x ∈ v} ,
f � x =Def arb( f � {x}) .

Even for these APPLICATION constructs, obvious closure properties hold:

when f ,v ∈ V B
ω \B then f � v ∈ V B

ω \B ,

when f ∈ V B
ω \B and x ∈ V B

ω then f � x ∈ V B
ω .

5. Embedding of H B
ω in a Herbrand universe H

We could develop the construction of H B
ω in another way [17], by means of a

binary constructor w(X ,Y ) with which to represent the operation X ∪{Y}. At
first we construct the family H of all the TERMS over the signature

a/0 with a in B , /0/0, w/2 ,

on the basis of the following rules:

• /0 constitutes a freestanding term;

• each a in B constitutes a freestanding term;

• if s, t are terms, then w(s, t) is a term;

• only those expressions that can be recognized to be terms on the basis of
the preceding three clauses are terms.9

To capture the properties of sets, we establish the rewriting rules

w(w(X ,Y ),Y )  w(X ,Y )

and
w(w(X ,Y ),Z)  w(w(X ,Z),Y ).

9The set of all terms constructed over a signature made up, like this one, of constants (at least
one) and function symbols, is often called a HERBRAND UNIVERSE (see [28]), from the name of
the French mathematician Jacques Herbrand (1908–1931).



CUMULATIVE HIERARCHIES ... 41

The former of these says that inserting twice or more than twice the same ele-
ment in a set amounts to the same as inserting it only once. Moreover, as implied
by the latter rewriting rule, when several elements are inserted, the order of in-
sertions is immaterial for the result. Without these identities, the universe of
terms would be free; but it now comes to be split into equivalence classes, so
that two terms will be regarded as being “the same set” when they are equiva-
lent up to rearrangement of the elements and elimination of duplicates. Thus,
the “universe” turns out to be richer than the H B

ω seen earlier, unless one bans
from the domain of interest any term whose COLOR differs from /0, where the
following definition applies:

color( /0) =Def /0;
color(a) =Def a, for every a in B ;
color(w(s, t)) =Def color(s), for every pair s, t of terms.

6. The von Neumann universe V

Thus in our system, all objects are sets. We do not postulate the
existence of any more primitive objects. To guide his intuition, the
reader should think of our universe as all sets which can be built
up by successive collecting processes, starting from the empty set.

[13, p. 50]

In proposing his cumulative hierarchy, rather than adding individuals to it,
von Neumann extended its construction to all ORDINALS, including the transfi-
nite ones.10

Finite ordinals are the same as natural numbers; the first infinite ordinal is
the ω already seen—namely the set N of all natural numbers—, immediately
followed by the successor ω +1, followed in its turn by (ω +1)+1, etc. Very
much like ω is not the immediate successor of another ordinal, and in this sense
it is a LIMIT ordinal, at the end of the infinite sequence of successors stemming
from ω we will find the second limit ordinal ω + ω , etc. To escape the im-
passe of an unsteady intuition about infinities so remote from experience, we
can define the notion O( ) of ordinal in an autonomous way, in the context of
an axiomatic set theory that we do not care to expound here:

O(α) ↔Def Trans(α) & 〈∀x ∈ α,y ∈ α | x ∈ y∨ x = y∨ y ∈ x〉 ;

10Von Neumann catered thereby for the infinity postulate, by which Zermelo [47] required the
existence of a set having /0 among its elements and closed with respect to singleton formation
X 7−→ {X}.
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that is: we mean by ORDINAL a transitive set α within which either the relation
x ∈ y or the relation y ∈ x holds between any of its two distinct elements x,y.
Assuming that the membership relation is, as von Neumann conceived it, well
founded (i.e., devoid of cycles and, more generally, of descending chains

· · · ∈ x2 ∈ x1 ∈ x0

of infinite length), this definition imposes that, internally, each ordinal is well
ordered by the membership relation.11 We can define d’emblée

Vα =Def

⋃{
P(Vβ ) : β ∈ α

}
, for every ordinal α .

This recursive definition would make sense for any set α (thanks to the as-
sumed well-foundedness of ∈), but is devoid of interest unless α is an ordinal—
briefly O(α). When α is a SUCCESSOR ordinal, that is, when there is a β such
that α = β +1 (=Def β ∪ {β}), one has by virtue of the boxing property (which
continues to hold) that

Vα = P(Vβ ) ;

when α does not have an immediate predecessor instead, we will have

Vα = /0 or Vα =
⋃

β<α

P(Vβ )

according as whether α is 0 or it is a limit ordinal. The latter expression is again
the definition given at the outset, where we are stressing by use of the symbol <
that ∈ acts, between ordinals, as an ordering relation.

Now the characterization of RANK, provided in Sec. 1 as the formal coun-
terpart of an intuitive notion, becomes—within an axiomatic set theory—a def-
inition:

rk(X) =Def

⋃{
rk(y)+1 : y ∈ X

}
.

This notion tries to capture the notion of “nesting degree” of any set—even
of an infinite set. We can in fact organize the class of all sets as the following
stratified hierarchy, known under the name of VON NEUMANN UNIVERSE:

V =
⋃

O(α)

Vα ,

where the union ranges over the whole proper class O of ordinals. It remains
true, as it held for the pure hereditarily finite sets, that the rank of any set X

11In fact, just to make it independent of the postulate of foundation, several authors (see [25])
define an ordinal just as a transitive set well ordered by ∈. Another definition available in litera-
ture is the following: an ORDINAL is a transitive set whose elements are transitive (cf. [30]).
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is the immediate predecessor ρ of the first ordinal α for which X ∈ Vα (thus
α = ρ +1); said in another way, rk(X) is the first ordinal ρ for which X ⊆ Vρ .

One easily proves the following laws:

O
(
rk(X)

)
&

(
O(Y )↔Y = rk(Y )

)
,

X ∈ Y → rk(X) < rk(Y ),
X ⊆ Y → rk(X)6 rk(Y ),

rk(X) = 0 ↔ X = /0,
rk(X ∪Y ) = rk(X)∪ rk(Y ),

rk
(
P(X)

)
= rk

(
{X}

)
= rk(X)+1 ,

rk
(
{X0,X1, . . . ,Xn}

)
= rk({X0})∪ rk({X1})∪·· ·∪ rk({Xn}) ,

rk
(⋃

X
)

=
⋃{

rk(y) : y ∈ X
}
,

rk
(
〈X ,Y 〉

)
= rk

(
{X ,Y}

)
+1 ,

1 < rk(X) ↔ rk(X) = rk
(
(X \1)∪ (1\X)

)
.

Moreover, if we recursively define the transitive closure of a set X to be

trCl(X) =Def X ∪
⋃
{ trCl(y) : y ∈ X } ,

and denote by Finite(X) the finiteness property that a set X meets if and only if
its overall number of elements is finite, then we have the following alternative
characterization of hereditarily finite sets:

rk(X) ∈ ω ↔ Finite(trCl(X)) .

7. Ackermann’s lexicographic ordering

Let us consider a set D with a total and strict (i.e., antireflexive) ordering over
it, and let us define the operation

∂≺ : P(D)×P(D) −→ P(D)

by putting

P ∂≺Q =Def

{
v ∈ P|Q⊇ {w ∈ P| v≺ w}

}
\Q .

Thus P ∂≺Q is the set of those elements v of P \Q whose strict upper bounds
inside P are all included in Q. Since ≺ is total, the set P ∂≺ Q has at most
one element. Such an element, if it exists, is the maximum of P \Q. Globally,
the operation ∂≺ produces as result /0 (obtainable by taking P ⊆ Q) and the
singletons {v} with v in D (obtainable, for instance, by taking Q⊆D \{v} and
P = Q∪{v}).
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We observe that when P is finite, P ∂≺ Q = /0 cannot hold, unless P ⊆ Q,
since P \Q has a maximum when P 6⊆ Q; things may go differently when P is
infinite, as for instance is the case when P is an infinite ascending chain and Q
is any set disjoint from P.

It is convenient to introduce a “symmetrization” δ≺ of ∂≺ , which gives
as result—when defined for the operands X ,Y —the maximum element of the
symmetric difference X4Y =Def (X ∪Y )\ (X ∩Y ). For any subsets X ,Y of D ,
we put

X δ≺Y =Def (X ∪Y )∂≺ (X ∩Y ) .

At this point we could easily introduce the LEXICOGRAPHIC ordering ≺· of
the finite subsets {X ⊆D |Finite(X)} of D by putting

X ≺·Y ↔Def (X δ≺Y ) ∩ Y 6= /0 .

It is easy to see that we are dealing with an ordering which is total and strict as
well, and which will also be a well-ordering when ≺ is such.

Having oriented≺· in the way we did, rather than in the opposite way, yields
the relation ≺⊆≺· in the particular case when D = Vα is a level of the cumula-
tive hierarchy and, accordingly, Trans(D) holds. By reiterating the construction
of the induced ordering over all ordinals, without worrying about assigning a
distinct name to each of the orderings, we come up to define d’emblée

P ∂ Q =Def

{
v ∈ P|Q⊇ {w ∈ P| vCw}

}
\Q ,

XCY ↔Def

(
(X ∪Y )∂ (X ∩Y )

)
∩Y 6= /0 .

However cryptic this formulation may look, it is easy to realize that it is not
affected by a vicious circularity; on the contrary, it relies on an acceptable form
of recursion. Indeed, when we expand the C appearing in the first definiens
according to the second line of the definition,

P ∂ Q =Def

{
v ∈ P|Q⊇ {w ∈ P|

(
(v∪w)∂ (v∩w)

)
∩w 6= /0}

}
\Q ,

we note that the operand v∪w of the ∂ occurring on the right has a rank lower
than the rank of the P in the definiendum. Due to the well foundedness of ∈, the
rank of the left operand of ∂ may decrease a finite number of times only, till it
reduces to zero; but then, as it immediately follows from the definition of ∂ , we
have that

/0 ∂ = /0 .

To grasp, in the limited context of hereditarily finite sets P,Q,X ,Y , the meaning
of the definitions of ∂ and C, suppose we know that the relation X CY estab-
lishes a total ordering as long as X ,Y range over a certain level Vi of the hier-
archy Vω (which is obvious when i < 2). Then consider a pair X ′,Y ′ of sets of
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level i+1, one of them at least having rank i, and determine (X ′∪Y ′)∂ (X ′∩Y ′).
The latter is obtained from the family of all sets that, in the union X ′ ∪Y ′, are
bounded from above only by elements of the intersection X ′∩Y ′: if none among
them lies outside the intersection, then X ′ = Y ′ and

/0 = (X ′∪Y ′)∂ (X ′∩Y ′) =
(
(X ′∪Y ′)∂ (X ′∩Y ′)

)
∩Y ′=

(
(X ′∪Y ′)∂ (X ′∩Y ′)

)
∩X ′

otherwise there will be exactly one of them, the placement of which, either in
Y ′ or in X ′, establishes whether X ′CY ′ or vice versa.

