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APPROXIMATE APPROXIMATIONS ON NONUNIFORM
GRIDS

FLAVIA LANZARA - VLADIMIR MAZ’YA - GUNTHER SCHMIDT

We present an extension of approximate quasi-interpolation on uni-
formly distributed nodes, to functions given on a set of nodes close to an
uniform, not necessarily cubic, grid.

1. Introduction

The method of approximate quasi-interpolation and its first related results were
proposed in [5] and [14]. The method is characterized by a very accurate ap-
proximation in a certain range relevant for numerical computations, but in gen-
eral the approximations do not converge in rigorous sense. For that reason such
processes were called approximate approximations.

Suppose we want to approximate a smooth function u(x), x ∈ Rn, when we
prescribe the values of u at the points of an uniform grid of mesh size h. We fix a
positive parameter D and we choose a sufficiently smooth and rapidly decaying
at infinity function η - the generating function - such that the linear combination
of dilated shifts of η forms an approximate partition of the unity i.e.

D−n/2
∑

m∈Zn

η

(
ξ −m√

D

)
≈ 1.
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The method consists in approximating the function u at the point x by a linear
combination of the form

Mh,Du(x) = D−n/2
∑

m∈Zn

u(hm)η
(

x−hm
h
√

D

)
, x ∈ Rn. (1)

This type of formulas is known as quasi-interpolants and they have the property
that Mh,Du(x) approximates u(x), but Mh,Du(x) does not converge to u(x) as the
grid size h tends to zero. However one can fix D such that the approximation
error is as small as we wish so that the non-convergence is not perceptible in
numerical computations (see [7], [9]). On the other hand, the simplicity of the
generalizations to the multi-dimensional case together with a great flexibility in
choosing the generating function η compensate the lack of convergence.

The above mentioned flexibility is important in the applications because the
generating function η can be selected so that integral and pseudo-differential
operators of mathematical physics applied to η have analitically known expres-
sions, obtaining semianalytic cubature formulas for these operators (see [6], [8],
[11] and the review paper [13]). In some cases, e.g. for potentials, the cubature
formulas converge even in a rigorous sense.

Another important application of the method is the possibility to develop
explicit semi-analytic time marching algorithms for initial boundary value prob-
lems for linear and non linear evolution equations (see [12], [2]).

Quasi-interpolation formulas similar to (1) preserve the fundamental prop-
erties of approximate quasi-interpolation if the grid is a smooth image of the
uniform one (see [10]) or if the grid is piecewise uniform (see [1]). The method
of approximate quasi-interpolation has been generalized to functions given on a
set of nodes close to a uniform, not necessarly cubic, grid in [4]. More general
scattered grids have been considered in [3].

To illustrate the unusual behavior of approximate approximations we as-
sume η(x) = e−x2

/
√

π as generating function and the following quasi-interpo-
lant for a function u on R:

Mh,Du(x) =
1√
πD

∞

∑
m=−∞

u(hm)e−(x−hm)2/(Dh2), x ∈ R. (2)

The application of Poisson’s summation formula to the function

Θ(ξ ,D) =
1√
πD

∞

∑
m=−∞

e−(ξ−m)2/D

yields to these equivalent representations for

Θ(ξ ,D) = 1+2
∞

∑
ν=1

e−π2Dν2
cos2πνξ
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and

Θ
′(ξ ,D) =−4π

∞

∑
ν=1

νe−π2Dν2
sin2πνξ .

We deduce that

|Θ(ξ ,D)−1| ≤ 2
∞

∑
ν=1

e−π2Dν2
< 2ε(D);

|Θ′(ξ ,D)| ≤ 4π

∞

∑
ν=1

νe−π2Dν2
< 4π ε(D)

with

ε(D) = e−π2D +O(e−4π2D).

The rapid exponential decay ensures that we can choose D large enough
such that ε(D) can be made arbitrarly small, for example less that the needed
accuracy or the machine precision. Therefore the integer shifts of the Gaussian

{e−(ξ−m)2/D

√
πD

,m ∈ Z} form an approximate partition of unity for large D .

If the approximated function u is smooth enough, the quasi-interpolant (2)
can be represented in the form (see [14])

Mh,Du(x) = u(x)+

u(x)
(

Θ(
x
h
,D)−1

)
+u′(x)

hD

2
Θ
′(

x
h
,D)+Rh,D(x)

where the remainder term admits the estimate

|Rh,D(x)| ≤ cDh2 max
x∈R

|u′′(x)|

with a contant c not depending on h,D ,u.
The difference between Mh,Du(x) and u(x) can be estimated by

|Mh,Du(x)−u(x)| ≤ cDh2 max
x∈R

|u′′(x)|+

ε(D)(2|u(x)|+ hD

2
|u′(x)|). (3)

This means that, above the tolerance (3), the quasi-interpolant (2) approx-
imates u like usual second order approximations and, if D is chosen appropri-
ately, any prescribed accuracy can be reached. Then the non-convergent part -
called saturation error because it does not converge to 0 - can be neglected and
the approximation process behaves like a second order approximation process.



