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POTENTIAL ANALYSIS
FOR A CLASS OF DIFFUSION EQUATIONS:

A GAUSSIAN BOUNDS APPROACH

ERMANNO LANCONELLI

Let H be a linear second order partial differential operator with non-
negative characteristic form in a strip S⊂RN ×R. We assume that H as
a fundamental solution, smooth out of its poles and bounded from above
and from below by Gaussian kernels modeled on subriemannian doubling
distances in RN . Under these assumptions we show that H endows S
with a structure of β -harmonic space. This allows us to study boundary
value problems for L with a Perron-Wiener-Brelot-Bauer method, and to
obtain pointwise regularity estimates at the boundary in terms of Wiener
series modeled on the Gaussian kernels. Our analysis includes the proof
of a scale invariant Harnack inequality for nonnegative solutions. We also
show an application to the real hypersurphaces of Cn+1 with given Levi-
curvature.

1. Introduction and main results

In this note we present a series of results, obtained in collaboration with M. Bra-
manti, L. Brandolini and F. Uguzzoni (see [5],[6],[18]), related to a class of
diffusion second order PDE’s of the following type
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H =
N

∑
i, j=1

qi, j(z)∂ 2
xi,x j

+
N

∑
j=1

q j(z)∂x j −∂t .

The coefficients qi, j = q j,i,q j are of class C∞ in the strip

S := {z = (x, t) : x ∈ RN , T1 < t < T2}
= RN×]T1,T2[,

where −∞≤ T1 < T2 ≤ ∞. We assume the characteristic form

qH (z,ξ ) =
N

∑
i, j=1

qi, j(z)ξiξ j

is non-negative definite, and not identically zero, at any point z ∈ S. Moreover,
the operator H is supposed to be hypoelliptic in S.

Together with the previous qualitative properties, we assume that H has a
fundamental solution Γ satisfying the Gaussian estimates

1
Λ

Gb0(z,ζ ) ≤ Γ(z,ζ )≤ ΛGa0(z,ζ ),

where, Ga(z,ζ ) = Ga(x, t;ξ ,τ) = 0 if t ≤ τ , and

Ga(x, t;ξ ,τ) =
1

|B(x,
√

t− τ)|
exp(−a

d2(x,ξ )
t

)

if t > τ . Λ,a0,b0 are positive constants.
Hereafter d is a metric in RN and |B(x,r)| denotes the Lebesgue measure

of the d-ball B(x,r). We also assume that the metric space (RN ,d) satisfies the
following conditions:

• the d-topology is the Euclidean topology

• diamd(RN) = ∞

• (RN ,d) is a doubling space w.r to the Lebesgue measure, i.e.
0 < |B(0,2r)| ≤ cd |B(0,2r)|, for every x ∈ RN , and r > 0

• (RN ,d) has the segment property, i.e. for every x,y ∈ RN

there exists γ : [0,1]→ RN , continuous and such that
d(x,y) = d(x,γ(t))+d(γ(t),y) for every t ∈ [0,1]
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In what follows, we shall denote by |H | the constant

|H | := Λ+a0 +b0 + cd

Under the previous assumptions, we proved several results, which can be sum-
marized as follows.

(I) H endows S with a structure of β harmonic space (in the sense of
Constantinescu&Cornea [8]) As a consequence, for every bounded open set
Ω⊂ Ω̄⊂ S, and for every ϕ ∈C(∂Ω), the Dirichlet Problem:{

H u = 0 in Ω

u|∂Ω = ϕ

has a generalized solution u = HΩ
ϕ , in the sense of Perron-Wiener-Brelot-Bauer

(PWBB solution).

(II) HΩ
ϕ satisfies the boundary estimate

|HΩ
ϕ (z)−ϕ(z0)| ≤ h(ϕ;z0,z), z0 ∈ ∂Ω, z ∈Ω

where h(ϕ;z0,z)→ 0 as z → zo, for every ϕ , if and only if z0 is a H - regular
boundary point for Ω.

We constructed h(ϕ; .) by using a Wiener-type series of Γ potentials. As a
consequence, h(ϕ; .) can be estimated in terms of the Gaussian functions Ga’s
and some geometric features of Ω

(III) (Scale invariant Harnack inequality) If H u = 0 and u ≥ 0 in an open
set containing B(x0,R)× [t0−R2, t0], where (x0, t0) =: z0 ∈ S, then

max
CR(z0)

u≤M u(z0).