All this can be summarized by saying that C, restricted to any level Vβ with
β 6 ω , is a LEXICOGRAPHIC ORDERING (see Sec. 3).

The ordering of Vω just proposed differs from the familiar lexicographic
ordering of strings over an alphabet because of the following properties:

• The “alphabet” is not fixed from the beginning; it acquires instead new
“characters” at each layer (i.e. all the sets which are added at each level).

• Unlike characters in strings, which may be repeated and occur in an ar-
bitrary order, set elements may appear only once and must occupy the
positions imposed by C itself.

• The “scanning” of the elements to determine which set comes lexico-
graphically before the other, is not performed “from left to right”, but
proceeds from the big towards the small elements.

It is because of these properties that we could specify the ordering C of Vω

in a declarative way (such specification abstracts, for instance, from the con-
cept of scanning). Rather than recursively describing the lexicographic ordering
“from the top”, it is easy—as we will see in Sec. 17—to integrate its construc-
tion in a technique for generating iteratively the hierarchy “from the bottom” by
levels.

Unlike its behaviour in Vω , the relationC is no longer well founded already
in Vω+1, where one can find, for instance, the following infinite descending
chain:

· · · C Vω \n C · · · C Vω \2 C Vω \1 C Vω (with n ∈ ω).

In order to extend the restriction ofC to Vω to the whole universe V , in such
way it remains a lexicographic well ordering, we should operate again from the
bottom (see Sec. 11 below). In other words, we should order the sets by in-
creasing ranks, keeping as a requirement to be satisfied for the lexicographicity
the pair of conditions by means of which we have introduced, simultaneously,
∂ and C: such conditions should hold only for sets of finite cardinality (even
though possibly of an infinite rank).
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We mean that a well ordering≺ of V shall be regarded as LEXICOGRAPHIC

if and only if it satisfies the condition(
Finite(X)&Finite(Y )

)
→

(
(X ∪Y )∂≺ (X ∩Y )

)
∩Y 6= /0 ,

where ∂≺ is tied to ≺ as said at the beginning of the section.

8. Arithmetics of set theoretic operations

The Ackermann’s12 ordering

/0, { /0},
{
{ /0}

}
,

{
/0,{ /0}

}
,

{{
{ /0}

}}
,

{
/0,

{
{ /0}

}}
,

{{
/0},

{
{ /0}

}}
, . . .

introduced above enables us to establish a bijective correspondence

p 7−→ p̂

between natural numbers and pure hereditarily finite sets (cf. [1, 27]). For ex-
ample, since 0, 1, 2, 3, and 4 are the positions belonging to the sets /0, { /0},{
{ /0}

}
,
{

/0,{ /0}
}

and
{{
{ /0}

}}
, respectively, we have that

0̂ = /0, 1̂ = { /0}, 2̂ =
{
{ /0}

}
, 3̂ =

{
/0,{ /0}

}
, 4̂ =

{{
{ /0}

}}
,

and so on.
It is interesting to notice that if we express the position numbers in binary

notation, this can be elegantly interpreted as a membership function, in the sense
that the ith bit of p indicates whether the set î is an element of p̂ or not. Thus we
can very naturally represent an hereditarily finite set by a binary string of finite
length or, more generally, by an infinite binary string containing only a finite
number of the digit 1.

Having established these correspondences, it is interesting to find out which
relations and operations between numbers and strings correspond to the basic
relations and set theoretical operations. The answer is immediate in the case
of binary strings, or bitmaps: intersection, union, and symmetric difference just
correspond to the bitwise Boolean connectives of conjunction, disjunction, and
exclusive disjunction.

Concerning the numerical representation, the answer must be more elabo-
rate: for instance, a partial list of operations and relations can be found in the
following table.

12Wilhelm Ackermann, 1896–1962.
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q̂C p̂ q < p

q̂ ∈ p̂ bp/2qc mod 2 = 1

/0 0

{ p̂} 2p

p̂∪ q̂ p+q when p̂∩ q̂ = /0

p̂\ q̂ p−q when p̂⊆ q̂

max p̂ blog2 pc
〈p̂, q̂〉 (1+22p

) · (if p = q then 1 else 22q
fi)

Despite leading to slightly less natural specifications, this representation is bet-
ter suited for a high level language like Maple, in which we have implemented
the operations treated here. Thus we will insist on it in what follows.

We observe that the membership test looks quite elaborate, but in essence it
just selects the qth bit of p and verifies whether its value is 1; analogously, sin-
gleton formation amounts to flipping one bit in the string constituted by all zeros
to 1. The union of two sets (very natural when viewed as a bitmap operation)
is correctly emulated by the arithmetic sum only when the operands represent
disjoint sets, and so on. For the sake of brevity, we denote by hd( ) and tl( )
the “head” and “tail” selectors of a nonempty set, respectively:

hd(p) =Def blog2 pc , tl(p) =Def p−2blog2 pc .

In view of the considerations we are carrying out, these selectors represent the
operations max p̂ and p̂\{max p̂}, unless p̂ is empty.

Going beyond such introductory stage requires, in some points, relatively
sophisticated algorithms. Which positions belong, for instance, to the number n
(intended à la von Neumann) and to the level Vn? The answer is given by the
following recursive specifications:

num(n) =Def if n = 0 then 0 else num(n−1)+2num(n−1) fi ;

cum(n) =Def if n = 0 then 0 else 2cum(n−1)+1−1 fi .

Notice that the latter specification is equivalent to the observation that in C
the immediate successor of Vn, that is the first set of rank n+1 (with n 6= 0), is
the singleton

{· · ·{︸ ︷︷ ︸
n+1 times

/0 }· · ·}

having as element the immediate successor of Vn−1.
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To translate the Boolean operations 4,∩ of symmetric difference and in-
tersection (by means of which the definitions of ∪ and of \ are immediate), a
selector arb conforming to the specifications given in Sec. 4, and conjugated
projections [1], [2] relative to the pairing operation 〈 , 〉, we can proceed as
follows:

sy(p,q) =Def if p = 0 then q elseif q = 0 then p

elseif hd(p) < hd(q) then sy(p,tl(q))+2hd(q)

elseif hd(q) < hd(p) then sy(q,tl(p))+2hd(p)

else sy(tl(p),tl(q)) fi ;

nt(p,q) =Def if p = 0 or q = 0 then 0

elseif hd(p) < hd(q) then nt(p,tl(q))

elseif hd(q) < hd(p) then nt(q,tl(p))

else nt(tl(p),tl(q))+2hd(p) fi ;

arb(p) =Def if p = 0 then 0 else minq∈N
(
q̂ ∈ p̂

)
fi ;

sn(p) =Def hd
(
hd(p)\hd

(
tl(p)

))
;

dx(p) =Def if p mod 2 = 1 then hd
(
hd(p)

)
else hd

(
hd

(
tl(p)

))
fi .

Then we translate the monadic operations
⋃

, P into the following U( ),P( ):

U(p) =Def if p = 0 then 0 else un
(
U
(
tl(p)

)
,hd(p)

)
fi ,

S(r,k,q) =Def if r = 0 then k else S
(
tl(r),k,q

)
+2hd(r)+2q

fi ,

P(p) =Def if p = 0 then 1 else S
(
P
(
tl(p)

)
,P

(
tl(p)

)
,hd(p)

)
fi .

We can finally introduce the operation of choice

ch(p) =Def if p6 1 then 0 else ch
(
tl(p)

)
+2hd(hd(p)) fi ,

which, in case p̂ is a PARTITION, that is a set of pairwise disjoint nonempty
“blocks”, returns the position of a set whose intersection with each block is a
singleton.

9. Intensionally specified subsets

When we draw from a set x the elements y that enjoy a certain property ϕ(y), to
form the subset

{y ∈ x|ϕ(y)} ,



CUMULATIVE HIERARCHIES ... 49

the latter is said to be obtained by SEPARATION.
Which forms of specification should be allowed for ϕ( )? When, as is cus-

tomary nowadays, set theory is formalized as an axiomatic theory in a first order
predicate language L∈,=, it is generally admitted that ϕ(y) may be any formula
of L∈,=, within which y usually occurs as a free variable. This liberal criterion
was proposed by the Norwegian mathematician Skolem.13 Before him, in [20],
Fraenkel14 proposed for ϕ(y) two acceptable forms only:

σ(y) /∈ τ(y), σ(y) ∈ τ(y) ,

where σ( ) and τ( ) are called functions and are determined out of descriptions
of set constructions recursively defined in Sec. 15.

In the hierarchy of hierarchies of descriptions of sets represented in Sec. 15,
the first one of the two forms, σ(y) /∈ τ(y), is the most important one since
it allows to construct new sets by separation. For instance the subset X =
{a2,a3, . . .} (of class 1 and level 1 in the hierarchy) of the set A = {a0,a1, . . .}
is obtained for the first time by a “negative” separation, namely X = {x ∈ A|x /∈
{a0,a1}}. X can also be represented by a (more complicated) description of
level 2 by applying a “positive” separation, such as X = {x ∈ A|x ∈ {x ∈ A|x /∈
{a0,a1}}}.

Since it trivially holds that{
y ∈ x|σ(y) ∈ τ(y)

}
=

{
y ∈ x| y ∈ {y ∈ x|σ(y) /∈ τ(y)}

}
,

if we accept Fraenkel’s criterion, it is important to have the “negative” separa-
tion, as we can build the other one. The negative separation can be implemented,
for pure hereditarily finite sets, as follows

sp
(

p, q 7→ f (q), q 7→ g(q)
)

=Def if p = 0 then 0 else

sp
(
tl(p), q 7→ f (q), q 7→ g(q)

)
+ if nin

(
f
(
hd(p)

)
,g

(
hd(p)

))
then 2hd(p) else 0 fi fi

(where nin(p,q) =Def (bp/2qc mod 2 = 0)); the positive one can be imple-
mented indirectly, as

sp
(

p, q 7→ q, q 7→ sp
(

p, q 7→ f (q), q 7→ g(q)
))

.

A similar argument holds for the REPLACEMENT schema, which is more
general than separation and enables one to obtain a set

{ϑ(y) : y ∈ x|ϕ(y)}

13Thoralf Albert Skolem, 1887–1963.
14Adolf Abraham Halevi Fraenkel, 1891–1965.
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from a set x whose elements are first filtered according to a condition ϕ( ) and
then transformed according to a set theoretical expression ϑ( ). Allowing the
same Fraenkel’s format seen above to specify the condition ϕ( ), we can again
confine ourselves to a replacement of “negative” kind, because{

ϑ(y) : y∈ x|σ(y)∈ τ(y)
}

=
{

ϑ(y) : y∈ x|y /∈ {y : y∈ x|σ(y) /∈ τ(y)}
}

.