306 FLAVIA LANZARA - VLADIMIR MAZ’YA - GUNTHER SCHMIDT

2. Quasi-interpolation on uniform grids

One of the advantages of the method is that quasi-interpolants in arbitrary space
dimension n with approximation order larger than two, up to some prescribed
accuracy, have the same simple form as second order quasi-interpolants. The
quasi-interpolant in Rn has the form

Mh,Du(x) = D−n/2
∑

j∈Zn

u(hj) η

(
x−hj
h
√

D

)
(4)

with the generating function η in the Schwartz space S (Rn) of smooth and
rapidly decaying functions. Maz’ya and Schmidt have proved that formula (4)
provides the following approximation result.

Theorem 2.1. ([10]) Suppose that∫
Rn

η(y)dy = 1,
∫

Rn
yα

η(y)dy = 0, ∀α : 1 ≤ |α|< N (5)

and u ∈W N
∞ (Rn). Then

|Mh,Du(x)−u(x)| ≤ cη ,N(
√

Dh)N‖∇Nu‖L∞
+

N−1

∑
k=0

(
h
√

D

2π

)k

∑
|α|=k

|∇ku(x)|
α! ∑

ν∈Zn\0
|∂ αFη(

√
Dν)|

with the constant cη ,N not depending on u, h and D .
Moreover for any ε > 0, there exists D > 0 such that for all α, 0≤ |α|< N,

∑
ν∈Zn\0

|∂ αFη(
√

Dν)|< ε .

∇ku(x) denotes the vector of all partial derivatives {∂ αu(x)}|α|=k and Fη

denotes the Fourier transform of η . We deduce that for any ε > 0 there exists
D > 0 such that Mh,Du(x) approximates u(x) pointwise with the estimate (see
[7],[9])

|Mh,Du(x)−u(x)| ≤ cη ,N(
√

Dh)N‖∇Nu‖L∞
+ ε

N−1

∑
k=0

(h
√

D)k|∇ku(x)|.

Therefore Mh,Du behaves like an approximation formula of order N up to the
saturation term that can be ignored in numerical computations if D is large
enough. Similar estimates are also valid for integral norms (see [6]).

Several methods to construct generating functions satisfying the moment
conditions (5) for arbitrarly large N have been developed (see [9], [10]). In fact
any sufficiently smooth and rapidly decaying function η with Fη(0) 6= 0 can be
used to construct new generating functions ηN satisfying the moment conditions
for arbitrary large N as shown in the next theorem.
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Theorem 2.2. ([9]) Let η ∈S (Rn) with Fη(0) 6= 0. Then

ηN(x) =
N−1

∑
|α|=0

∂ α(Fη(λ )−1)|λ=0

α!(2πi)|α|
∂

α
η(x)

satisfies the moment conditions (5).

An interesting example is given by the Gaussian function η(x) = e−|x|
2

where the application of Theorem 2.2 leads to the generating function

η2M(x) = π
−n/2

M−1

∑
j=0

(−1) j

j!4 j ∆
je−|x|

2
= π

−n/2L(n/2)
M−1 (|x|2)e−|x|2

with N = 2M and the generalized Laguerre polynomial

L(γ)
k (y) =

eyy−γ

k!

(
d
dy

)k

(e−yyk+γ), γ >−1 .

Hence the quasi-interpolant

Mh,Du(x) = (π D)−n/2
∑

j∈Zn

u(hj) L(n/2)
M−1 (

∣∣∣∣x−hj
h
√

D

∣∣∣∣2)e−∣∣∣ x−hj
h
√

D

∣∣∣2

is an approximation formula of order N = 2M plus the saturation term.
The quasi-interpolation formula and the corresponding approximation re-

sults have been generalized in [1] and [4] to the case when the values of u are
given on uniform grids, not necessarily cubic, of this type

Λh := {hAj , j ∈ Zn}

with a real nonsingular n×n-matrix A.
Under the same assumptions on the generating function η , it is always pos-

sible to choose D > 0 such that the quasi-interpolant

MΛhu(x) :=
detA
Dn/2 ∑

j∈Zn

u(hAj)η

(x−hAj√
Dh

)
(6)

satisfies an estimate similar to that obtained in Theorem 2.1 for uniform cubic
grid i.e.