Here CR(z0) := Bd(ξ0,γR)× [τ0− γR2,τ0− γ

2 R2]
The constants M > 0 and 0 < γ < 1 are independent of R and z0. They

depend on the operator H only through the constant |H |.
We would like to close this Introduction by comparing our result in (III) with

a remarkable well known Theorem in the Riemannian setting. Let (M,d) be a
complete Riemannian manifold and let H its Heat operator (that is, a classical
divergence form parabolic operator). Saloff-Coste and Grigoryan, starting from
some deep ideas coming back to Nash and Moser, as implemented by Fabes and
Strook, proved that

d− scaling invariant Harnack inequality for nonnegative solutions to H u = 0
m

(M,d) is a doubling space + Gaussian bounds for the Heat kernel.
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See [23] and he wide bibliograpy therein. Our result in (III) shows that, also
in a subriemannian setting and for nondivergence degenerate parabolic opera-
tors

Doubling property+Gaussian bounds =⇒ scale invariant Harnack inequality.

2. Our main motivation

Many problems in geometric theory of several complex variables lead to fully
nonlinear second order equations, whose linearizations are nonvariational op-
erators modeled on vector fields satisfying rank conditions of Hörmander type.
Here we would like to present one of these problems arising in the study of some
curvature notions related to Levi form.

Let M be a real hypersurface, embedded in the Euclidean complex space
Cn+1. The Levi form of M at a point p ∈M is a Hermitian form on the complex
tangent space whose eigenvalues λ1 (p) , ...,λn (p) determine a kind of principal
curvature in the directions of each corresponding eigenvector. Then, given a
generalized symmetric function s, in the sense of Caffarelli-Nirenberg-Spruck
[7], one can define the s - Levi curvature of M at p, as follows:

Sp (M) = s(λ1 (p) , ...,λn (p)) ,

see [1], [25], [26],[17]. When M is the graph of a function u and one imposes
that its s-Levi curvature is equal to a given function, one obtains a second order
fully nonlinear partial differential equation, which can be seen as the pseudocon-
vex counterpart of the usual fully nonlinear elliptic equations of Hessian type,
as studied e.g. in [7]. In linearized form, the equations of this new class can be
written as follows

L u≡
2n

∑
i, j=1

ai jXiX ju = K(x,u,Du) in R2n+1 (1)

where:

• the X j’s are first order differential operators, with coefficients depending
on the gradient of u, which form a real basis for the complex tangent space
to the graph of u;

• the matrix
{

ai j
}

depends on the function s and its entries depends on the
first and second derivatives of u;

• K is a prescribed function.
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It has to be noticed that L only involves 2n derivatives, while it lives in a
space of dimension 2n + 1. Then, L is never elliptic, on any reasonable class
of functions. However, the operator L , when restricted to the set of strictly
s-pseudoconvex functions, becomes elliptic along the 2n linearly independent
directions given by the Xi’s. The missing ellipticity direction can be recovered
by a commutation. Precisely,

dim
(
span

{
X j, [Xi,X j] , i, j = 1, ...,2n

})
= 2n+1

at any point, a kind of Hörmander rank condition of step 2 (see [17]).
The parabolic counterpart of L , i.e. the operator

L −∂t , t ∈ R, x ∈ R2n+1 (2)

arises in studying the evolution by s - Levi curvature of a real hypersurface of
Cn+1, see[12], [19].

One of the main motivations of the present work is to provide the linear
framework for the s-Levi equations and their parabolic counterpart.
For instance, a consequence of our Harnack inequality, applied to time-invariant
solutions to H u = 0, is the following: let u be a positive smooth strictly s-
pseudoconvex solution to the Levi equation, L u = K with K of class C∞. Then
u satisfies a Harnack inequality of type:

sup
Br

u≤C inf
Br

u

where Br is the Carnot-Carathéodory ball of radius r, related to the vector fields
X1,X2, ...,X2n.
The unpleasant fact of this inequality is that the constant C depends on the so-
lution u in an unspecified way. Understanding how C depends on u is an inter-
esting and seemingly difficult open problem.

3. Main examples: nondivergence operators of Hörmander-type

Our basic examples of diffusion operators, satisfying the assumption stated in
the Introduction, are suggested by the motivations presented in the previous
section. These operators take the form

H = L −∂t =
q

∑
i, j=1

ai j(z)XiX j +
q

∑
k=1

ak(z)Xk−∂t

where:
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• X1,X2, . . . ,Xq are smooth vector fields in the open set Ω ⊂ RN satisfying
the Hörmander condition

rank Lie{Xi, i = 1,2, ...,q}= n at any point of Ω.

Then H is hypoelliptic in Ω [11].