The negative replacement will be implemented directly as

rp
(

p, q 7→ f (q), q 7→ g(q), q 7→ h(q)
)

=Def if p = 0 then 0 elseif

in
(

f
(
hd(p)

)
,g

(
hd(p)

))
∨

in
(
hd(p),rp

(
tl(p), q 7→ f (q), q 7→ g(q), q 7→ h(q)

))
then

rp
(
tl(p), q 7→ f (q), q 7→ g(q), q 7→ h(q)

)
else

rp
(
tl(p), q 7→ f (q), q 7→ g(q), q 7→ h(q)

)
+ 2hd(p) fi

(where in(p,q) =Def (bp/2qc mod 2 = 1)); the positive one indirectly, as

rp
(

p, q 7→ q, q 7→ rp
(

p, q 7→ f (q), q 7→ g(q), q 7→ q
)
, q 7→ h(q)

)
.

Starting with replacement, we could implement more briefly the constructs
introduced from Sec. 8 on: directly in terms of negative replacement, sp; in
terms of the same (and using U and pair formation to realize un), sy; in terms of
positive replacement, nt and, by means of a self-contained recursion (i.e. one
which avoids the S defined ad hoc above), P; in terms of positive replacement,
and exploiting arb, ch.

To show that replacement is more powerful than separation, let us consider
the infinite set

Z0 =Def

{
/0,{ /0},

{
{ /0}

}
,
{{
{ /0}

}}
, . . .

}
.

By means of separation, we could form a countable infinity of subsets of Z0, but
not a set so akin to it as{

2,{2},
{
{2}

}
,
{{
{2}

}}
, . . .

}
,

which is easily obtainable by replacement as

{ϑ(x) : x ∈ Z0| x /∈ /0} ,

by taking

ϑ(X) = if X = {arb(X)} then {ϑ(arb(X))} else 2 fi.
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10. Emulation of superstructures in V

We now give an informal discussion of the axioms although our
results are precise and could be formalized. If the Axiom of Exten-
sionality is dropped, the resulting system may contain atoms, i.e.,
sets x such that ∀y(∼ y ∈ x) yet the sets x are different. Indeed,
one possible view is that the integers are atoms and should not be
viewed as sets. Even in this case, one might still wish to prevent
the existence of unrestricted atoms. In any case, for the “genuine”
sets, Extensionality holds and the other sets are merely harmless
curiosities. Fraenkel and Mostowski have used atoms to obtain re-
sults about the Axiom of Choice [· · · ]

[13, p. 54]

We will now see how it is possible, starting with any “genuine” set B (i.e.,
a set drawn from V ), to form a cumulative hierarchy “functionally equivalent”
to the superstructure V B

ω introduced in Sec. 4, masking the elements of B as
individuals. Since the elements x of B are what they are (that is, they are sets
of unrestrained structure), we replace each of them with its image x̄ =

{
{x,B∪

N}
}

, where the map
x 7−→ x̄

is clearly bijective. Chosen in this way, all sets corresponding to the elements x
of B have equal rank (since the rank ρ of B∪N always predominates over the
one of x); we remark that such rank (ρ +1)+1 exceeds the rank of any element
of the pure hierarchy Vω (⊆ V B

ω ). If in constructing the cumulative hierarchy
we use, instead of the elements x of B, their corresponding sets x̄ of high rank,
the hierarchy will come to include sets of “low” rank (that is lower than ω),
that we can take as being “pure”, on one side, and sets of “high” rank (that is,
higher than ρ + 1), on the other. Thus, it will never happen that one of such
sets be member of any x̄; in this sense, the x̄s behave (relative to the rest of the
superstructure) like individuals.

Obviously we do not intend in the least, through the technique just proposed
for eliminating individuals, to close the debate about the usefulness of having a
reservoir of individuals in Set Theory. The quotations of Cohen and Barwise-
Moss which appear, respectively, at the top of this section and of Sec. 4, clearly
witness that such question is controversial; speaking more generally, it is con-
troversial whether it is convenient to intermix the classical heterogeneous form
of set aggregation with rigid forms of typing more or less strictly related to the
ones involved in programming.

Taking into account only the technical aspects of the question, we cannot
even be sure that satisfiability tests conceived for several decidable fragments
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of set theory devoid of individuals (see, for instance, [8]) reflect into analogous
decision algorithms for set theory with individuals, although some case studies
(e.g. [15]) may encourage this expectation.

11. A typical exploitation of the notion of rank

The rank notion may turn out useful when one wants to extend a relation R,
initially defined over a set S, i.e.

R ⊆ S×S ,

to the whole class of sets, preserving some of its properties. As an example, we
will see below how to globalize a “toggle” function.

We first draw a distinction of some importance when reasoning about Set
Theory: the one between set and class. All sets are classes, but it may happen
that one has to consider classes “too wide”—a hint will do—in order to consider
them sets: the so-called PROPER CLASSES. Two proper classes which have
already occurred in this paper are O , that is the class of all ordinals, and V , the
class of all sets: indeed, recognizing the status of set to similar classes would
quickly lead to logical antinomies.

The words relation and function have the same basic ambiguity: if we think
of relations as of sets of ordered pairs, do we recognize the status of function to
an operation like the X 7→ P(X), that has V as its domain? Evidently, the latter
is not a set but a class of ordered pairs, and since its operand ranges over all
sets, we can say that it is a GLOBAL FUNCTION. (On the other hand we will call
LOCAL a function f having as its domain a set and consequently being itself a
set). On many occasions, to be more explicit, we will indicate by f � x the image
through a local function f of an element x of its domain, and by ϕ(x) the image
through a global function ϕ of any set x.

Let us now consider a T enjoying the following properties:

• T is a function, understood as a set of ordered pairs, such that when p∈ T
and q ∈ T have the same first component, p[1] = q[1], then the second one
is the same as well, p[2] = q[2]; in short, p = q;

• T is self-inverse: {〈p[2], p[1]〉 : p ∈ T}= T ;

• T is anti-diagonal: {p ∈ T | p[1] = p[2]}= /0 .

The second and the third property can be expressed by asserting that, for every
x in the domain of T ,

T � x 6= x & T � (T � x) = x .
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We call a TOGGLE such a function. Clearly, over a finite domain, we can define
a toggle provided that the number of elements is even, whereas over an infinite
set a toggle is always definable.

Let us suppose we want to extend to the whole von Neumann universe the
domain of a given toggle T . In other words, we want to find a global function
tog( ) such that

tog(x) = T � x for every x in the domain of T ,

also satisfying the condition

tog(x) 6= x & tog
(
tog(x)

)
= x

even when x lies outside such a domain.
For such purpose we can proceed this way:

• Let us consider the infinitely many singletons

{T}, {{T}}, {{{T}}}, · · ·

of increasing ranks, all exceeding rk(T ).

• We observe that the union λ of such ranks, being the rank of a set, is an
ordinal. . .

• . . . and that Vλ \domain(T ), being an infinite set, has a toggle T̄ .

• For every set x, we stipulate that

tog(x) =


T � x if x is in the domain of T ,
T̄ � x if x is in the domain of T̄ ,
(x\1)∪ (1\ x) otherwise.

This example has analogous, much more powerful, constructions. Suppose,
for example, we want to impose a well ordering to the universe V . We can
vacuously order V0, then showing how the ordering <β of a level Vβ of the hier-
archy can be extended to an ordering <β+1 of the subsequent level Vβ+1

15 and
how, finally, when λ is a limit ordinal, it is possible to combine all the order-
ings <β , with β preceding λ , into a well ordering <λ of Vλ , by simply posing
<λ =

⋃
{<β : β ∈ λ}. At this point, it only remains to notice how the orderings

15Here the well known consequence of the axiom of choice comes into play that any set can
be well ordered. For instance, the order of <ω+1 could be obtained as union of the lexicographic
order <ω with an ordering l of Vω+1 \Vω of which the axiom of choice guarantees the existence
and with the relation {〈u,v〉 : u ∈ Vω ,v ∈ Vω+1 \Vω }.
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so imposed at the different levels of the hierarchy are naturally amalgamated
into a single global ordering of V , which furthermore agrees with rank compar-
ison. By proceeding suitably [8, pp. 57–61], it is easy to make such an ordering
lexicographic (see Sec. 7) over finite sets and to enforce that, within each rank,
finite sets precede infinite sets.

The construction just outlined enables us to roughly assess the distance be-
tween the postulates of local and universal choice (cf. [18, 26]), formalizable
(among many other possibilities) as follows:

local choice: ∀x∃ f ∀y
(
y ∈ x→ (y = /0∨ f � y ∈ y)

)
;

universal choice: ∀y
(
y = /0∨arb(y) ∈ y

)
.

On the one hand we have made use of the former of these (even though in
another, equivalent version) to impose a well ordering on V ; on the other hand,
once this ordering has been constructed, we can interpret the global selector arb
as the function which extracts the minimum element from each nonempty set.
Incidentally, since we have managed to make the global ordering compliant with
rank comparison, we can exploit arb also as a witness of the well-foundedness
of membership; in fact, for free we can strenghten the constraint imposed on arb
by the additional requirement that

∀x
(
x∩arb(x) = /0

)
& arb( /0) = /0 .

Notice that we developed this construction at a semantical level external to
Zermelo-Fraenkel. The latter gets usually formulated as an axiomatic theory
within first-order predicate logic; but with its variant implemented inside the
Referee system (see Sec. 16), to which the THEORY construct confers a touch
of second-order logic, our construction of a well ordering of V is certainly
reproducible inside the formal system.

12. The Gödel universe of constructibles

Perhaps the shortest description of L is that it is the smallest tran-
sitive model of the axioms of L1Set which contains all the ordinals.
But the working definition of L, from which the name “constructible
universe” is derived, is rather different.

[29, p. 149]
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Let us consider the following global operations:

F1(X ,Y ) =Def {X ,Y},
F2(X ,Y ) =Def X \Y ,
F3(X ,Y ) =Def X×Y ,
F4(X) =Def {u : 〈u,v〉 ∈ X},
F5(X) =Def {〈u,v〉 : u ∈ X , v ∈ X |u ∈ v},
F6(X) =Def {〈〈u,v〉,w〉 : 〈〈v,w〉,u〉 ∈ X},
F7(X) =Def {〈〈u,v〉,w〉 : 〈〈w,v〉,u〉 ∈ X},
F8(X) =Def {〈〈u,v〉,w〉 : 〈〈u,w〉,v〉 ∈ X}.