|MΛhu(x)−u(x)| ≤ cη ,N(
√

Dh)N‖∇Nu‖L∞
+ ε

N−1

∑
k=0

(h
√

D)k|∇ku(x)| (7)
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Figure 1: Tridiagonal grid

for any ε > 0.
The first application of formula (6) is the construction of quasi-interpolants

on a regular triangular grid in the plane, as indicated in Figure 1.
The vertices y4j of a partition of the plane into equilateral triangles of side

length 1 are given by

y4j = Aj; A =

(
1 1/2

0
√

3/2

)
.

The application of formula (6) to the nodes of the regular triangular grid of
size h

Λh = {hy4j }= {hAj}j∈Z2

gives the following quasi-interpolant

M M
h u(x) :=

√
3

2D ∑
j∈Z2

u(hy4j )η

(x−hy4j√
Dh

)
.

The system of functions {
√

3
2D

η

(x−y4j√
D

)
}, centered at the points of the uni-

form triangular grid, forms an approximate partition of unity. Using Poisson’s
summation formula one can bound the main term of the saturation error by∣∣∣∣1− √

3
2D ∑

j∈Z2

η

(x−y4j√
D

)∣∣∣∣≤ ∑
ν∈Z2\0

∣∣∣∫
R2

η(y)e−2πi
√

D(A−1y,ν)dy
∣∣∣ .
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By assuming as generating function the Gaussian η(x) = π−1e−|x|
2

we ob-
tain ∣∣∣1− √

3
2πD ∑

j∈Z2

e−|x−y4j |
2/D
∣∣∣

≤ ∑
(ν1,ν2)6=(0,0)

e−4π2D(ν2
1−ν1ν2+ν2

2 )/3 = 6e−4π2D/3 +O(e−4π2D) .

In Figure 2 the graph of the difference
√

3
2πD ∑j∈Z2 e−|x−y4j |

2/D −1 is plotted
with two different values of D.
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Figure 2: The graph of
√

3
2πD ∑j∈Z2 e−|x−y4j |

2/D −1 when D = 2 (on the left) and D = 3
(on the right).

As second example we construct quasi-interpolants with functions centered
at the nodes of a regular hexagonal grid in the plane, as depicted in Figure 3.
We obtain a hexagonal grid if, from the nodes of a regular triangular grid of side
length 1, the nodes of another triangular grid of side length

√
3 are removed (see

Figure 4). Therefore the set of nodes X� of the regular hexagonal grid are given
by

X� = {Aj}j∈Z2 \{Bj}j∈Z2

where

B =

(
3/2 0
√

3/2
√

3

)

and Bj, j ∈ Z2, denote the removed nodes.
The quasi-interpolant on the h-scaled hexagonal grid

hX� = {hAj}j∈Z2 \{hBj}j∈Z2 (8)
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Figure 3: Hexagonal grid

is defined as

M �
h u(x) :=

3
√

3
4D ∑

y�∈X�
u(hy�)η

(x−hy�√
Dh

)
.

For (8) the quasi-interpolant M �
h u can be written in an equivalent way

M �
h u(x) =

3
√

3
4D

(
∑

j∈Z2

u(hAj)η
(x−hAj√

Dh

)
− ∑

j∈Z2

u(hBj)η
(x−hBj√

Dh

))
,

Therefore we derive that under the decay conditions and the moment conditions
on η the quasi-interpolant M �

h u provides the estimate (7) for sufficiently large
D .

¿From Poisson’s summation formula

∑
j∈Z2

η

(x−Aj√
D

)
=

D

detA

(
1+ ∑

ν∈Z2\0

Fη(
√

D(At)−1
ν)e2πi(x,(At)−1ν)

)
,

we obtain an approximate partition of unity centered at the hexagonal grid:

3
√

3
4D ∑

y�∈X�
η

(x−y�√
D

)
−1 = ∑

j∈Z2

η

(x−Aj√
D

)
− ∑

j∈Z2

η

(x−Bj√
D

)
−1 =

3
2 ∑

ν∈Z2\0

Fη(
√

D(At)−1
ν)e2πi(x,(At)−1ν)−

1
2 ∑

ν∈Z2\0

Fη(
√

D(Bt)−1
ν)e2πi(x,(Bt)−1ν).
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Figure 4: Nodes of a hexagonal grid. The eliminated triangular grid Bj is de-
picted with dashed lines.