• A(z) = (ai j(z))
q
i, j=1 is a symmetric matrix such that

1
λ
|ξ |2 ≤

q

∑
i, j=1

ai j(z)ξiξ j ≤ λ |ξ |2

for every z = (x, t) ∈ S, ξ = (ξ1, . . . ,ξq) ∈ Rq

A natural distance for the operator H is the Carnot-Carathéodory distance
d generated by the vector fields X1,X2, . . . ,Xq. We would like to stress that d is
well defined since the system X = {X1,X2, . . . ,Xq} satisfies the Hörmander rank
condition

In [6]we proved that X can be extended to a system of Hörmander vector
fields, defined all over RN , in such a way that the associated Carnot-Carathéo-
dory distance satisfies all the assumptions stated in the Introduction. Precisely:

• the d-topology is the Euclidean topology

• diamd(RN) = ∞

• (RN ,d) is a doubling space w.r to the Lebesgue measure, i.e.
0 < |B(0,2r)| ≤ cd |B(0,2r)|, for every x ∈ RN , andr > 0

• (RN ,d) has the segment property, i.e. for every x,y ∈ RN

there existsγ : [0,1]→ RN , continuous, such that
d(x,y) = d(x,γ(t))+d(γ(t),y) for every t ∈ [0,1]

We also extended the operator H to the whole RN+1 in such a way that
outside of a compact set in the spatial variable, it becomes the classical Heat
operator.

Still denoting by H the extended operator, under the qualitative assumption
ai, j,a j C∞, we proved that H as a global fundamental solution Γ such that

1
Λ

Gb0(z,ζ ) ≤ Γ(z,ζ )≤ ΛGa0(z,ζ )

and, for every α = (αi,α j.αk) with |α| ≤ 2,

|Dα
Γ(z,ζ )| ≤ Λ|t− τ|−

|α|
2 Ga0(z,ζ ).
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Here we have used the notation Dα := Xαi
i Xα j

j ∂
αk
t and |α| := αi +α j +2αk.

In these inequalities, Λ,a0,b0 are positive structural constants: they only
depend on

• the doubling constant of d

• the constant λ in

1
λ
|ξ |2 ≤

q

∑
i, j=1

ai j(z)ξiξ j ≤ λ |ξ |2

• the d-Hölder norms of the coefficients ai, j and a j.

As a consequence: all our results extend to the operators

H := L −∂t :=
q

∑
i, j=1

ai j(z)XiX j +
q

∑
k=1

ak(z)Xk−∂t

with d-Hölder continuous coefficients ai, j and a j.
To close this section, we have to say that the method we followed is based

on an adaptation to our sub-riemannian setting of the classical Levi parametrix
method, as in [2]. In doing that we used a large amount of ideas, techniques
and results due to Rotschild&Stein [22], Jerison&Sanchez-Calle [13], Feffer-
man&Sanchez-Calle [10] and to Kusuoka&Stroock [14], [15], [16].

4. General diffusion operators

Let us consider the operator

H =
N

∑
i, j=1

qi, j(z)∂ 2
xi,x j

+
N

∑
j=1

q j(z)∂x j −∂t

in the strip S = RN×]T1,T2[, −∞ ≤ T1 < T2 ≤ ∞. We assume, together with
the smoothness of the coefficients and the hypoellipticity of H , the d-Gaussian
bounds of Γ-the fundamental solution of H -, the equivalence between the d-
topology and the Euclidean one, the doubling and the segment property of the
distance d, as stated in the Introduction.

All the results we present in this section have been proved in [18].
A first trivial remark is that

Ω−→H (Ω) := {u ∈C∞(Ω) : H u = 0}

is a linear sheaf of functions on S. We agree to call H (Ω) the space of the
H -harmonic functions in Ω.

We first proved that (S,H ) is a β -harmonic space. Precisely:
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• There exists a strictly positive H -harmonic functions on every shrinked
strip RN×]T,T2[, T1 < T < T2. This function is given by

u(x, t) =
∫ N

R
Γ(x, t;ξ ,T )dξ ,

• There exists a family of bounded open set {V}, that form a basis of the
Euclidean topology of S, such that the Dichlet problem{

H u = 0 in V
u|∂V = ϕ

has a classical solution for every ϕ ∈C(∂V ). This follows from a Bony’s
argument that uses the non-total degeneracy of qH , the characteristic
form of H [4].

• {Γ(.,ζ ) : ζ ∈ S} is a family of H -superharmonic functions separating
the points of S.

• (Doob convergence property)

H (Ω) 3 un ↗ u, u < ∞ in a dense subset of Ω

⇓

u ∈H (Ω)

This follows from the hypoellipticity of H , by using an argument again
due to Bony [4].