It is possible to prove that every set S of the von Neumann’s hierarchy V
has a superset which is closed with respect to these eight operations; so, it will
have a superset ℑ(S) equally closed and minimal with respect to inclusion. We
can therefore exploit a construction similar to the one of V , but with a “slow
growth”, in order to obtain the following HIERARCHY OF CONSTRUCTIBLES:

Lα =Def

⋃{
P(Lβ )∩ℑ(Lβ ∪{Lβ}) : β ∈ α

}
for every ordinal α ,

L =Def

⋃
O(α) Lα .

This develops exactly like the von Neumann’s hierarchy up to the first infi-
nite ordinal ω , but starts suffering the cardinality limitation

|Lα | = |α| when ω < α

(i.e., Lα ( Vα ) beyond such threshold.
Growth limitation apart, L has several common traits with V ; first of all,

it is indeed a hierarchy, in the sense that every Lα is transitive and is strictly
included in each Lγ for α < γ . It is easy to observe that, in general, Lα ⊆ Vα

(the inclusion being strict when α is beyond ω) and that L , which includes all
ordinals as its own elements, is a proper class. Concerning the question whether

L = V ?

the axiomatic theory of Zermelo-Fraenkel does not pronounce either affirma-
tively or negatively; however, it is possible to impose an affirmative answer
by laying down a specific CONSTRUCTIBILITY POSTULATE [31], which as a
side benefit makes the so-called GENERALIZED CONTINUUM HYPOTHESIS [13]
provable, regarding whose truth the usual axioms have no power to decide.
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13. Automatic synthesis of universes of sets

We consider a structure U ,Ø,∈,⊕,	 formed by five components so interre-
lated:

• U is the domain of discourse and Ø belongs to such a domain;

• ∈ is a binary relation over U ;

• ⊕, 	 are binary operations over U , namely for each pair of operands x,y
drawn from U the results x⊕ y and x	 y belong to U .

Intuitively speaking, we want that the structure in question satisfies those
minimal requirements that anybody expects that must hold for nested sets. From
this point of view, U represents the totality of the so-called “sets”, ∈ (which
does not need to be the usual ∈) plays the rôle of “membership” relation among
such entities, Ø acts as “empty set”, ⊕ and 	 act as the operations of addi-
tion / removal of a single element to / from a set. For simplicity, we leave
ur-elements outside our considerations.

The formal “minimal” properties that we want to be satisfied by our struc-
ture are the following ones (these, by definition, will make our quintuple a UNI-
VERSE OF SETS). For any X ,Y in U :

1. X does not precede Ø in ∈.

2. If X and Y are distinct, they cannot have the same immediate predecessors
in ∈; that is to say, some v in U will witness their difference satisfying
one but not the other of the two relations v ∈ X , v ∈ Y .

3. The entities v in U such that v ∈ (X ⊕Y ) are the same for which v ∈ X
holds, plus (possibly, if Y ∈ X is false) the v = Y .

4. The entities v in U such that v ∈ (X 	Y ) are the same for which v ∈ X
holds, with the exception (if Y ∈ X) of v = Y .

Such a universe of sets will then be said COMPUTABLE if

• there is a Herbrand universe Û including U such that for each element v
of Û one can algorithmically establish whether v belongs to U or not;

• operations ⊕, 	 are computable;

• there is a computable binary operation η over U such that for X ,Y in U :

– if Y 6= Ø, then at least one of the relations (X η Y ) ∈ X , (Y η X) ∈Y
holds;
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– if both relations (X η Y ) ∈ X and (X η Y ) ∈ Y hold, then X = Y .

A UNIVERSE OF CLASSES (computable or not) is defined much in the same
way; but its domain of discourse is partitioned as

U = U0 ∪ U1,

where U0 and U1 are disjunct domains and where the operations X ⊕Y and
X 	Y are allowed only when Y belongs to U0. The idea is that U0 collects the
“sets” whereas U1 contains the “proper classes”: thus, the limitation imposed
to ⊕ (and, less significantly, to 	) reflects the intuitive idea that “proper classes
are too big to belong as elements to other classes (or, in particular, to sets)”.

Example. We take as domain of discourse U the collection Vω of pure heredi-
tarily finite sets extended with all their complements in Vω itself, namely

U = Vω ∪{Vω \ x : x ∈ Vω} .

Further, we choose to take as Ø, ∈, ⊕, 	 the standard /0, ∈, (X ,Y ) 7→ X ∪{Y},
(X ,Y ) 7→X \{Y}, and we regard the cofinites Vω \x as the proper classes (which
are therefore not allowed to appear as second argument in the operations of
singleton addition and removal).

To generate the universe Û we will use the constructs of the signature

/0/0, ∞/0, w/2 , `/2

(where ∞ represents Vω and w, ` represent the operations ⊕, 	), and among the
terms of such a universe we will select canonical designations for the finite sets
{x1, . . . ,xk} and for the cofinites Vω \ {x1, . . . ,xk}, for example by insisting on
the fact that the xis are in lexicographic ordering (see Sections 3 e 7).

It is not problematic to implement a binary operation η satisfying the re-
quirements indicated above.

Notice that the universe U under consideration is not closed with respect to
separation: if in some cases, as the ones

{x ∈ Vω | x /∈ x} (= Vω) and {x ∈ Vω | x ∈ x} (= /0),

the aggregate obtained by separation from a proper class is in turn a class, the
same is not true in infinite other cases, as the ones

{x ∈ Vω | /0 /∈ x} and {x ∈ Vω | /0 ∈ x},

where the finiteness-or-cofiniteness requirement fails. �
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[36] provides the specification of a synthesis algorithm that generates a com-
putable universe M = (U ,Ø,∈,w, `) of sets starting from an input sentence of
the form

∃ y1 · · ·∃ yn ∀ x ϕ(y1, . . . ,yn,x),

where the formula ϕ ≡ ϕ(y1, . . . ,yn,x) involves only the variables y1, . . . ,yn,x,
the relators ∈,=, the propositional connectives, and no quantifiers. Within the
computable universe M , one can also compute any total function that can be
specified in the form

ε x ψ(y1, . . . ,ym,x)

(where the formula ψ has a similar structure to the one of ϕ) given any input
assignment

y1 7→ v1, . . . ,ym 7→ vm

of M -sets v j to the formal parameters y j.
Before generating the universe M , the synthesis algorithm [36] must check

that the constraint ∃ y1 · · ·∃ yn ∀ x ϕ is consistent with the properties 1.–4. listed
above characterizing a universe of sets; to this purpose it incorporates a decision
algorithm. Examples of unsatisfiable constraints are ∃y∀x (x ∈ y↔ x /∈ x) and
∃y∀x y /∈ x. The following satisfiable constraints are paradigmatic of the power
of the synthesis algorithm:

∃y0 · · ·∃yn ∀x
((∧

06i< j6n yi 6= y j
)

&
∧n

i=0(x ∈ yi↔ x = yi)
)
,

∃y∀x y /∈ x,

∃y0 · · ·∃yh ∃yh+1 · · ·∃yn ∀x
((∨h

i=0 x ∈ yi
)
↔

∧n
j=h+1 x 6= y j

)
,

∃y0 ∃y1 ∃y2 ∀x
(
x /∈ y0 & (x ∈ y1↔ y0 ∈ x) & (x ∈ y2↔ y0 /∈ x)

)
.

Respectively, these express: the existence of at least n + 1 autosingletons; the
existence of a set of all the sets; the existence of h + 1 sets that cover almost
completely the universe of sets; the existence of a set formed by all sets contain-
ing the empty set, and of its complement.

14. Finite rational hypersets

Ordinary computability theory can be thought of as the theory of
recursion over the set HF0. It seems that to include things like
computable streams and computable binary trees, there should be
an analogous corecursion theory. The natural setting for this the-
ory would be either HF1/2 or HF1. The existence of computable
streams like 〈0,〈1,〈2, . . .〉〉〉 that are not in HF1/2 suggests this set
is too small. [5, p. 328]
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We resume here the construction outlined in [10, pp. 96–97] of a computable
universe of sets (see Sec. 13); for more detailed explanations the reader is re-
ferred to [37]. Briefly speaking, the construction that we trace here is based on
the one provided by Aczel [2] to obtain from the universe of all sets the—even
bigger—universe of hypersets.16 On the formal side, Aczel’s hypersets enjoy
all the properties of ordinary sets with one exception: while the membership
relation among traditional sets is well founded, on the wider hypersets universe
it is forced to contravene well foundedness in all possible ways, for instance by
forming cycles of any length. Trying to be clearer even at this intuitive level of
exposition, we associate to each set/hyperset ξ the graph trans(ξ ) having

• as nodes, all ζ s such that there is a chain of memberships ζ ∈ ·· · ∈ ξ (of
length 0,1 or more) leading from ζ to ξ ;

• as edges, all pairs 〈ζ0,ζ1〉 of such nodes satisfying the relation ζ0 ∈ ζ1.

Moreover we classify ξ as a set when trans(ξ ) has no paths of infinite length,
and as a hyperset in a strict sense in the contrary case.

The universe of sets (of von Neumann) is rich enough so that, given a graph
G with no infinite paths and with a sink ν? (namely, a node reachable in G from
any other node), it is possible to find a set ξ and an isomorphism χ between
trans(ξ ) and G such that χ(ξ ) = ν?, provided that G contains no distinct nodes
with the same immediate predecessors. The latter requirement reflects the ex-
tensionality postulate, according to which there can be no distinct sets with the
same elements.

The universe of hypersets (of Aczel) satisfies a similar “richness”principle
– but not limited by the requirement of paths finiteness –, and it is conceived
in such a way as to reflect a cautious variant of the extensionality principle so
as to assure, for instance, that when ξb is the only member of ξb, for b = 0,1,
then ξ0 and ξ1 coincide. In order to be more precise on this point, we will need
to introduce the notion of bisimulation.17 Bisimulations will allow us to easily
express a (strengthened) extensionality condition that a pointed graph 〈G,ν?〉
must satisfy in order that there is a hyperset ξ such that trans(ξ ) is isomorphic
to G (that implies, incidentally, that ν? is a sink): there can be no bisimulation
between any two closed subgraphs 〈G0,ν

0
? 〉 , 〈G1,ν

1
? 〉 of G whose sinks ν0

? ,ν1
?

are distinct.

16The word ‘hyperset’, drawn from [4], substitutes here the locution ‘non-well-founded set’ of
Aczel [2].