In the case of the exponential η(x) = π−1e−|x|
2

we have estimated the main
term of the saturation error by

∣∣∣1− 3
√

3
4πD ∑

y�∈X�
e−|x−y�|2/D

∣∣∣ (9)

≤ 1
2 ∑

(ν1,ν2)6=(0,0)
(3e−4π2D(ν2

1−ν1ν2+ν2
2 )/3 + e−4π2D(ν2

1−ν1ν2+ν2
2 )/9)

= 3e−4π2D/9 +O(e−4π2D/3) .

In Figure 5 the difference (9) is depicted for two different values of D .

3. Results for nonuniform grids

Next we consider an extension of the approximate quasi-interpolation formulas
on uniform grid to the case that the data are given on a set of scattered nodes
X = {x j} ⊂Rn close to a uniform grid in the sense that we specify in Condition
3.1.

Proposition 3.1. There exists a uniform grid Λ such that the quasi-interpolants

Mh,D u(x) = D−n/2
∑

y j∈Λ

u(hy j)η

(x−hy j

h
√

D

)
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Figure 5: The graph of 3
√

3
4πD ∑y�∈X� e−|x−y�|2/D −1 when D = 4 (on the left) and D = 8

(on the right).

approximate sufficiently smooth functions u with the error

|Mh,Du(x)−u(x)| ≤ cN,η (h
√

D)N‖∇Nu‖L∞(Rn) +ε

N−1

∑
k=0

(h
√

D)k|∇ku(x)| (10)

for any ε > 0.
Let Xh be a sequence of grids with the property that for κ1 > 0 not depending

on h and any y j ∈ Λ the ball B(hy j,hκ1) contains nodes of Xh.

For example, if η satisfies the conditions of Theorem 2.1, we may assume
as Λ the cubic grid {j} or, in the plane, the triangular grid {yM} or the hexagonal
grid {y�}.

In order to construct an approximate quasi-interpolant which use the data at
the nodes of Xh we introduce the following definition.

Definition 3.2. Let x j ∈ Xh. A collection of mN =
(N−1+n)!
n!(N−1)!

−1 nodes xk ∈

Xh will be called star of x j and denoted by st(x j) if the Vandermonde matrix

Vj,h =
{(xk−x j

h

)α}
, |α|= 1, ...,N−1,

is not singular.

Proposition 3.3. Denote by x̃ j ∈ Xh the node closest to hy j ∈ hΛ. There exists
κ2 > 0 such that for any y j ∈Λ the star st(x̃ j)⊂ B(x̃ j,hκ2) with |detVj,h| ≥ c >
0 uniformly in h.
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Let us denote by {b( j)
α,k}, |α|= 1, . . . ,N−1, xk ∈ st(x̃ j), the elements of the

inverse matrix of Vj,h, and consider the functional

Fj,h(u) =u(x̃ j)
(

1−
N−1

∑
|α|=1

(
y j −

x̃ j

h

)α

∑
xk∈st(x̃ j)

b( j)
α,k

)

+ ∑
xk∈st(x̃ j)

u(xk)
N−1

∑
|α|=1

b( j)
α,k

(
y j −

x̃ j

h

)α

.

The functional Fj,h(u) depends on the values of u at the nodes of st(x̃ j)∪ x̃ j i.e.
mN +1 points close to hyj.

Let us define the following quasi-interpolant which uses the values of u on
Xh

Mh,Du(x) = D−n/2
∑

y j∈Λ

Fj,h(u)η
(x−hy j

h
√

D

)
. (11)

The following theorem states that, under the above mentioned conditions on the
grid, Mh,Du has the same behavior as in the case of uniform grids.

Theorem 3.4. ([4]) Under the Conditions 3.1 and 3.3, for any ε > 0 there exists
D > 0 such that the quasi-interpolant (11) approximates any u ∈W N

∞ (Rn) with

|Mh,Du(x)−u(x)| ≤ cN,η ,D hN‖∇Nu‖L∞(Rn) + ε

N−1

∑
k=0

(h
√

D)k|∇ku(x)| ,

where cN,η ,D does not depend on u and h.