General results from Abstract Potential Theory [8], now imply that

HΩ
ϕ := inf{u : u is H − superharmonic in Ω : liminfu≥ ϕ on ∂Ω}

is H -harmonic in Ω, for every bounded open set Ω ⊂ Ω̄ ⊂ S, and for every
ϕ ∈C(∂Ω). HΩ

ϕ is the PWBB generalized solution to{
H u = 0 in Ω

u|∂Ω = ϕ

By using several devices from Balayage Theory in Abstract Harmonic Spaces,
we also have estimated the behavior of HΩ

ϕ at any point of ∂Ω. Indeed, we
proved that

|HΩ
ϕ (z)−ϕ(z0)| ≤ h(ϕ;z0,z), z0 ∈ ∂Ω, z ∈Ω.
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We constructed the function h(ϕ; .) by using a Wiener-type series of Γ poten-
tials. As a consequence, h(ϕ; .) can be estimated in terms of the Gaussian func-
tions Ga’s and of some geometric properties of the open set Ω. In particular, it
turns out that h(ϕ;z0,z)→ 0 as z→ zo, for every ϕ ∈C(∂Ω), if and only if z0 is
a H - regular boundary point for Ω.

As one can expect, our estimates of the function h(ϕ; .) take simpler form
when Ω is a cylindrical domain. As an example: let us consider an open set
Ω = D×]a,b[, where D⊂ RN and T1 < a < b < T2. Assume that, for a suitable
θ ∈]0,1[ and for every r sufficiently small,

|B(x0,r)\D| ≥ θ |B(x0,r)|, x0 ∈ ∂D.

Then, for every t0 ∈]a,b[, the point z0 = (x0, t0) is H -regular for the Dirichlet
problem. Moreover, if the function ϕ is d-Hölder continuous at z0 = (x0, t0),
then there exists γ ∈]0,1[ such that

|HΩ
ϕ (z)−ϕ(z0)| ≤Cϕ((d(x0,x))4 +(t− t0)2)

γ

4 .

This particular boundary regularity results played a crucial role in our proof
of the invariant Harnack inequality for nonnegative solutions to H u = 0. Here,
as in [3], we adapted to our setting the Fabes&Strook’s implementation [9] of
the ”‘hold” idea by Nash [21]. The main difficulty we encountered was the con-
struction, and the estimates from above and from below, of the Green function
for cylindrical domains like C(z0,r) := B(x0,r)×]t0− r2, t0 + r2[. The difficulty
arises from the fact that, in general, the parabolic boundary of these domains
are not H -regular for the Dirichlet problem.

To overcome this difficulty, for every fixed δ , and θ ∈]0,1[, we constructed
domains A(x0,r) such that

• B(x0,δ r)⊂ A(x0,r)⊂ B(x0,r),

• |B(y,r)\A(y,r)| ≥ θ |B(x0,r)|, for every y ∈ ∂A(x0,r)

Then: from the previous boundary regularity results for cylindrical domains,
the parabolic boundary of the cylinder

C(z0,r) = A(x0,r)×]t0− r2, t0 + r2[

is H -regular for the Dirichlet problem. As a conseguence: the Green function
for such a domain exists and satisfies ”right” Gaussian bounds from above and
from below. We would like to explicitly remark that in our construction of the
domains A(x0,r)’s, as well as in the proof of the Gaussian bounds for their Green
functions, the segment property of the metric d played a crucial role.
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We close this section by mentioning that, if the coefficient of H are t inde-
pendent, i.e. if

H =
N

∑
i, j=1

qi, j(x)∂ 2
xi,x j

+
N

∑
j=1

q j(x)∂x j −∂t := L −∂t

then every solution to L u = 0 also solves H u = 0. As a consequence: our
Harnack inequality trivially extends to L . Precisely, let

L u = 0,u≥ 0 in an open set D⊂ RN , such that B(x0,2r)⊂ D

Then
max

B(x0,r)
u≤M inf

B(x0,r)
u(x0).

where M is a positive structural constant.

5. An application: graphs having the same Levi-curvature

Let u, v : D→ R be smooth functions, where D is a subset of R2n+1.
Assume

• u≤ v in D

• u and v are s-strictly pseudoconvex

• the graphs of u and v have the same s-Levi curvature.

Then w := v−u≥ 0 and satisfies

L w≡
2n

∑
i, j=1

bi jXiX jw = 0 in D

The vector fields X j’s take the form X j∂x j + a j(∇u)∂x2n+1 , and satisfie the rank
conditions

dim(span({X j, [Xi,X j] : i, j = 1, . . . ,2n+1})) = 2n+1

at any point of D [17]. Then, if B(x0,2r)⊂ D,

max
B(x0,r)

w≤M inf
B(x0,r)

w(x0).

where B(x0,r) is the Carnot-Carathéodory distance related to the vector fields
X j’s.
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In particular if u(x0) = v(x0) at a point x0 ∈ D and D is connected, then

u≡ v in Ω
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