17The concept of bisimulation—and the name itself—originated from studies carried out by
Milner and Park (cf. [41]) on the semantics of concurrent processes. Bisimulations have been
introduced independently also by other authors, more or less at the same time: among them, we
mention Johan van Benthem [6, 7], who called them pi-morphisms.
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Here we only deal with hereditarily finite and rational hypersets, namely
hypersets ξ such that both their cardinality and the height of their associated
graphs trans(ξ ) are finite.18 Such finiteness assumptions allow us to considering
hypersets as an algorithmic data-structure.

In extreme synthesis, the construction of our universe V ω of hypersets pro-
ceeds in the following way:

1. We consider the ordered pairs 〈h,k〉 in Vω and, among them, the binary
relation

G =Def { 〈〈h,k0〉 ,〈h,k1〉〉 : 〈k0,k1〉 ∈ h} .
Then we establish that the relation 〈h0,k0〉

G∼ 〈h1,k1〉 holds iff there is a
BISIMULATION B over G such that 〈h0,k0〉B〈h1,k1〉. This means that B is
a symmetric relation among nodes satisfying the condition〈

∀u,v,w|uBvGw→〈∃z| zBw & uGz〉
〉
.

It can easily be verified that the very relation G∼ is a bisimulation, hence
the largest bisimulation over G with respect to ⊆; furthermore, G∼ is an
equivalence relation.

2. Then we consider the relation G over the quotient Vω×Vω /
G∼ consisting

of all pairs 〈[h,k0]G∼
,[h,k1]G∼

〉 such that 〈k0,k1〉 ∈ h, where

[h0,k0]∼ =Def{〈h1,k1〉 : h1 ∈ Vω ,k1 ∈ Vω ,〈h0,k0〉
G∼ 〈h1,k1〉} ,

for h0,k0 ∈ Vω .

3. The blocks of Vω ×Vω /
G∼ form the domain of discourse of our universe

V ω of HYPERSETS, over which G acts as inverse 3 of the membership
relation.

4. V ω includes entities that can be identified with ordinary sets. More pre-
cisely, these are the blocks which can be written in the form [h,q]G∼

,
where h is the collection of the pairs 〈k1,k0〉 for which there is in Vω a
chain k0 ∈ k1 ∈ k2 ∈ ·· · ∈ kn+1 = q (with n arbitrarily large, although (ob-
viously) finite). Notice, indeed, that when [h0,q0]G∼

and [h1,q1]G∼
are

blocks of this kind, then [h0,q0]G∼
∈ [h1,q1]G∼

holds in V ω iff q0 ∈ q1
holds in the ordinary sense, i.e. it holds in Vω .

18By height of a graph we intend the maximal length of any path in the graph in which no
node is allowed to appear more than once. Rational hypersets form the collection that in the
quotation reported on the top of this section is named HF1/2; those, among them, whose trans
has no internal cycle, form HF0, namely our Vω .
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5. (We leave to the reader the definition of Ø,⊕,	 suitable for Vω ).

(Notice that the main question occurring in the hyperset notion, that is to
determine the pairs µ,ν of nodes of a given graph G such that the relation µ

G∼ ν

holds, can be framed in the relational coarsest partition problem dealt with
in [24]. A O(|E| · `og |N|)-time and O(|E|+ |N|)-space algorithm for such a
problem, where E and N are respectively the set of edges and the set of nodes
of G, was proposed in [40]).

An appealing thesis put forward by Alberto Policriti is that the numerous
satisfiability tests devised for decidable fragments of classical set theory reflect
in analogous decision algorithms for hyperset theory. As for the case of heredi-
tarily finite sets, this thesis has gained some evidence through [3, 16, 37].

15. Fraenkel’s “proto” cumulative hierarchy

In [20], Fraenkel proved the independence of the axiom of choice from the
remaining axioms of set theory, referring his analysis to the axiomatic system
which had been put forward by Zermelo in [47].

Fraenkel’s proof is based on the construction of a universe of objects, B,
that, as we illustrate below, can be described naturally as a cumulative hierarchy,
more specifically as a hierarchy of hierarchies of sets.19

The universe B is built by starting with the primitive objects

• the null set /0;

• a countable infinity of individuals a1, ā1,a2, ā2, . . .;

• the set Z0 =
{

/0,{ /0},
{
{ /0}

}
, . . .

}
; and

• the set A =
{
{a1, ā1},{a2, ā2}, . . .

}
and then by adding all the sets that can be obtained from the primitive objects
by a finite number of applications of Axiom II (of the elementary sets), Axiom
III (of separation), Axiom IV (of the power set) and Axiom V (of the union).

It is then proved (see the Fundamental Theorem in [20]) that every set M of
B is symmetric with respect to all but a finite number of elements {ak, āk} of
the set A, in the sense that if Mk is the result of simultaneously substituting ak

19Since it is constituted by syntactical descriptions, B is plainly countable and therefore it
forms a small model of Zermelo’s axioms. In [47], instead, the domain of discourse is described
in rather generic terms as being formed by objects (which may or may not be sets) obeying some
fundamental conditions (regarding the membership relation) and subject to Zermelo’s axioms,
with no explicit references to any hierarchy of sets.
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with āk and āk with ak in M, then Mk = M holds. Therefore B cannot contain
any choice set for A, which shows that the axiom of choice cannot hold for B.

Axioms II, IV, and V are stated as in [47], whereas concerning Axiom III,
Fraenkel felt the need of making Zermelo’s formulation more precise by intro-
ducing the notion of function (see Sec. 9 for a discussion on Fraenkel’s version
of Axiom III and comparisons with other, more recent, versions).

Informally speaking, functions are determined from descriptions of set con-
structions (like for instance

⋃⋃
A, which is a description of the null set) by

substituting a constant object with a variable. For example, ϕ(x) = {{x}} is
a function corresponding to the description ϕ = {{ /0}} of the singleton of the
singleton of the null set, where /0 is substituted with x. It may also happen that x
substitutes a constant not occurring in ϕ . In this case we have ϕ(x) = {{ /0}}.

Axiom III ([20]). If a set M is given, as well as, in a definite order, two
functions ϕ(x) and ψ(x), then M possesses a subset M′ (resp. M′′) containing as
elements all the elements m ∈M for which ϕ(m) is an element of ψ(m) (resp.
ϕ(m) is not an element of ψ(m)); and no others.

Descriptions can be recursively defined as follows.

• Z0,A, /0,ai, āi (with i ∈ N) are descriptions of class 0;

• if ϕ,ψ are descriptions of class at most p, then the descriptions {ϕ,ψ}
(Axiom II), P(ϕ) (Axiom IV), and

⋃
ϕ (Axiom V) are of class p,

• if χ , ϕ , ψ are descriptions of class at most p, then the description {x ∈
χ |ϕ(x) ∈ ψ(x)} (resp. {x ∈ χ |ϕ(x) /∈ ψ(x)}), where ϕ(x) is a function
obtained from ϕ by substituting a constant object (primitive, if p=0) with
x, and ψ(x) is a function obtained from ψ by substituting a constant object
(primitive, if p=0) with x, is of class p+1.20

From the above definition of description, it follows that every set in B may
have several different descriptions (for instance, P( /0) and { /0} are both descrip-
tions of the singleton of the null set). By identifying all sets in B with all their
descriptions, we will show how B can be described as a hierarchy of hierarchies
of descriptions of sets.

The partitioning of descriptions in classes outlined above is exploited in the
definition of the hierarchy: we construct a hierarchy B0 for the descriptions of
class 0, a hierarchy B1 for the descriptions of class 1, and so on. The final

20We require that, if p > 0, the constant objects substituted in ϕ and ψ either are of class less
than p, or are not the only representative of class p in χ,ϕ and ψ . This also must hold for the
construction of the intermediate hierarchies Bp, as outlined below.



CUMULATIVE HIERARCHIES ... 63

hierarchy B is obtained by taking the union of all levels of all hierarchies of
finite class.

Let us designate by L0
Bi

,L1
Bi

, . . . the levels of the intermediate hierarchies
Bi. The overall construction is illustrated in the following.

• The hierarchy B0 has the following construction:

L0
B0

= { /0,Z0,A,a1, ā1,a2, ā2, . . .},

L1
B0

= L0
B0
∪

{
{ϕ,ψ} : ϕ,ψ ∈ L0

B0

}
∪

{
P(ϕ) : ϕ ∈ L0

B0

}
∪

∪
{⋃

ϕ : ϕ ∈ L0
B0

}
,

L2
B0

= L1
B0
∪

{
{ϕ,ψ} : ϕ,ψ ∈ L1

B0

}
∪

{
P(ϕ) : ϕ ∈ L1

B0

}
∪

∪
{⋃

ϕ : ϕ ∈ L1
B0

}
,

...

• For p> 0, Bp+1 is obtained from Bp as follows.

For every i = 0,1, . . ., let H i
Bp+1

be the collection of all sets {x∈ χ |ϕ(x)∈
ψ(x)}, {x ∈ χ |ϕ(x) /∈ ψ(x)} such that χ is in Li

Bp
and ϕ(x), ψ(x) are

obtained from some descriptions ϕ,ψ in Li
Bp

, by substituting x for a prim-
itive object (if p = 0) or for a constant object (in case p > 0). Then the
levels of Bp+1 are

L0
Bp+1

= H0
Bp+1
∪L0

Bp
,

L1
Bp+1

= H1
Bp+1
∪L1

Bp
∪L0

Bp+1
∪

{
{ϕ,ψ} : ϕ,ψ ∈ L0

Bp+1

}
∪

∪
{
P(ϕ) : ϕ ∈ L0

Bp+1

}
∪

{⋃
ϕ : ϕ ∈ L0

Bp+1

}
,

L2
Bp+1

= H2
Bp+1
∪L2

Bp
∪L1

Bp+1
∪

{
{ϕ,ψ} : ϕ,ψ ∈ L1

Bp+1

}
∪

∪
{
P(ϕ) : ϕ ∈ L1

Bp+1

}
∪

{⋃
ϕ : ϕ ∈ L1

Bp+1

}
,

...

Finally, B is obtained from B0,B1, . . . by putting for i = 0,1, . . .,

Li
B =

∞⋃
p=0

Li
Bp

.

With each description ϕ of the hierarchy B, it is possible to associate a pair
of numbers (cl(ϕ), lv(ϕ)) indicating the minimal intermediate hierarchy and
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the minimal level of the hierarchy containing ϕ . Then cl(ϕ) and lv(ϕ) can be
recursively computed over the structure of ϕ as follows:

1. cl(ϕ) = 0 and lv(ϕ) = 0, for every primitive object ϕ .

2. If ϕ = {ψ,χ}, then

(2a) cl(ϕ) = max{cl(ψ),cl(χ)}, and

(2b) lv(ϕ) = max
{

lv(x) : x ∈ {ψ,χ}| cl(x) = cl(ϕ)
}

+1.