One of the motivations of approximate approximations is the construction
of cubature formulas for integral operators of convolution type

K u(x) =
∫

Rn
k(x−y)u(y)dy . (12)

A cubature formula of the multi-dimensional integral (12) can be obtained if the
density u is replaced by the quasi-interpolant Mh,Du. Then

K Mh,Du(x) = D−n/2
∑

y j∈Λ

Fj,h(u)
∫

Rn
k(x−y)η

(y−hy j

h
√

D

)
dy

= hn
∑

y j∈Λ

Fj,h(u)
∫

Rn
k
(

h
√

D
(x−hy j

h
√

D
−y
))

η(y)dy

is a cubature formula for (12) with a generating function η chosen such that K η

can be computed analytically or at least by some efficient quadrature method.
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In (11) the generating function is centered at the nodes of the uniform grid
hΛ. This can be helpful to design fast methods for the approximation of (12). If
we define

a(h)
k− j =

∫
Rn

k
(
h(yk−y j −

√
D y)

)
η(y)dy .

we reduce to the computation of the following sums

K Mh,Du(hyk) = hn
∑

y j∈Λ

Fj,h(u)a(h)
k− j

which provide an approximation of (12) at the mesh points hyk.
A generalization of the method approximate approximations to functions

with values given on a rather general grid was obtained in [3].

4. Numerical Experiments

The quasi-interpolant Mh,Du in (11) was tested by one- and two-dimensional
experiments and the results of the numerical experiments confirm the predicted
approximation orders. In all cases the grid Xh is chosen such that any ball
B(hj,h/2), j ∈ Zn, n = 1 or n = 2, contains one randomly chosen node, which
we denote by xj.

The one-dimensional case. Figures 6 – 9 show the graphs of Mh,Du−u for
different smooth functions u using the basis function η(x) = π−1/2e−x2

(Fig. 6
and 7) for which N = 2, and η(x) = π−1/2(3/2− x2)e−x2

(Fig. 8 and 9) for
which N = 4, for different values of h. We have chosen the parameter D = 4 in
order to keep the saturation error less than 10−16.
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Figure 6: The graphs of Mh,Du− u with η(x) = π−1/2e−x2
, D = 4, st(x j) = {x j+1},

when u(x) = sin(x) (on the left) and u(x) = cos(x). Dashed and solid lines correspond
to h = 1/32 and h = 1/64.
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Figure 7: The graphs of Mh,Du− u with η(x) = π−1/2e−x2
, D = 4, st(x j) = {x j+1},

when u(x) = sin(x) (on the left) and u(x) = cos(x). Dashed and solid lines correspond
to h = 1/128 and h = 1/256.
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Figure 8: The graphs of Mh,Du−u with η(x) = π−1/2(3/2−x2)e−x2
, D = 4, st(x j) =

{x j−2,x j−1,x j+1}, when u(x) = sin(x) (on the left) and u(x) = cos(x). Dashed and solid
lines correspond to h = 1/32 and h = 1/64.

The two-dimensional case. We depict in Figures 10 and 11 the quasi-
interpolation error Mh,Du−u for the function u(x) = (1+ |x|2)−1 and different
h if generating functions of second (with D = 2) and fourth (with D = 4) order
of approximation are used. The h2- and respectively h4-convergence of the cor-
responding two-dimensional quasi-interpolants are confirmed by the L∞− errors
which are given in Table 1.
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Figure 9: The graphs of Mh,Du−u with η(x) = π−1/2(3/2−x2)e−x2
, D = 4, st(x j) =

{x j−2,x j−1,x j+1}, when u(x) = sin(x) (on the left) and u(x) = cos(x). Dashed and solid
lines correspond to h = 1/128 and h = 1/256.
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Figure 10: The graph of Mh,Du− u with D = 2, η(x) = π−1e−|x|
2
, N = 2, u(x) =

(1+ |x|2)−1, h = 2−6 (on the left) and h = 2−7 (on the right).

h D = 2 D = 4
2−4 8.75 ·10−3 1.57 ·10−2

2−5 2.21 ·10−3 4.00 ·10−3

2−6 5.51 ·10−4 1.01 ·10−3

2−7 1.42 ·10−4 2.52 ·10−4

2−8 3.56 ·10−5 6.50 ·10−5

h D = 4 D = 6
2−4 4.42 ·10−4 9.59 ·10−4

2−5 2.95 ·10−5 6.61 ·10−5

2−6 1.92 ·10−6 4.24 ·10−6

2−7 1.24 ·10−7 2.68 ·10−7

2−8 7.80 ·10−9 1.71 ·10−8

Table 1: L∞ approximation error for the function u(x) = (1 + |x|2)−1 us-
ing Mh,Du with η(x) = π−1e−|x|

2
, N = 2 (on the left), and η(x) = π−1(2−

|x|2)e−|x|2 , N = 4 (on the right).
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Figure 11: The graph of Mh,Du− u with D = 4, η(x) = π−1(2−|x|2)e−|x|2 , N = 4,
u(x) = (1+ |x|2)−1, h = 2−6 (on the left) and h = 2−7 (on the right).
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