3. If ϕ =
⊗

ψ , where
⊗
∈

{
P,

⋃}
, then

(3a) cl(ϕ) = cl(ψ), and

(3b) lv(ϕ) = lv(ψ)+1.

4. If either ϕ = {x ∈ ψ |χ(x) ∈ ξ (x)} or ϕ = {x ∈ ψ |χ(x) /∈ ξ (x)}, then

(4a) cl(ϕ) = max{cl(ψ),cl(χ),cl(ξ )}+1, and

(4b) lv(ϕ) = max
{

lv(x) : x ∈ {ψ,χ,ξ}| cl(x) = cl(ϕ)
}

.

As a simple example, let us consider ϕ = {x ∈ Z0| /0 ∈ x} (respectively, ϕ ′ =
{x ∈ Z0| /0 /∈ x}) which describes the set {{ /0}} (resp. Z0 \{{ /0}}). It is easy to
check that cl(ϕ) = 1 and lv(ϕ) = 0 (resp., cl(ϕ ′) = 1 and lv(ϕ ′) = 0).

One may wonder whether iterated applications of the axiom of union, hav-
ing destructive effects (for instance, for i> 2,

⋃(i) A is a description of the null
set), leads to a “stabilization” level in the hierarchy, in which no new sets are
generated anymore. In fact, it can easily be verified that there is no such sta-
bilization level: for example, in the construction of the level k + 1 from the
previous level k, P(k+1)(A) and P(k+1)(Z0) are always produced. These describe
sets that cannot be obtained from descriptions generated in previous levels of
the hierarchy.

Analogously, there is no stabilization class. In fact, each class contains de-
scriptions of sets that cannot be obtained from descriptions produced in previous
classes. For instance, let us consider, for i> 1, the description P(i)(

⋃
A) of class

0 and level i+1. From P(i)(
⋃

A), by separation, it is possible to construct the set
X1 = {x ∈ P(i)(

⋃
A)|{a1}(i−1) /∈ x} of class 1 and level i+1, and, more gener-

ally, for j > 2, the set X j = {x ∈ X j−1|{a j}(i−1) /∈ x} of class j and level i+1.
Each X j describes a set that cannot be produced with less than j applications of
Axiom III.21

21In order to obtain the set described by X j with a single application of the separation axiom
we would need a more liberal set former schema, allowing us to produce the description {x ∈
P(i)(

⋃
A)|{a1}(i−1) /∈ x∨ . . .∨{a j}(i−1) /∈ x}.
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We close the section by mentioning the following interesting problem, that
we are currently investigating: is there any algorithm to test whether two de-
scriptions in the hierarchy reported above denote the same set?

16. Referee scenarios on cumulative hierarchies

In the centennial anniversary of completion of Peano’s Formulario [42] and of
publication of Zermelo’s epochal paper [47] on the axiomatization of set theory,
we like to report on a proof verifier under development, ÆtnaNova, aka Referee
(‘Ref’ for brevity), see [9, 11, 12, 35] and the URLs

http://www.settheory.com/Setl2/Ref user manual.html .
http://setl.dyndns.org/EtnaNova/login/Ref user manual.html .

Ref is based on a version of the Zermelo-Fraenkel set theory; it receives
as input script files, called scenarios, consisting of successive definitions (even
inductive, [43]) and theorems (cf., e.g., Figure 2), which it either certifies as
constituting a valid sequence or rejects as defective.22 Thanks to the power of
its set-theoretic basis, Ref is not oriented to a specific field of mathematics; on
the contrary, it can cover a very broad spectrum of applications.

The study outlined in these pages served, among others, to prepare a series
of definitions and theorems, which were gradually incorporated in our main
scenario and then used to test the Ref system. Most of the laws on rank reported
at the end of Sec. 6, of the closure properties enjoyed by superstructures as
discussed in Sec. 4, etc., have been proved with the help of Ref—cf. Figures 2,
3, 4, and 5. For instance, the theorem proved in Sec. 11 appears (after having
reproduced in Ref its development in a satisfactory way) on the interface of
the THEORY shown in Figure 4 (see [38] for a discussion of the construct
THEORY).

The interface of another useful THEORY that exploits the notion of rank is
presented in Figure 5. This theory, signedSymbols, is a very useful preliminary
to theoretical investigations (for example on questions regarding the complete-
ness or incompleteness of a formal deductive system) that require the arith-
metization of a syntax, where, in our specialized context, “arithmetization” is
intended as the representation by means of operations over sets of the constructs
of a symbolic language.

Example. The language of a mono-modal propositional logic whose set of liter-
als has cardinality of atms, can be modelled with the sets of the superstructure

22In the case of rejection, the verifier attempts to pinpoint the troublesome locations within a
scenario, so that errors can be located and repaired. Step timings are produced for all correct
proofs, to help the user in spotting places where appropriate modifications could speed up proof
processing.
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VX =Def

⋃{
P(Vy) : y ∈ X

}
HF =Def VN

/0 ∈ HF& arb( /0)= /0
S ∈ HF&X ∈ S→X ∈ HF \arb(S) & arb(S) ∈ HF∩S

S ∈ HF→P(S),{S},
⋃

S ∈ HF
S,T ∈ HF→S∪T,S \T,{S,T} ∈ HF

S ∈ HF&T⊆S→T ∈ HF
S ∈ HF↔Finite(S)&{u ∈ S|u /∈ HF}= /0

Figure 2: Definition of the set HF of hereditarily finite sets, along with theorems

V A
ω , where A is the collection {affΘ(x) : x ∈ atms} produced by signedSymbols

applied to atms. (It follows from our considerations in Sec. 10 that the elements
of A may act as ur-elemets, though being sets).

Indeed, each element e of V A
ω \A may be decomposed in an “operand” e\Vω

and an “opcode” e∩Vω , by regarding the first one as a disjunction and the sec-
ond one as one of the three constructs of affirmation, negation, and necessitation.
In agreement with such conventions, we can therefore specify, by means of the
following recursive global formula (that is, defined over the whole V ), how sets
in a structure à la Kripke, constituted of “sets of worlds” W , relation R of “ac-
cessibility between worlds” and interpretation M for the propositional letters (so
that R⊆W ×W and A M7−→ P(W )), are evaluated:

m vl(Op,U,W,R) =Def if Op = 0 then U elseif Op = 1 then W \U
else

{
x ∈W |U ⊇ R � {x}

}
fi ;

m eval(E,W,R,M) =Def if E ∈ domain(M) then M � E else

m vl
(
arb(E ∩Vω),

⋃
{m eval(y,W,R,M) : y ∈ E \Vω} ,W,R,M

)
fi . �

17. Construction of the Ackermann hierarchy

The following SETL program [45] carries out, up to a given level, the construc-
tion of the hierarchy of pure hereditarily finite sets. By regarding such domain
as ordered à la Ackermann (see Sec. 7), we can represent each set by means of a
position, to which it is advantageous (for instance for pretty-printing purposes)
to associate a pair of natural numbers: the position of the maximum of such set
and the position of the set formed by its remaining elements.
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THEORY herfin induction
(
s0,P(x)

)
s0 ∈ HF
P(s0)

=⇒ (hf0Θ,hf1Θ)
〈∀k⊆hf0Θ|k6=hf0Θ→¬P(k)〉&hf0Θ⊆ s0 &P(hf0Θ)
〈∀k|k ∈ hf1Θ ∨ (k⊆hf1Θ &k6=hf1Θ)→¬P(k)〉&hf1Θ ∈ HF&P(hf1Θ)

END herfin induction

Figure 3: Induction principles concerning the hereditarily finite sets

THEORY globalizeTog (T)
Svm(T)&T←=T &{p ∈ T|p[1]=p[2]}= /0

=⇒
(
togΘ

)
〈∀x ∈ domain(T)|T�x 6=x &T�(T�x)=x〉
〈∀x ∈ domain(T)| togΘ(x)=T�x〉
〈∀x| togΘ(x)6=x & togΘ

(
togΘ(x)

)
=x〉

END globalizeTog

Figure 4: A tool to make a toggle, T, global

program lexOrd;

const M := 4; -- Maximal rank that will be considered by this program.

var SY, -- (Scalar) symbolic representation of particular transitive sets.
HF; -- List of the hereditarily finite sets, up to a certain maximal rank.

-- This SETL program generates all the sets of the cumulative hierarchy of
-- von Neumann having rank not exceeding M, ordering them
-- in a lexicographic way à la Ackermann to form a list HF. Inside HF,
-- each nonempty set x is represented as a pair [i, j] where
-- j is the position of the maximal element of x and i is the position
-- of the set x−{max(x)} resulting from the removal of such
-- maximum from x. Positions are counted, inside HF, starting from 1;
-- the first of them is occupied by 1 = 0. By convention we indicate
-- with 0 the position of the empty set (coinciding with the natural
-- number 0); in position 1 thus we will find,
-- the pair [0,0], which represents the singleton 0.

-- The first layer embraces the interval of positions included between 1
-- and 1. Once completed the generation of a layer, whose elements have



68 D. CANTONE - C. CHIARUTTINI - M. NICOLOSI ASMUNDO - E. G. OMODEO

-- This theory receives a set atms of which it will univocally convert every
element x into a positive literal by the affirmation operation affΘ(x) and into
a negative literal by the negation operation negΘ

(
affΘ(x)

)
, where negΘ is a

Galois correspondence. For a finite set atms, positive integer encodings and
their negatives would suffice, but a more general approach will be taken here,
and affΘ,negΘ will be defined globally. Along with the functions affΘ,negΘ,
this theory returns a collection litsΘ of positive and negative literals including
all the affirmed and negated images of the “symbols” in atms. Moreover, it
returns a designation falseΘ for falsehood such that the pair falseΘ,negΘ(falseΘ)
of complementary truth values does not intersect litsΘ. All literals, as well as
the logical constants, will share the same rank exceeding the ordinal N.

THEORY signedSymbols(atms)

=⇒ (affΘ,negΘ, litsΘ, falseΘ)

〈∀x,y| x 6=y→affΘ(x)6=affΘ(y)〉

〈∀x|negΘ

(
negΘ(x)

)
=x &negΘ(x)6=x〉

〈∀x,y|affΘ(x)6=negΘ

(
affΘ(y)

)
〉

{affΘ(x) : x ∈ atms}⊆ litsΘ

{negΘ(x) : x ∈ litsΘ}=litsΘ

falseΘ /∈ litsΘ

{rk(x) : x ∈ litsΘ}⊆{rk(falseΘ)}

〈∀n|n ∈ next(N)→n ∈ rk(falseΘ)〉

〈∀x| rk(x) /∈ rk(falseΘ)→ rk
(
negΘ(x)

)
=rk(x)〉

END signedSymbols

Figure 5: Theory to generate a basis of literals of assigned cardinality
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-- positions included between i and j (extremes included), to construct the
-- subsequent layer we will proceed in this way: for every value h of the interval
-- [i . . . j], we will compose a “foil” formed by all the elements of the new
-- layer having the h-th element as their maximum.

HF := [[0,0]]; -- number 1 intended à la von Neumann, having rank 1
SY := {}; -- table of the positions which deserve a particular symbol
i := 1; -- lower edge of the last generated layer

for r in [2. . . M] loop -- cycle generating all the sets of rank r
j := # HF; -- upper edge of the last layer generated
for h in [i. . . j] loop -- generation of the foil formed by those

-- sets having as their maximum
-- the h-th set of the hierarchy

k := # HF; -- lower edge of the foil in construction
HF +:= [[p,h]: p in [0..k]];

end loop;
SY(j) := 1 - r; -- position of the set that represents

-- the r−1-th level of the hierarchy
i := j + 1; -- shift of the lower edge of the most recent layer

end loop;

NM := 0; -- position (nominal, given that the 0 is not enrolled in HF)
-- of a natural number inserted in the hierarchy

SY(0) := 0; -- position 0 is the one that is due to the number 0
r := 1; -- rank of the next natural number that will be introduced in SY
for h in [1. . . #HF] loop -- pinpointing of the numerals, . . .

if HF(h)(1) = NM & HF(h)(2) = NM then
SY(h) := r; r +:= 1; NM := h; -- . . . with annotation in SY

end if;
end loop;
SY(#HF) ?:= -M; -- coding of a further level of the hierarchy
oufile := open(“lexOrd.txt”,“TEXT-OUT”);
for s = SY(p) loop

printa(oufile, s, “ = ”, pos2set(p,“”) + “}”);
end loop;
printa(oufile, -(M + 1), “ = {”);
for h in [0..#HF-1] loop

printa(oufile,pos2set(h,“}”) + “,”);
end loop;
printa(oufile,pos2set(#HF,“}”) + “}”);
close(oufile);

procedure pos2set(p,b);

-- This procedure prepares the printing of a set representation
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-- as a string, where some transitive sets are expressed
-- by means of numerical constants (these are non-negative
-- in the case of natural numbers, whereas they are negative in the case of levels).

return if b /= “,” & b /= “” & SY(p) 6= Ω then str(SY(p))
elseif p = 0 then “{”
elseif b /= “,” & HF(p)(1) /= 0 &

HF(HF(p)(1))(1) = 0 & HF(HF(p)(2))(1) = HF(p)(1) then
”(” + str(pos2set(HF(HF(p)(2))(2),“}”)) + “,” +
str(pos2set(HF(HF(p)(1))(2),“}”)) + “)”

elseif b /= “,” & SY(p) = Ω & HF(p)(1) = HF(p)(2) then
str(pos2set(HF(p)(1),“}”)) + “+”

else pos2set(HF(p)(1), “,”) +
pos2set(HF(p)(2), “}”) +
b

end if;

end pos2set;

end lexOrd;

18. Handling the Ackermann hierarchy in Maple

We report here a Maple [23] implementation of the basic operations over pure
hereditarily finite sets, in which sets are represented by their positions in the
Ackermann lexicographic ordering. The rough lines of the specification below
have been already traced in Sections 8 and 9. In some cases we could have pro-
vided quicker translations than the ones given: but the specifications proposed
here tend, rather than to a maximal descriptive parsimony, to ensure some saving
in computation times.

Even the complements in Vω of the hereditarily finite sets (see the example
of Sec. 13) are correctly manipulated by this Maple library, though not all opera-
tions can be performed on such infinite sets (to mention one, in the case of such
sets it does not always makes sense to select a minimal element with respect
to inclusion; additionally, the possibility of forming subsets by separation and
replacement will be guaranteed only in particularly restrictive circumstances).
As numerical representation of the complement of p̂ we have made the obvious
choice −(p + 1) that, in binary codification in two’s complement, corresponds
to the membership function of the complement. In infinite binary strings that
represent these new aggregates, there is a finite number of zeros.23

23In our implementation of ordered pairs, each component can be finite or cofinite. To achieve
this, we have adopted a new pair representation, which is finite or cofinite according as whether
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Our implementation could serve as a platform to which one can reduce,
either manually or by automatic synthesis (and, if not always, at least in most
cases), the algorithmic manipulations relative to computable universes of sets
(see Sec. 13). Among these are, for example, the universes of hypersets (see
Sec. 14).

Once enriched with associative maps constructs (that, in any case, are sets,
though oriented to more specific applications), the library proposed here would
almost coincide with the core of a programming language based on sets, as
there are many of them. Our language, however, would be characterized by a
greater versatility, since its “sets” and “maps” do not have to be intended in a
predetermined sense, but as changeable instances of two very particular abstract
data types, which are as widespread in the practice of programming as they are
relevant in the investigations on the foundations of exact reasoning.

Ackermann hierarchy:
library of functions for finite and cofinite sets

Utilities
Arithmetic operations appear only in this section

An arbitrary set

any0:=proc() 0 end:

Successor of a finite set in the hierarchy

succ:=proc(p::nonnegint) p+1 end:

Predecessor of a finite set in the hierarchy

pred:=proc(p::posint) p-1 end:

Complement

cmp0:=proc(p::integer) -(p+1) end:

Head and tail of a finite set

the same holds for the first pair component; moreover, the empty set belongs to our representation
if and only if the second component if cofinite. When the components are finite: if they are equal,
our pair construction yields the same result as that of Kuratowski; otherwise, it yields the same
result as the construction proposed in [19]—cf.Sec. 4.



72 D. CANTONE - C. CHIARUTTINI - M. NICOLOSI ASMUNDO - E. G. OMODEO

hd:=proc(p::posint,t::evaln) local h,x;
# The head is returned as the function value,
# the tail as the ‘‘t’’ parameter.
# The ‘‘evaln’’ type requires that the parameter be a name,
# which can be assigned a value.
x:=p;
for h from 0 do x:=iquo(x,2); if x=0 then break fi od;
# Logarithm in base 2 is computed by iterating division
# for precision
t:=p-2^h; return h;

end:

tl:=proc(p::posint,h::evaln) local t; h:=hd(p,t); return t end:

Minimum element of a set or class

mn:=proc(p::integer) local f,m,r,x;
if p=0 then error ‘‘the argument p is null’’
elif p>0 then x:=p; f:=1
else x:=cmp0(p); f:=0
fi;
for m from 0 do x:=iquo(x,2,’r’); if r=f then break fi od;
return m

end:

Add element “q” to “p”, when “q” not in “p”

wth0:=proc(p::integer,q::integer)
if q<0 then p else p+2^q fi # If ‘‘q’’ is a class, do nothing

end:

Union of disjoint sets or classes

un0:=proc(p::integer,q::integer)
if p<0 and q<0
then error ‘‘both args. are classes, which are never disjoint’’ fi;

p+q
end:
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Difference p\q when “q” included in “p”

df0:=proc(p::integer,q::integer)
if q>=0 then p-q fi; # If ‘‘q’’ is a class, do nothing

end:

Symmetric difference and intersection

synt0:=proc(pp::nonnegint,qq::nonnegint,nt::evaln)
# Basic function for finite sets.
# The difference is returned as the function value,
# the intersection as the ‘‘nt’’ parameter
local p,q,hp,hq,tp,tq,sy,n;
p:=pp; q:=qq;
if p=0 then nt:=0; sy:=q
elif q=0 then nt:=0; sy:=p
else sy:=0; n:=0;

hp:=hd(p,tp); hq:=hd(q,tq);
do if hp<hq then sy:=wth0(sy,hq); q:=tq;

if q<>0 then hq:=hd(q,tq) else break fi
elif hq<hp then sy:=wth0(sy,hp); p:=tp;
if p<>0 then hp:=hd(p,tp) else break fi

else n:=wth0(n,hq); p:=tp; q:=tq;
if tp<>0 then hp:=hd(tp,tp) else break fi;
if tq<>0 then hq:=hd(tq,tq) else break fi

fi
od;
nt:=n;
if p>q then sy:=un0(sy,p) else sy:=un0(sy,q) fi

fi
end:

sy0:=proc(p::integer,q::integer,nt::evaln) local n;
# Symmetric difference for both finite sets and classes.
# The intersection is returned as the ‘‘nt’’ parameter.
# ‘‘%’’ indicates the last element in the Maple stack,
# ‘‘%%’’ the penultimate
if p>=0 and q>=0 then synt0(p,q,nt)
elif p>=0 and q<0 then
synt0(p,cmp0(q),n); nt:=df0(p,n); un0(n,cmp0(un0(%%,n)))

elif p<0 and q>=0 then
synt0(q,cmp0(p),n); nt:=df0(q,n); un0(n,cmp0(un0(%%,n)))

else synt0(cmp0(p),cmp0(q),n); nt:=cmp0(un0(%,n)); return %%
fi

end:
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nt0:=proc(p::integer,q::integer,sy::evaln) local n;
# Intersection for both finite sets and classes.
# The symmetric difference is returned as the ‘‘sy’’ parameter.
sy:=sy0(p,q,n); return n

end:

Predicates
Is “p” null?

Is_null:=proc(p::integer) p=null() end:

Is “p” a class?

Is_class:=proc(p::integer) mlt(p)=null() end:
# A class cannot be the member of a set

Is “p” a number?

Is_num:=proc(p::integer) p=rk(p) end:

Is “q” in “p”?

In:=proc(q::integer,p::integer) local s;
if Is_class(q) then false
else mlt(q); nt0(%,p,s)=%
fi

end:

Is “p” a pair?

Is_pair:=proc(p::integer) p=opr(sn(p),dx(p)) end:

Is “q” a subset of “p”?

Is_sub:=proc(q::integer,p::integer) local s; nt0(p,q,s)=q end:

Is “p” transitive?

Is_trans:=proc(p::integer) Is_sub(U(p),p) end:

Set constructors: basic functions
Empty set

null:=proc() df0(any0(),any0()) end:

Class of all sets

all:=proc() cmp0(null()) end:
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Add element “q” to “p”

wth:=proc(p::integer,q::integer)
if In(q,p) then p else wth0(p,q) fi;
# If ‘‘q’’ is a class, then ‘‘p’’ is returned

end:

Multleton: build the set made of the elements given in the arguments set

mlt:=proc() local p,q,qset;
# Classes, if any, are disregarded
qset:={args}; # Retrieve the arguments set
p:=null(); for q in qset do p:=wth0(p,q) od;

end:

Take element “q” out of “p”

less:=proc(p::integer,q::integer)
if In(q,p) then df0(p,mlt(q)) else p fi

end:

Special transitive sets

Next of set “p”, i.e.: p union {p}

nx:=proc(p::nonnegint) wth0(p,p) end:

Natural number
Builds the von Neumann number corresponding to the Maple number in the argument

num:=proc(N::nonnegint)
if N=0 then null() else nx(num(N-1)) fi

end:

Cumulative hierarchy “Vn”

cum:=proc(N::nonnegint) local sng0;
sng0:=proc(N::nonnegint)

# Singleton {...{0}...} with ‘‘N’’ levels of parenthesis
# nesting

if N=0 then 0 else mlt(sng0(N-1)) fi
end;
pred(sng0(N+1))

end:
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Boolean set operations
Symmetric difference

sy:=proc(p::integer,q::integer) local n; sy0(p,q,n) end:

Intersection

nt:=proc(p::integer,q::integer) local s; nt0(p,q,s) end:

Complement

cmp:=proc(p::integer) local n; sy0(p,all(),n) end:

Union

un:=proc(p::integer,q::integer) local n; un0(sy0(p,q,n),n) end:

Difference

df:=proc(p::integer,q::integer) local s; df0(p,nt0(p,q,s)) end:

Aggregators
Union of all elements of a set or class

U:=proc(p::integer) local t;
if Is_null(p) then null()
elif Is_class(p) then all()
else un(hd(p,t),U(t)) fi

end:

Power set

P:=proc(p::nonnegint) local h,pt,S;
S:=proc(r::nonnegint,q::nonnegint) local h;

# Add element ‘‘q’’ to all elements of set ‘‘r’’.
# ‘‘q’’ should not be in the elems. of ‘‘r’’.
if Is_null(r) then pt

else wth0(S(tl(r,h),q), wth0(h,q)) fi
end;
if Is_null(p) then num(1)
else pt:=P(tl(p,h)); S(pt,h)
fi

end:
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Pairing and its conjugated projections

Ordered pair

opr:=proc(p::integer,q::integer) local t;
if Is_class(q) then mlt(null(),mlt(cmp(q)))

else mlt(mlt(q)) fi;
if Is_class(p) then wth(%,wth(hd(%,t),cmp(p))); cmp(%)

else wth(%,wth(hd(%,t),p))
fi;

end:

Left projection of a pair (for any set or class)

sn0:=proc(pq::nonnegint) local t,h,r,x;
# Left projection of a set
if Is_sub(rk(pq),num(1)) then null()
else h:=hd(wth(pq,null()),t); r:=hd(t,x);

if Is_null(r) then hd(h,x)
else less(hd(pq,x),hd(r,x)); hd(%,x)
fi

fi
end:

sn:=proc(pq::integer)
# Left projection of a set or class
if Is_class(pq) then cmp(sn0(cmp(pq))) else sn0(pq) fi

end:

Right projection of a pair (for any set or class)

dx0:=proc(pq::nonnegint) local p,r,t;
# Right projection of a set
if Is_null(pq) then null()
else p:=sn0(pq); r:=less(hd(pq,t),p);

if Is_null(r) then p else hd(r,t) fi
fi

end:

dx:=proc(pq::integer) local r;
# Right projection of a set or class
if Is_class(pq) then r:=cmp(pq) else r:=pq fi;
if In(null(),r) then cmp(dx0(r)) else dx0(r) fi

end:
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Dimensions of sets: depth, width, length
Rank

rk:=proc(p::integer) local n,q;
# Returns a von Neumann number (set)
if Is_class(p) then omega
else q:=p; n:=null();
while q<>null() do tl(q,q); n:=nx(n) od;
# iterated head extraction
return n

fi
end:

Rk:=proc(p::integer) local J,q;
# Returns a Maple number (integer)
if Is_class(p) then infinity
else q:=p;
for J from 0 while q<>null() do tl(q,q) od;
return J

fi
end:

Cardinality as Maple number (integer)

Card:=proc(p::integer) local J,q;
if Is_class(p) then infinity
else q:=p;
for J from 0 while q<>null() do hd(q,q) od;
# iterated tail extraction
return J;

fi
end:

Right length as Maple number (integer)

Rlen:=proc(p::integer) local J,q;
if Is_class(p) then infinity
else q:=p;
for J from 0 while q<>null() do q:=dx(q) od;
return J

fi
end:
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Left length as Maple number (integer)

Llen:=proc(p::integer) local J,q;
if Is_class(p) then infinity
else q:=p;
for J from 0 while q<>null() do q:=sn(q) od;
return J

fi
end:

Selectors
Selection of an arbitrary element of a set/class not intersecting the set/class

arb:=proc(p::integer) if Is_null(p) then null() else mn(p) fi end:

Choice of an element from each set in a set

ch:=proc(p::nonnegint) local h,t;
# The highest element in each block is selected
if Is_null(p) or p=num(1) then null()
else wth0(ch(tl(p,h)),hd(h,t))
fi

end:

eta:=proc(p::nonnegint,q::nonnegint)
if p=q then arb(p)
else df(p,q); if Is_null(%) then arb(df(q,p)) else arb(%) fi

fi
end:

Intensionally characterized subsets (only for sets)
Negative separation à la Fraenkel

spf:=proc(p::nonnegint,f::procedure,g::procedure) local h;
if Is_null(p) then p
else spf(tl(p,h),f,g);

if not In(f(h),g(h)) then wth0(%,h) else % fi
fi

end:

Positive separation

sppf:=proc(p::nonnegint,f::procedure,g::procedure) local q;
spf(p, q->q, q->spf(p,q->f(q),q->g(q)))

end:
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Negative replacement à la Fraenkel

rpf:=proc(p::nonnegint,f::procedure,g::procedure,h::procedure)
local t;

if Is_null(p) then p
else hd(p,t);
if In(f(%),g(%)) or In(%,rpf(t,f,g,h))
then rpf(t,f,g,h)
else wth0(rpf(t,f,g,h),%)
fi

fi
end:

Positive replacement

rppf:=proc(p::nonnegint,f::procedure,g::procedure,h::procedure)
rpf(p, q->q, q->rpf(p,q->f(q),q->g(q),q->q), q->h(q));

end:

Replacement à la Skolem

rpl:=proc(p::nonnegint,f::procedure,h::procedure) local t;
if Is_null(p) then p
else hd(p,t);
if f(%) then wth0(rpl(t,f,h),%) else rpl(t,f,h) fi

fi
end:

Displaying functions
Table of special sets [position, symbol] up to rank “R”

symb:=proc(R::nonnegint) local i;
[seq([num(i),i],i=0..R), seq([cum(i),V||i],i=3..R)];

end:

Standard set representation by a character string

pos2string:=proc(p::integer,ty::string) local q,h,sel,str;
# p: position of the set
# ty=‘‘,’’: the set is a tail
# ty=‘‘’’ : the set is a head
# ty=‘‘}’’: expand, used to display symbols

if Is_class(p) then q:=cmp(p) else q:=p fi;
sel:=select(x->op(1,x)=q, symb(Rk(q)));
# extract symbol from table, if present

if ty=‘‘’’ and nops(sel)>0 then cat(‘‘’’,op(sel)[2])
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elif Is_null(q) and ty=‘‘,’’ then ‘‘’’
elif Is_null(q) and ty=‘‘}’’ then ‘‘{}’’
else if ty=‘‘,’’ then str:=‘‘’’ else str:=‘‘{’’ fi;

str:= cat(str, pos2string(tl(q,h),‘‘,’’), pos2string(h,‘‘’’));
if ty=‘‘’’ then cat(str,‘‘}’’) else cat(str,ty) fi;

fi;
if Is_class(p) then cat(‘‘-’’,%) else % fi;

end:

Standard set representation (Maple “set” type)

p2s:=proc(p::nonnegint) local h;
# Basic funtion for recursive set construction
if Is_null(p) then {}
else p2s(tl(p,h)) union {p2s(h)}
fi

end:

pos2set:=proc(p::integer) local q,R,subslist;
# Representation with special sets
if Is_class(p) then q:=cmp(p) else q:=p fi;
R:=Rk(q);
subslist:=seq(p2s(cum(j))=V||j, j=3..R-1); # levels
subslist:=subslist, seq({seq(j,j=0..i-2)}=i-1, i=1..R); # ordinals
subs(subslist,p2s(q));
if Is_class(p) then -% else % fi;

end:
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[33] J. von Neumann, Über eine Widerspruchsfreiheitsfrage in der axiomatischen Men-

genlehre, Journal für die reine und angewandte Mathematik 160 (1929) 227-241.
Reprinted in [34, pp. 494–508]

[34] J. von Neumann, Collected Works, vol. I: Logic, Theory of Sets and Quantum
Mechanics, Pergamon Press, New York, 1961.

[35] E. G. Omodeo - D. Cantone - A. Policriti - J. T. Schwartz, A Computerized Ref-
eree, O. Stock, M. Schaerf (Eds.) Reasoning, Action and Interaction in AI Theo-
ries and Systems, L.C. Aiello Festschrift, Springer-Verlag, LNAI 4155, 114-136,
2006.

[36] E. G. Omodeo - F. Parlamento - A. Policriti, A derived algorithm for evaluating ε-
expressions over abstract sets, Journal of Symbolic Computation 15 (5-6) (1993),
673-704. Special issue on Automatic Programming, A.W. Biermann, W. Bibel
editors.

[37] E. G. Omodeo - A. Policriti, Solvable set/hyperset contexts: I. Some decision
procedures for the pure, finite case, Comm, on Pure and Appl. Math, 48 (9-10)
(1995), 1123-1155. Special issue in honor of J.T. Schwartz.

[38] E. G. Omodeo - J. T. Schwartz, A ‘Theory’mechanism for a proof-verifier based
on first-order set theory, A. Kakas, F. Sadri (eds.), “Computational Logic: Logic
Programming and beyond”, Essays in honour of R. Kowalski, part II, Springer-
Verlag, LNAI 2408, 214-230, 2002.



84 D. CANTONE - C. CHIARUTTINI - M. NICOLOSI ASMUNDO - E. G. OMODEO

[39] E. G. Omodeo - A. I. Tomescu, Modeling CNF-formulae and formally proving the
correctness of DPLL by means of Referee, Submitted, 2007.

[40] R. Paige - R. E. Tarjan, Three partition refinement algorithms, SIAM Journal on
Computing 16 (6) (1987), 973-989.

[41] D. M. R. Park, Concurrency and automata on infinite sequences, P. Deussen, edi-
tor, Theoretical Computer Science. 5th GI-Conference, 167-183. Springer-Verlag
LNCS, 104, 1980.
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